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Abstract
The aim of this work was to study the antitumor effects and the mechanisms of toxic action of a series of 6-methoxyquinoline 
(6MQ) complexes in vitro. The Cu(II) and Zn(II) complexes (Cu6MQ and Zn6MQ) are formulated as M(6MQ)2Cl2; the 
Co(II) and Ag(I) compounds (Co6MQ and Ag6MQ) are ionic with formulae [Ag(6MQ)2]+NO3

− and H(6MQ)+[Co(6MQ)
Cl3]− (where H(6MQ)+ is the protonated ligand). We found that the copper complex, outperformed the Co(II), Zn(II) and 
Ag(I) complexes with a lower IC50 (57.9 µM) in A549 cells exposed for 24 h. Cu6MQ decreased cell proliferation and 
induced oxidative stress detected with H2DCFDA at 40 µM, which reduces GSH/GSSG ratio. This redox imbalance induced 
oxidative DNA damage revealed by the Micronucleus test and the Comet assay, which turned into a cell cycle arrest at G2/M 
phase and induced apoptosis. In multicellular spheroids, the IC50 values tripled the monolayer model (187.3 µM for 24 h). At 
this concentration, the proportion of live/dead cells diminished, and the spheroids could not proliferate or invade. Although 
Zn6MQ also decreased GSH/GSSG ratio from 200 µM and the cytotoxicity is related to oxidative stress, the induction of the 
hydrogen peroxide levels only doubled the control value. Zn6MQ induced S phase arrest, which relates with the increased 
micronucleus frequency and with the induction of necrosis. Finally, our results reveal a synergistic activity with a 1:1 ratio 
of both complexes in the monolayer and multicellular spheroids.

Keywords  6-Methoxyquinoline complexes · Lung carcinoma · A549 cells · Multicellular spheroid model · Oxidative 
damage

Introduction

The constant worldwide expansion of a disease such as 
cancer is challenging the research and development of new 
drugs and is pushing scientists to find new and creative ways 
to fight against tumor development.

Oxidative damage is considered a potential therapeutic 
approach for the development of novel ROS-based anti-
cancer agents. It is very well established that cancer cells 
display an altered metabolism with hallmarks such as an 
increase in the glucose uptake, increase in lactate synthe-
sis, and an altered redox homeostasis level [1, 2]. In fact, 
tumor cells have higher levels of endogenous reactive oxy-
gen species (ROS) than normal cells, and this difference 
makes them more vulnerable to ROS-induced injury [3]. 
Therefore, further oxidative stress induced by exogenous 
agents is a strategy to selectively inhibit tumor prolifera-
tion without producing significant toxicity to normal cells 
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[4]. Growing evidence suggests that increased amounts of 
ROS can trigger oxidative damage to lipids, proteins, and 
DNA. Severe permanent DNA injury leads to a mitotic 
catastrophe, which may then be followed by apoptosis or 
necrosis [5].

On the other hand, epigenetic control reversibly influ-
ences on the onset and progression of cancer [6]. This 
reason led to the development of new drugs that target 
histone deacetylases [6]. In fact, it has been reported that 
these enzymes may act as oncogenes since they have been 
found overexpressed in solid tumors and it is a point of 
vulnerability for cancer cells [6]. Indeed, histone deacety-
lases inhibition significantly alters tumor cells, inducing 
cell cycle arrest, differentiation, cell death, reduction of 
angiogenesis and also can induce an increase in the level 
of intracellular oxygen reactive species [7, 8]. Moreover, 
it has been highlighted that histone deacetylase inhibitors 
provoke genomic instability contributing to the cytotoxic 
effects of these drugs [9].

Many quinoline-based drugs that have been used in the 
treatment of malaria, arthritis, and lupus, showed to inhibit 
histone deacetylase activity [10, 11]. In addition, it has been 
demonstrated that quinolines induce DNA damage and apop-
tosis [10] and display antiproliferative activity in in vitro and 
in vivo systems [11, 12] Significant oxidative stress induced 
in cells by quinolone derivatives might contribute to the anti-
tumor effect [13, 14].

Previously, it has been reported the synthesis, thermal, 
spectral and magnetic studies of metal coordination com-
pounds with 6-methoxyquinoline (6MQ) as ligand [15, 16]. 
Moreover, the crystal structure of many complexes with 
6-methoxyquinoline as ligand and transition metals have 
been recently reported by some of us [17]. The synthesis of 
these complexes has been undertaken since it is known that 
coordination with metals may reinforce therapeutic activity 
of the compounds or may allow the acquisition of beneficial 
actions. These complexes have shown to improve the anti-
bacterial effect on Gram-positive and Gram-negative bac-
teria after complexation, although nothing is known about 
their activity as anticancer drugs [17].

On these bases, we are interested to evaluate if the com-
plexation process of 6-methoxyquinoline with Ag(I), Co(II), 
Cu(II) and Zn(II) generates compounds with antitumor activ-
ity for lung carcinoma. Our study was carried out on mon-
olayer and in a multicellular spheroid model of human lung 
carcinoma A549 cells, considering cell viability as a starting 
point to study, and the mechanisms of action involved in 
their antiproliferative effects. We focused our attention on 
the role of oxidative stress, and the cytotoxicity and geno-
toxicity actions of Cu(II) and Zn(II) complexes (Cu6MQ and 
Zn6MQ) whose formula is M(6MQ)2Cl2 (Fig. 1 shows the 
crystallographic structure) since these two resulted to be the 
most active and to differ from the cation effect.

Materials and methods

Materials

Tissue culture materials were purchased from Corning 
(Princeton, NJ, USA) and APBiotech (Buenos Aires, 
Argentina), Dulbecco’s modified Eagle medium (DMEM), 
TrypLE™ from Gibco (Gaithersburg, MD, USA), and 
fetal bovine serum (FBS) from Internegocios SA (Bue-
nos Aires, Argentina). 2′,7′-Dichlorodihydrofluorescein 
diacetate (H2DCFDA) and dihydroethidium (DHE) were 
obtained from Molecular Probes® (Eugene, OR, USA). 
Annexin V, Fluorescein isothiocyanate (FITC), propid-
ium iodide (PI) were bought from Invitrogen Corporation 
(Buenos Aires, Argentina). Reduced glutathione (GSH), 
o-phthalaldehyde (OPT), n-ethylmaleimide (NEM), vita-
min E (α-tocopherol), cytochalasin and the agaroses were 
acquired from Sigma Aldrich (St. Louis, MO, USA). Vita-
min C (ascorbic acid) from Merck (Buenos Aires, Argen-
tina). Fluorescein diacetate and Resazurin sodium salt 
were purchased from Santa Cruz Biotechnology (Santa 
Cruz, CA, USA). A549 (CCL-185) and MRC-5 (CCL-175) 
cell lines were purchased from ATCC​®.

Synthesis of transition metal complexes 
of 6‑methoxyquinoline and aqueous stability

Four monomeric complexes of Cu(II), Zn(II), Co(II) 
and Ag(I) with 6-methoxyquinoline (6MQ) as ligand 
have been prepared and identified according to Villa-
Pérez et al. [17]. The Cu(II) and Zn(II) complexes are 
formulated as Cu(6MQ)2Cl2 and Zn(6MQ)2Cl2; the 
Co(II) and Ag(I) compounds are ionic with formulae 
[Ag(6MQ)2]+NO3

− and H(6MQ)+[Co(6MQ)Cl3]− (where 
H(6MQ)+ is the protonated ligand). Hereafter, the com-
pounds will be referred as Cu6MQ, Zn6MQ, Co6MQ, and 
Ag6MQ, respectively.

Aqueous stability in 1000 µM solutions of the com-
plexes was measured in phosphate-buffered saline (PBS) 
using a Shimadzu UV–Vis spectrophotometer UV-2600 

Fig. 1   ORTEP plots of Cu6MQ and Zn6MQ
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in the range 200–400 nm every hour for 24 h. To ensure 
the stability in biological conditions, 250 µM solutions 
of Cu6MQ and Zn6MQ were prepared in DMEM and the 
spectra were recorded in the range 200–400 nm every hour 
for 24 h as well. The UV spectra were analyzed using the 
software SpectraGryph (version 1.2.7, Oberstdorf, Ger-
many), determining the area under the curve in the whole 
range, followed by the evaluation of the change of area 
compared with the area at time 0.

Cell culture (monolayer and multicellular spheroids)

The A549 human lung carcinoma (passages 15–35) and 
MRC-5 normal lung fibroblasts (passages 5–10) cell lines 
were cultured in DMEM supplemented with 10% FBS, 100 
U/mL penicillin, and 100 µg/mL streptomycin at 37 °C in a 
humidified atmosphere with 5% of CO2. Cells were seeded 
in a T75 flask, and when 80–90% of confluence was reached, 
cells were subcultured using TrypLE™.

Experiments were carried out in multiwell plates, where 
cells were allowed to attach and were washed with DMEM 
before each treatment.

A549 carcinoma multicellular spheroids (MCS) were 
cultured using the liquid overlay method [18]. Briefly, a 96 
wells plate was coated with 50 µL 1% (w/v) sterile agarose 
in PBS; the gel was allowed to solidify for 20 min. 104 cells/
mL (150 µL) were seeded in each well and incubated at 
37 °C. Half of the culture medium was replaced with com-
plete fresh medium every other day. On the eighth day, MCS 
reached an average diameter between 350 and 400 µm and 
were suitable to be treated with the complexes [19].

Cell viability assay

Monolayer cell viability was determined using 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT), which is reduced by mitochondria in viable 
cells to a purple formazan dye [20]. Briefly, 2.5 × 104 cells 
were seeded on 96-well plates and incubated at 37 °C. After 
24 h, cells were exposed to different dilutions of each com-
plex, metallic salt, and ligand for 24, 48 or 72 h. Afterward, 
the monolayers were washed and incubated with 0.5 mg/mL 
of MTT in DMEM for 3 h. The absorbance of the formazan 
extracted with DMSO (100 µL/well) was recorded at a wave-
length of 570 nm using a multiplate reader Multiskan FC 
(Thermo Scientific). The cell viability is shown graphically 
as a percent of the control value (cells treated with DMSO 
as vehicle).

To evaluate the role of ROS levels on cell viability, a mix-
ture of 50 µM ROS scavengers (vitamin C and E) was simul-
taneously added to the culture medium with the complexes. 
After the incubation, the cell viability was determined by the 
MTT assay as previously described.

With the goal of achieving a complete outlook of the 
harmful effect exerted by the complexes, cell morphology 
was also studied. A549 cells were cultured in 6-well plates 
(2.5 × 105 cells/well), and different concentrations of the 
complexes were added for 24 h. To observe cell morphologi-
cal changes, the monolayer was fixed with absolute ice-cold 
methanol for 5 min and stained with Giemsa (1:20 in PBS). 
The morphological changes were recorded using an inverted 
microscope Olympus BX-51 coupled to a digital camera.

Clonogenic assay

To explore if the compounds affect cell proliferation, a 
clonogenic assay was conducted according to [21]. 5 × 102 
exponential growing A549 cells were plated on 6-well plates 
and allowed to attach overnight under standard culture 
conditions. The cells were washed twice with sterile PBS 
and treated with the complexes for 24 h. Next, cells were 
washed with PBS twice and incubated with complete culture 
medium for 10 days. Fixation and the staining process were 
conducted with glutaraldehyde 6.0% (v/v) and crystal violet 
0.25% (w/v). Colonies formed by more than 50 cells were 
recorded for the calculations. The surviving fraction of cells 
was plotted versus concentration.

Oxidative stress determination

Reduced (GSH) and oxidized (GSSG) glutathione lev-
els were determined as described by Hissin and Hilf [22]. 
Confluent A549 monolayer cultured in 24-well plates were 
treated with different concentrations of Cu6MQ and Zn6MQ 
for 6 and 24 h. Then, the monolayer was washed with PBS, 
and the cells were lysed with 250 µL 0.1% Triton X-100 
for 30 min at 4 °C. For GSH determination, 100 µL of the 
cellular lysate were added to 1.8 mL of ice-cold phosphate 
buffer (Na2HPO4 0.1 M EDTA 0.005 pH 8.0) and 100 µL 
o-phthaldialdehyde (OPT) (0.1% in methanol). For the deter-
mination of GSSG, 100 µL of the cell lysate were mixed 
with 20 µL 0.04 M of N-ethylmaleimide (NEM) for 20 min 
at 4 °C, then 1.8 mL of NaOH 0.1 M and 100 µL OPT 0.1% 
were added. Fluorescence was registered using a fluorometer 
Shimadzu RF-6000, the samples were excited at 350 nm, and 
the emission signal was acquired at 420 nm. GSH/GSSG 
ratio was calculated as % of the basal for all the experimental 
conditions.

Transition metal complexes were tested for reactive oxy-
gen species (ROS) induction as a mechanism of death cell 
by flow cytometry. 3 × 105 A549 cells were seeded in 12 
well plates and incubated overnight. The culture medium 
was replaced with different concentrations of the complexes 
for 24 h. H2O2 0.75 mM for 20 min was employed as a posi-
tive control. Then, the cellular monolayer was washed with 
PBS and detached with Tryple. The cells were centrifuged, 
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and the pellet was incubated with DHE or H2DCFDA 
(0.8 µM) protected from light for 30 min. Afterward, cells 
were washed twice with PBS, resuspended in 250 µl PBS 
and transferred to flow cytometry tubes. 2 × 104 events were 
acquired in FL1 for H2DCFDA, or FL2 for DHE using a BD 
FACscalibur™ flow cytometer (BD Biosciences, USA) and 
further analyses were performed using FlowJo 7.6 software.

Apoptosis

Cells going through different stages of apoptosis were 
detected with Annexin V–FITC and propidium iodide (PI) 
staining by measuring the externalization of phosphatidyl-
serine (PS) and the cellular membrane integrity, respectively. 
Cells exposed to different concentrations of Cu6MQ and 
Zn6MQ for 24 h were detached using Tryple™ and cen-
trifuged at 2500 RPM for 5 min. Afterward, the cellular 
pellet was resuspended in 100 µL of binding buffer, and 2 
µL of Annexin V-FITC were added, cells were incubated for 
20 min at room temperature protected from light, and before 
de measurement 1 µL of PI (50 µM) was added. For each 
sample, 2 × 104 events were analyzed using a BD FACscali-
bur™ flow cytometer (BD Biosciences, USA) and further 
analyses were performed using FlowJo 7.6 software.

Cell cycle

DNA content in G1/G0, S, and G2/M phases was analyzed 
using flow cytometry. Cells were seeded on 6-well plates and 
treated with different concentrations of Cu6MQ and Zn6MQ 
for 24 h. The harvested cells were washed with PBS, fixed 
and permeabilized with 70% ice-cold ethanol for 2 h. After-
ward, cells were suspended in 300 µL staining buffer (PBS/
EDTA 2 mM, pH 8.0) and 15 µL of RNAse (1 mg/mL) and 
incubated at 37 °C for 15 min. Cells were stained with PI (15 
µL of a solution 1 mg/mL) overnight at 8 °C. 104 single cells 
were analyzed with a BD FACscalibur™ flow cytometer; 
histograms depicted the relative DNA distribution within 
each sample. The percentage of cells in the G1/G0, S, G2/M 
phases and the sub-G1 peak was then calculated using the 
cell cycle analysis module in the FlowJo 7.6 software.

Genotoxicity studies

The cytokinesis-block micronucleus (MN) assay was set up 
with cultures in the log phase of growth. A549 cells were 
seeded onto 6-well plates and incubated at 37 °C for 24 h. 
Then, the cells were treated with different concentrations of 
the complexes along with cytochalasin B (4.5 μg/mL). After 
24 h, cells were rinsed and subjected to hypotonic conditions 
with 0.075% KCl at 37 °C for 5 min, fixed with pure metha-
nol at − 20 °C for 10 min and stained with a 5% Giemsa 
solution. For the MN assay, 500 binucleated (BN) cells were 

scored at 400× magnification per experimental point from 
each experiment. The examination criteria employed were 
reported by Fenech [23]. A pulse of 30 min of 0.5 μg/mL 
bleomycin was employed as the positive control.

For detection of DNA damage, the single cell gel elec-
trophoresis assay (Comet assay) was employed based on 
the method of Singh et al. [23] with minor modifications. 
Briefly, A549 cells were treated with different concentra-
tions of the complexes. After 24 h, cells were suspended 
in 0.5% low melting point agarose and immediately poured 
onto microscope slides precoated with 0.5% normal melting 
point agarose. Two slides were prepared for each condition; 
one slide was used to observe single-strand DNA breaks and 
the other, to obtain information on the presence of oxidized 
DNA bases using digestion with the enzyme EndoIII [23]. 
Slides were immersed in ice-cold lysis solution (2.5 M NaCl, 
100 mM Na2–EDTA, 10 mM Trizma–HCl, pH 10 and 1% 
Triton X-100, 10% DMSO at 4 °C, pH 10) for 1 h to lyse the 
cells, remove cellular proteins and to allow DNA unfolding. 
After that, the slides were washed three times (5 min each 
time) with enzyme buffer (0.1 M KCl, 0.5 mM Na2–EDTA, 
40 mM HEPES–KOH, 0.2 mg/ml BSA, pH 8.0) and incu-
bated for 45 min at 37 °C with EndoIII in the enzyme buffer 
or with buffer alone. Then, the slides were placed on a hori-
zontal gel electrophoresis tank, and the DNA was allowed 
to unwind for 20 min in freshly prepared alkaline electro-
phoresis buffer (300 mM NaOH and 1 mM Na2-EDTA, pH 
12.7). Electrophoresis was carried out in the same buffer for 
30 min at 25 V (≈ 0.8 V/cm across the gels and ≈ 300 mA) 
in an ice bath condition. Afterward, slides were neutralized 
and stained with Syber Green. The analysis was performed 
in an Olympus BX50 fluorescence microscope. A total of 
150 randomly captured cells per experimental point were 
used to determine the tail moment using Comet Score ver-
sion 1.5 software. A pulse of 20 min of 10 μg/mL bleomycin 
just before the cells were harvested was employed as the 
positive control.

Multicellular spheroids (MCS) viability assay

The spheroid viability was assessed using the resazurin dye, 
which is irreversibly reduced by intracellular oxidoreduc-
tases to a pink-red fluorescent dye known as resorufin [24]. 
The spheroids were cultured as described and incubated with 
different concentrations of the complexes for 24 or 48 h. 
After the exposure, the medium was replaced with 50 µM 
resazurin solution in DMEM, and the spheroids were incu-
bated overnight at 37 °C. Fluorescence was registered using 
a fluorometer Shimadzu RF-6000 (excitation at 570 nm, 
emission at 585 nm). Results were corrected by subtraction 
of the fluorescence of resazurin and DMEM alone incubated 
under the same conditions. Cell viability was plotted as a 
percentage of the basal condition (solvent control).
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Moreover, morphological changes were studied with 
a live–death cell staining. Multicellular spheroids treated 
with different concentrations of the complexes were incu-
bated for 24 or 48 h and stained with fluorescein diacetate 
(8 × 10−3 mg/mL) and propidium iodide (2 × 10−2 mg/mL). 
The spheroids were incubated in the dark for 5 min at room 
temperature. The fluorescence was registered using an epi-
fluorescence inverted microscope Nikon Ti Eclipse with 
FITC and Texas Red filters. The raw images were processed 
using ImageJ® software, and composite RGB images were 
obtained.

Multicellular spheroids spreading assay

To evaluate if the cells in the spheroids can migrate and 
proliferate after the exposure to Cu6MQ and Zn6MQ for 
24 h, the spheroids were transferred into a 96-well plate 
containing 150 µL of DMEM supplemented with 10% FBS 
and were incubated at 37 °C in a humidified atmosphere with 
5% of CO2. The development of outward cellular projec-
tions from the spheroids into the well surface was registered 
through phase contrast microscopy after 24 and 72 h.

Synergistic calculations

To determine the existence of a synergistic effect between 
Cu6MQ and Zn6MQ on A549 cells, the concentration fixed 
ratios 1:1, 1:3 and 1:4 of the complexes were tested. Fol-
lowing the same procedure applied in the cell viability assay 
(see “Cell viability assay”), and the data were analyzed using 
the Chou–Talalay method through the CompuSyn software. 
The results are expressed as the combination index (CI): 
synergistic effect (CI < 1), additive effect (CI = 1) and antag-
onism effect (CI > 1) [5].

Statistical analysis

Results are expressed as the mean of three independent 
experiments and plotted as mean ± standard error of the 
mean (SEM). The total number of repeats (n) is specified in 
the legends of the figures. The Tukey test (two way ANOVA) 
was employed to compare means in all the experiments 
performed.

Results

Stability of the complexes

The stability of the complexes was evaluated using UV–Vis 
spectroscopy (Fig. 1 from Supplementary Material shows 
the electronic absorption spectra of Cu6MQ and Zn6MQ 
in DMEM and Co6MQ and Ag6MQ in PBS). After 24 h 
in PBS, all the complexes kept their spectroscopic charac-
teristics and showed a degradation rate below the 10%. The 
stability follows: Cu6MQ = Ag6MQ > Zn6MQ> Co6MQ 
(Fig. 2A from Supplementary Material). Moreover, in bio-
logical conditions, Cu6MQ and Zn6MQ remain stable for 
24 h (Fig. 2B from Supplementary Material).

Effect of 6‑methoxyquinoline complexes on cell 
viability

Results from the MTT assay (Fig. 2a) in A549 cell line 
show that Co6MQ caused no harmful effect on the tumor 
cells, and Ag6MQ was the most active antiproliferative 
compound. However, despite the remarkable effect of 
the silver compound, it did not show a differential cyto-
toxic effect when compared to the cation Ag+ in the same 
range of concentrations (data not shown). On the other 

Fig. 2   a Effect of Cu6MQ, Zn6MQ, Co6MQ and Ag6MQ on A549 
cell viability. Cells were incubated alone (control) or with differ-
ent concentrations of the compounds at 37  °C for 24 h. The results 
are expressed as the percentage of the basal level and represent the 
mean ± the standard error of the mean (SEM) (N = 9). Asterisks 
represent a statistically significant difference in comparison with 
the basal level *(p < 0.05) **(p < 0.001). b Differential behavior of 

Cu6MQ and Zn6MQ on A549 and MRC-5 cell viability. The results 
are expressed as the percentage of the basal level and represent the 
mean ± SEM (N = 9). Asterisks represent a statistically significant dif-
ference in comparison with the basal level *(p < 0.05) **(p < 0.001). 
Number sign (#) represents a statistically significant difference when 
the same complex concentration is evaluated on A549 and MRC-5 
cell lines (p < 0.05)
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hand, Zn6MQ and Cu6MQ displayed a desirable concen-
tration-dependent cytotoxic effect in the tumor cell line 
(p < 0.001), and a significant differential behavior when 
compared to the free ligand and their parent metal salts 
(Fig. 3 from Supplementary Material). Figure 2b shows 
the differential behavior between lung carcinoma and nor-
mal fibroblast for the copper and zinc complexes. Only 
Cu6MQ showed an acceptable difference (p < 0.05) with 
normal phenotype cells.

Half-maximal inhibitory concentrations (IC50) also 
show that Cu6MQ (57.9 ± 5.8 µM) outperformed Zn6MQ 
(202.3 ± 12.2 µM) in inhibiting cell viability of lung carci-
noma cells. Moreover, Cu6MQ induce a stronger effect than 
cisplatin in a 24 h treatment (Fig. 4 from Supplementary 
Material). The IC50 of cisplatin in A549 cells after 24 h is 
266.0 ± 40.1 µM.

It is worth mentioning that Cu6MQ almost totally reduced 
tumor cell viability at 100 μM and a reduction of 70% for 

the Zn(II) complex-treated A549 cells was overtaken at the 
highest tested concentration (250 μM).

On the other hand, A549 cell viability was measured as 
a function of time for Cu6MQ and Zn6MQ (Fig. 3). It is 
observed that for both compounds at each concentration, the 
antitumor effect is time-related.

Morphological changes

The harmful effect exerted by Cu6MQ and Zn6MQ was 
also confirmed by following the morphological changes on 
A549 cell line using Giemsa staining (Fig. 4). Lower con-
centrations of the complexes did not induce a significant 
reduction in the cell population. However, 50 and 75 µM 
of Cu6MQ caused cytoplasmic shrinkage and moderate 
cell population decrease. It can be established as an indi-
rect correlation between the presence of shrunk cells and 
the increase of the necrotic population in a concentration 

Fig. 3   Effect of Cu6MQ (A) and Zn6MQ (B) on A549 cell viability 
as a function of time. Cells were incubated alone (control) or with 
different concentrations of the compounds at 37  °C for 24, 48 and 
72  h. The results are expressed as the percentage of the basal level 
and represent the mean ± the standard error of the mean (SEM) 
(N = 9). ★ represents a statistically significant difference in com-

parison with the basal level (p < 0.001), * represents a statistically 
significant difference between 24 and 48  h treatments p < 0.001, ■ 
represents a statistically significant difference between 48 and 72  h 
treatments p < 0.001, • represents a statistically significant difference 
between 24 and 72 h treatments p < 0.05 and # p < 0.001

Fig. 4   Morphological changes exerted by Cu6MQ (upper panel) and Zn6MQ (bottom panel) on A549 cell line using Giemsa staining
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dependent manner. At 100 µM the cell number per field was 
significantly reduced and presented nuclear contraction. On 
the other hand, Zn6MQ only induced significant changes at 
250 and 350 µM with remarkable population reduction with 
cytoplasmic and nuclear contraction.

Effect on cellular proliferation

The clonogenic assay was performed to evaluate the effect of 
the complexes on the cellular reproductive potential (Fig. 5) 
[25]. Our results showed a clear reduction of cell prolif-
eration which agreed with the cell viability assay. Cu6MQ 
affected the colony formation in a dose-dependent manner 
(60–100 µM, p < 0.001). On the other hand, Zn6MQ altered 
the proliferation process only in the upper range of concen-
trations (250–300 µM, p < 0.001).

Redox balance impairment

Both, Cu6MQ and Zn6MQ decreased the GSH/GSSG 
ratio in a concentration-dependent way. Cu6MQ caused 
an equivalent disruption in the redox balance both at 6 and 
24 h treatments, in the whole range of concentrations. In 
contrast, Zn6MQ modified the GSH/GSSG ratio only after 
24 h of exposure from 200 to 400 µM (Fig. 6A,*p < 0.05 
and, **p < 0.001).

The impairment of the redox balance caused by Cu6MQ 
and Zn6MQ had a direct role in the cellular death process. 
Exogenous antioxidant scavengers (50 µM vitamin C and 
50 µM vitamin E) were added simultaneously to the com-
plexes and a general recovery in cell viability could be 
observed for both complexes (Fig. 6B, p < 0.001). A statis-
tically significant difference at each concentration was found 
when comparing both treatments (p < 0.01). When vitamins 
were added along with the complexes, only a moderate cyto-
toxic effect was observed at 80 and 100 µM of Cu6MQ while 
for Zn6MQ a similar effect was observed at 300 and 400 µM.

As can be seen in Fig. 6C, D, Cu6MQ produced a signifi-
cant increase of hydrogen peroxide detected with H2DCFDA 
at 40 µM (p < 0.001) with a result tenfold higher than the 
control value, reaching the effect of positive control cells 
(H2O2). At higher concentrations, the fluorescence intensity 
decreased, related to overt cytotoxicity and membrane per-
meability. Superoxide anion measured by the detection of 
DHE (Fig. 6D b) did not show a significant difference over 
the basal (p > 0.05).

Zn6MQ also induced hydrogen peroxide production from 
200 µM, but in a less pronounced response with a result that 
doubled the control value (Figs. 6C, D a, p < 0.05).

Apoptosis induction

Both complexes induced an apoptosis-related death at 
lower concentrations and turned into a necrotic effect at the 
higher concentrations tested (Fig. 7). Three concentrations 
were studied for Cu6MQ (40, 60 and 80 µM). At 40 and 
60 µM, approximately 15% of the cell population was under 
an apoptotic process, whereas at 80 µM there was a sig-
nificant reduction of the apoptotic population (to 7.5%) and 
an increment of the necrotic fraction to 22.1% (p < 0.001). 
Zn6MQ-treated cells presented in the whole range of con-
centrations tested a high and significant (p < 0.001) pro-
portion of necrotic cells, which indicates that this complex 
compromised the membrane integrity even at low concen-
trations. Moreover, the fraction of necrotic cells followed a 
concentration-dependent increase, i.e., 16.7, 53.3 and 76.0% 
for 150, 250 and 300 µM, respectively. Only at 150 µM, the 
apoptotic and necrotic fractions are equal.

Cell cycle

To investigate the ability of the complexes to alter cell cycle 
progression, the relative proportion of DNA within the cell 
was evaluated (Fig. 8). Cu6MQ at 50 and 100 µM induced an 
accumulation of cells in the G2/M phase, 23.2% and 21.5%, 
respectively, (p < 0.001), the increase of events at this phase 
was at expense of the G1 population which was reduced 15% 
in average. The cells in S phase did not show any alteration 
in comparison with the control. On the other hand, 34% of 
the cellular population was found at the S phase when the 
cells were treated with 250 µM of Zn6MQ which is a statisti-
cally significant increase (p < 0.05) compared with the con-
trol sample. As a consequence, the G1 cell population was 
reduced 17.5% (p < 0.001) compared with the control group.

Genotoxic effects

A549 cells exposed to low concentrations of Cu6MQ 
experienced a significant increment in micronuclei for-
mation (Fig. 9a). A concentration of 2.5 μM significantly 

Fig. 5   Effect of Cu6MQ and Zn6MQ on A549 cell proliferation. 
The results represent the mean ± SEM (N = 18). Asterisks represent a 
statistically significant difference in comparison with the basal level 
(p < 0.001)
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favored formation of micronuclei—which increases in a 
concentration-related manner—and at 25 μM provoked 
the same effect of bleomycin (0.7 μM) that we used as a 

positive control (p < 0.01). At this concentration, A549 
cells experienced significant damage to DNA, which 
could be the origin of the micronuclei formation. A 

Fig. 6   A GSH/GSSG ratio after 6 or 24 h of treatment with Cu6MQ 
and Zn6MQ on A549 cells * and ** represent a statistically sig-
nificant difference in comparison with the basal level p < 0.05 and 
p < 0.001), respectively. B Effect of Cu6MQ and Zn6MQ on A549 
cell viability in the presence of 50  µM vitamin C and 50  µM vita-
min E (p < 0.001). Number sign (#) represents a statistically signifi-
cant difference in cell viability when general ROS scavengers are 

added along with the complexes (p < 0.01). C Flow cytometry histo-
gram using H2DCFDA for I and Zn6MQ on A549 cells. D Induction 
of ROS by Cu6MQ and Zn6MQ on A549 cells by flow cytometry a 
H2DCFDA and b DHE. The results are expressed as the mean ± SEM 
(N = 10). * and *** represent a statistically significant difference in 
comparison with the basal level p < 0.05 and p < 0.001, respectively

Fig. 7   Apoptosis by flow 
cytometry in A549 cells treated 
during 24 h with Cu6MQ 
and Zn6MQ. The results are 
expressed as the percentage of 
the basal level and represent the 
mean ± SEM (N = 9). Asterisks 
represent a statistically signifi-
cant difference in comparison 
with the basal level (p < 0.001)
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concentration of 5 μM started to damage DNA but a con-
centration of 25 μM was necessary to significantly break 
and liberate DNA-strands (Fig. 9b). A significant increase 
was observed in oxidative DNA damage detected by the 
employment of EndoIII, for the detection of oxidized pyri-
midines (p < 0.001).

On the other hand, Zn6MQ-treated cells induced con-
centration-independent micronuclei formation in the whole 
concentration range with values of micronuclei per 500 
binucleated cells near the positive control (p < 0.01). DNA 
damage measured by the Comet assay was also observed, 
but only at 50 μM, with the employment of EndoIII endo-
nuclease. This enzyme releases damaged pyrimidines from 
double-stranded DNA and significant increase of the Tail 
Moment.

Effect of the complexes on multicellular spheroid 
(MCS) cell viability

Cell viability was screened in multicellular spheroids for 
both complexes at 24 and 48 h (Fig. 10). Cu6MQ impaired 
MCS viability from 100 µM in a 24 h treatment show-
ing a concentration-dependent manner and from 50 µM 
when doubling the exposure time (p < 0.001). In this case, 
the MCS viability was reduced to approximately 25% in 
the whole range of concentrations. The IC50 values are 
also related to the time of exposure (187.3 ± 12.7 µM 
and 7.9 ± 3.1 µM for 24 and 48 h, respectively). In MCS 
exposed to Zn6MQ for 24 h, the viability significantly 
decreased only at 500 µM, whereas, at a 48 h treatment, 
the effect begun at 300 µM with a concentration-dependent 

Fig. 8   Cell cycle arrest in 
A549 cells after treatment 
with Cu6MQ and Zn6MQ. 
The data are expressed as the 
mean ± SEM (N = 9). * and ** 
represent a statistically signifi-
cant difference in comparison 
with the basal level p < 0.05 and 
p < 0.001, respectively

Fig. 9   a Micronucleus assay: induction of micronuclei in A549 cells 
after 24 h exposure to Cu6MQ and Zn6MQ. Asterisk represent a sta-
tistically significant difference at p < 0.01. Bleomycin was used as a 
positive control. b DNA strand breaks and oxidative damage in A549 
cells after 24 h of incubation with different concentrations of Cu6MQ 

or Zn6MQ by the Comet assay. The results are expressed as the 
mean ± SEM (N = 150). Asterisk represents a statistically significant 
difference at p < 0.001. # represents a statistically significant differ-
ence between both treatments with or without EndoIII at p < 0.001
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mode (IC50 472.0 ± 10.3 µM and 339.2 ± 8.4 µM for 24 and 
48 h, respectively).

Interestingly, at 24 h the IC50 for Zn6MQ on spheroids 
doubled the IC50 in the 2D model, while for Cu6MQ the 
IC50 on 3D raised three times the IC50 found in the cellular 
monolayer.

Moreover, morphological changes of MCS studied with 
fluorescein diacetate, and propidium iodide staining agrees 
with the viability assay. At 24 h treatment, propidium iodide 
crosses the cell membranes in Cu6MQ-treated spheroids 
from 100 µM, denoting lack of membrane integrity within 
the whole spheroid. However, Zn6MQ produced a live cell 
staining up to 400 µM and very little staining with propid-
ium iodide in accordance with the MCS viability assay.

Effect of the complexes on multicellular spheroid 
(MCS) spreading

Cellular outward projections from the spheroid into the well 
surface were registered by phase contrast microscopy. The 
cells from the spheroids exposed to 10–200 µM Cu6MQ 
for 24 h could not spread in the next 24 h which indicates a 
delay in the spread and proliferation of the living cells pre-
sent in the spheroid into the well surface (Fig. 11). However, 
after 72 h, the spheroids showed cellular projections when 
exposed to Cu6MQ up to 100 µM. From this concentration 
onwards, the effect induced by the complex is irreversible 
and can be correlated with the lack of a layer of viable cells 
(green staining).

On the other hand, Zn6MQ could delay the spreading of 
the cells from the spheroid only after 24 h but not after 72 h 
of moving into the 96-well plate containing DMEM + 10% 
FBS. In this case, even after the exposure to high concentra-
tions of the complex, a proliferating population outlasted and 
was able to spread from the spheroid to the surface.

These findings agree with the proportion of live–dead 
cells (superior panel in Fig. 11) since when the layer of pro-
liferating cells diminished (and the spheroid stained in red), 
the spheroids could not spread into the wells with projec-
tions which happened from 100 µM Cu6MQ.

Synergy between Cu6MQ and Zn6MQ

A ratio 1:1 of both complexes offers the best synergistic 
effect as a potential drug for cancer treatment. Our calcula-
tions of the combination index (CI) vs. affected fraction (Fa) 
are shown in Table 1. It summarizes the CI values of each 
combination at different effect levels (0.5, 0.75, 0.90 and 
0.95). The results indicate that the combo Cu6MQ + Zn6MQ 
at a ratio 1:1 presented a moderate synergistic behavior with 
combination index (CI) varying from 0.7583 to 0.8119. 
When the zinc complex proportion was increased the behav-
ior changed into a weak additive interaction with CI values 
comprised between 0.9 and 1.0.

Additionally, the combo Cu6MQ + Zn6MQ (1:1) was 
tested on the three-dimensional model, and we found out 
that there is a synergistic behavior where the combination 
index value ranges between 0.5275 and 0.7319. According 
to these results, it is observed that the synergistic effect is 
stronger in 3D model than in the monolayer model.

Discussion

Non-small cell lung cancer is the most common type of lung 
cancer and represents the main cause of cancer-associated 
death [26, 27]. So far, non-small cell lung tumors are poorly 
diagnosed in earlier stages, with bad prognosis and restricted 
therapeutic options. Surgery is the most recommended treat-
ment for patients in an early-stage followed by thoracic 
radiotherapy and chemotherapy [28]. Current treatments 
involve immunotherapy and tyrosine kinase inhibitors [29]. 
However, the need for new antitumor treatments has been 
raised [30].

Nowadays, histone deacetylase inhibitors have been sug-
gested to have a potential therapeutic role in diverse malig-
nancies, including non-small cell lung cancer [30]. In fact, 
histone deacetylase inhibitors, as quinoline compounds, have 
been demonstrated to overcome the resistance to conven-
tional treatments in erlotinib-resistant non-small cell lung 
cancer cells in vitro and in a xenograft mouse model [31], 
as well as in paclitaxel-resistant cells in a preclinical model 

Fig. 10   Effect of the complexes 
on multicellular spheroid 
(MCS) cell viability for 24 or 
48 h. The results are expressed 
as the percentage of the 
basal level and represent the 
mean ± SEM (N = 15). Asterisks 
represent a statistically signifi-
cant difference in comparison 
with the basal level (p < 0.001)
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[32]. For this reason, our research was focused on the anti-
tumor effects of metal complexes of 6-methoxyquinoline—a 
quinoline-based drug. The ligand by itself has no antitumor 
effect in epithelial carcinoma A549 cells, both in 2D and 
in 3D models. Besides, we have studied the mechanisms of 
action involved in the antitumor effects.

In the present study, a simple viability assay (MTT) was 
used to screen enzymatically active cells after the exposure 
to four metal complexes along with the ligand 6-methox-
yquinoline. Since the Co complex resulted inactive and the 
Ag complex caused the same inhibition of tumor cell viabil-
ity than the Ag+ cation, we focused our attention on the Cu 
and Zn complexes. In accordance with the morphological 
features, Cu6MQ could be established as the most promis-
ing candidate since it reduces tumor cell viability affecting 
non-tumor cells less severely. This effect has already been 
studied by others. A Cu complex with a hydroxyquinoline 

ligand exhibited a cytostatic effect associated with an arrest 
of the cell cycle in the G2/M phase in different tumor cells 
[33]. Moreover, copper complexes with polypyridyl ligands 
showed remarkable activity against human-derived lung 
cancer cells in contrast with non-cancerous human foreskin 
fibroblast cells [34]. The effects of Zn complexes seem to 
be more controversial. Many Zn complexes demonstrated 
to have potential anticancer activity against different tumor 
cell lines. Zn(II) complexes with 2-acetylpyridine thiosemi-
carbazone inhibited tumor cell proliferation by arresting the 
cell cycle progression at the S phase [35]. However, a Zn 
complex with oxythiamine has been reported to be inac-
tive against HeLa cells up to 100 µM [36]. These discrepan-
cies could be due to the difference in cell lines and time of 
exposure.

On the other hand, our findings further suggest that 
incubation of lung carcinoma cells with Cu6MQ and less 

Fig. 11   Upper panel. Live–dead staining for multicellular spheroids treated with Cu6MQ or Zn6MQ for 24 h. Bottom panel. Spreading assay for 
spheroids treated with Cu6MQ or Zn6MQ for 24 or 72 h
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for Zn6MQ complexes caused a misbalance in the homeo-
stasis of GSH, which has a vital role in cell viability. The 
impairment in tumor cell viability could be avoided by the 
exposure to ROS scavengers to prevent the imbalance in 
the cellular redox state (through the increase of hydrogen 
peroxide measured by H2DCFDA probe). This indicates 
that the decrease of tumor cell viability is oxidative stress-
dependent. It is very well established that copper complexes 
increase ROS levels that cause cytotoxicity against tumor 
cells [37–39]. In response, cells can control the damage 
to a certain extent, after which vital biomolecules may be 
irreparably damaged. In contrast, the induction of oxidative 
stress is not so clear for Zn complexes. It is well-known that 
zinc(II) is not involved in redox reactions since its lack of 
variable valence, as is copper(II), which is prone to electron 
transfer. Nevertheless, Zn complexes have shown induction 
of oxidative stress in A549 cells [40] and other cancer cell 
lines [41].

Numerous copper coordination compounds exert their 
antiproliferative effect through an apoptosis type of death 
and cell cycle arrest [33, 42, 43]. In fact, the apoptotic frac-
tion increased along with a G2/M cell cycle arrest when 
cells were treated with Cu6MQ. It is also known that cells 
that arrest the cell cycle in G2/M due to DNA damage (pro-
voked by an increase in oxidative stress) then can trigger 
apoptosis. On the other hand, cell cycle analysis showed 
that A549 cells accumulated in S phase in response to treat-
ment with the Zn compound, which indicates that the DNA 
structure checkpoint fails and the cell progresses through 
DNA duplication in the presence of damaged DNA, even-
tually undergoing mitotic catastrophe (which also leads to 
missegregation of chromosomes and aneuploidy increasing 
micronucleus frequency) [44]. Finally, necrosis seems to be 

involved compromising the integrity of the membrane in 
cells cultured with the complexes.

Both compounds induced genotoxic actions against the 
tumor cell line. However, the copper complex caused a 
more pronounced and concentration-dependent effect, in 
agreement with the results obtained with copper and zinc-
containing Schiff base complexes [45]. DNA damage can 
be caused by several mechanisms such as DNA intercala-
tion, DNA oxidative cleavage or topoisomerase inhibition. 
Copper compounds can be responsible for all these harmful 
processes [46, 47]. Nevertheless, most of the studies on the 
mechanism of DNA damage are ROS production-related 
pointing to this process as the primary mechanism of action 
that triggers apoptosis [48]. Moreover, DNA damage can 
result in chromosome breaks leading to micronuclei forma-
tion (clastogenic effect). The relationship between dissolved 
copper and MN frequency is supported by oxidative-stress 
mechanisms, and more particularly by the production of 
reactive oxygen species, which attack DNA on the sugar 
residue and induce base loss and strand breaks [49].

Zn(II) complexes have also been demonstrated to trigger 
DNA damage [50]. It has been shown that Zn cation induces 
micronuclei in human leucocytes in the same range of con-
centrations and not in a dose-dependent manner [51]. How-
ever, the mechanisms are not so well studied. It is assumed 
that Zn interferes with DNA-repair processes in mammals 
via O6-alkylguanine-DNA-alkyltransferase and ligase I 
activities [52, 53]. Besides, it has been demonstrated that 
micronuclei can be induced by chemicals that are known to 
cause DNA replication stress and S phase arrest [54].

Multicellular spheroid (MCS) model is considered a 
robust model to screen the effectiveness of novel drugs 
in  vitro. This model mimics avascular tumors and can 

Table 1   CI values of each 
combination at different effect 
levels (0.5, 0.75, 0.90 and 0.95)

+++ synergism, ++ moderate synergism, – moderate antagonism

Drug combination

Compounds Dose–effect parameters CI

Dm (µM) r 0.50 0.75 0.90 0.95

Cu6MQ 52.6 0.955
Zn6MQ 245.9 0.990
Cu6MQ:Zn6MQ (1:1) 65.7 0.962 0.7583

++
0.7739
++

0.7948
++

0.8119
++

Cu6MQ:Zn6MQ (1:3) 115.6 0.951 0.9010
Additive

0.9043
Additive

0.9157
Additive

0.9284
Additive

Cu6MQ:Zn6MQ (1:4) 129.9 0.958 0.8519
Additive

0.9484
Additive

1.0653
Additive

1.1588
–

Multicellular spheroids
 Cu6MQ 176.4 0.974
 Zn6MQ 469.4 0.991
 Cu6MQ:Zn6MQ (1:1) 135.3 0.905 0.5275

+++
0.5519
+++

0.6324
+++

0.7319
++
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display some physiological features such as nutrient, excre-
tion products, O2 and drug gradients. Besides, cell–cell 
interaction is more realistic than in the monolayer model. 
As we expected, both compounds showed higher IC50 in the 
MCS model than in the monolayer cell model, with a cor-
relation with the proportion of live–dead cells and with the 
inhibition of the spreading. It was previously demonstrated 
that the 3D cultures exhibited greater resistance to the anti-
cancer drugs than the 2D cultures. This is possibly due to 
the morphology of the MCS, with cell–cell and cell–matrix 
contact, which improves the viability of the system. Another 
explanation can be based on the diffusion of the complexes 
to all the cells. Moreover, the cells on the outer layers pro-
vide a defense against exogenous agents and the hypoxic 
region within the spheroid is able to modulate a resist-
ance phenomenon and thus exhibits greater viability [55]. 
According to our findings, several copper complexes with 
promising anticancer activity displayed remarkable effects 
against spheroids and tumor xenografts in vivo in a murine 
model [38] and anti-metastatic properties by inhibiting the 
migratory and invasive ability of cancer cells [56].

Finally, several cytotoxic drugs exhibit additive or syner-
gistic activity without excessive toxicity, providing a prom-
ising direction for combination therapy [57]. Our results 
reveal that a ratio 1:1 of both Cu(II) and Zn(II) complexes in 
the monolayer and the 3D model offers the best synergistic 
effect as a novel strategy for anti-cancer therapy.

A possible synergistic effect between Cu and Zn has been 
proposed. It is known that copper generates oxygen species 
that ultimately lead to double ruptures in the DNA and that 
zinc harms DNA-repair enzymes in mammals potentiating 
the effect of Cu and triggering apoptosis [58].

Conclusions

Our in vitro study successfully shows that a copper complex 
with 6-methoxyquinoline (Cu6MQ) exerts antitumor effects 
in A549 cells exposed for 24 h and in a time-related manner 
through 72 h, which occurs in parallel with an increase in 
ROS level. This misbalance in the redox status turns out in 
oxidative DNA damage and in a cell cycle arrest and apopto-
sis. When we move to a three-dimensional model, this effect 
translates into a reduction of the spreading of proliferating 
cells. The zinc analog shows a different mechanism of toxic 
action. An arrest in the S phase relates with the increased 
micronucleus frequency and with the induction of necrosis. 
A 1:1 concentration ratio of both complexes in the mon-
olayer and multicellular spheroids demonstrates a synergistic 
effect on the impairment of cell viability. Cu6MQ resulted to 
be an interesting candidate for further in vivo studies.
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