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Gaussian states Gaussian states

Typically, Gaussian states are defined as the family of quantum
states ρ of a system S of quantum harmonic oscilators with
coordinates R = {Q1, . . .Qn, . . .P1, . . . ,Pn}
([Qj ,Qk ] = [Pj ,Pk ] = 0, [Qj ,Pk ] = iδjk), such that its Wigner
function

W (q, p) =
1
~π

Ú
éq + qÍ|ρ|q − qÍê exp(2ipqÍ)dnqÍ

is a Gaussian function of its arguments.

In an equivalent way, gaussian states can be defined as such
states of the form

ρ =
exp(−βH)

tr exp(−βH)

for H a quadratic form in Pj , Qk

J.M. Matera (UNLP) II JFC 2012 4 / 36
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Gaussian states Gaussian states

Properties

1 Contains as limit cases the
full mixed state ρ ∝ 1 (for
β = 0), coherent states
(for β → ∞) as well as
complete entangled states
(for β → ∞ and suitable
H).

2 Its evolution
ρ(t) = U(t)ρ(0)U†(t)
with U(t) = exp(−iHÍt) is
closed if HÍ is a quadratic
form in Qj , Pj

3 Satisfie the Wick Theorem
: the state of each
subsystem is also gaussian
and is completely
determined by the mean
value of the local operators
éRê and their matrix of
second momentums
Σα,β = é{Rα,Rβ}+ê

J.M. Matera (UNLP) II JFC 2012 5 / 36
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Gaussian states Gaussian states

Some applications

Gaussian states had been employed as the zero order modeling
states in

1 Quantum Optics
2 Quantum dynamic
3 Quantum Field Theory
4 Quantum Electrodynamics
5 Condensed Matter Systems
6 High Energy Physics
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also including systems with finite dimensional Hilbert spaces,
like spin s systems through bosonization techniques.
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Entanglement in Gaussian states (Fock version)

Gaussian states are defined in terms of the Hilbert space of the
observables Qj and Pj , which have continuous spectra.
However, except for certain limit cases, H present a discrete
spectrum. For this reason, it is convenient to define the
operators

aj =
Qj + iPj√

2
a†

j =
Qj − iPj√

2
nj = a†

j aj (1)

being nj operators with discrete spectrum.

J.M. Matera (UNLP) II JFC 2012 7 / 36
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Entanglement in Gaussian states (Fock version)
Because [ni , aj ] = [a,ni ] = δjkni , the action of aj and a†

j
consist into change the quantum number of an eigenstate |nê
in one unit:

a†|nê =
√

n + 1|n + 1ê a|n + 1ê =
√

n + 1|n + 1ê

J.M. Matera (UNLP) II JFC 2012 8 / 36
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For this reason, these operators are called “ladder operators”,
which can be understood as operators which create and destroy
local “excitations” over an uncorrelated “vacuum” state
|0ê = |0ê1 ⊗ . . .⊗ |0êN .
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For this reason, these operators are called “ladder operators”,
which can be understood as operators which create and destroy
local “excitations” over an uncorrelated “vacuum” state
|0ê = |0ê1 ⊗ . . .⊗ |0êN .

States of the form
r

j
(a†

j )nj
√

nj !
|0ê which are eigenstates of the

local number operators ni are known as Fock states .
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Entanglement in Gaussian states (Fock version)
Correlations in gaussian states are completely determinated by
its correlation matrix Σ. An equivalent way to encode the same
information is in terms of the Generalized contraction matrix :

D =
1
2UΣU† − M = éZZ†ê − M =

A
F + F −

F̄ − F̄ + + 1

B
(2)

where Z =
1
a1, . . . , an, a†, . . . , a†

n,
2t

= UR
U = 1√

2( 1
1

i
−i) is a unitary matrix

M = ZZ† − [(Z†)tZt]t = ( 1
0

0
−1) is the symplectic metric and

F +
jk = éa†

kajêρ F −
jk = éakajêρ .

For a pure gaussian state

F −F̄ − = F + + (F +)2 (3)

J.M. Matera (UNLP) II JFC 2012 9 / 36
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Entanglement in Gaussian states (Fock version)

By mean of a canonical linear transformation Z = WZ Í, (with
WMW† = 1), it is possible to bring D to the diagonal form
(DÍ with F −

ααÍ = 0 and F +
ααÍ = f αδααÍ). The matrix W can be

written in the block form

W =

A
U V
V̄ Ū

B
(4)

The first n columns (uα, v̄α)t of W are the Symplectic
eigenvectors associated to the Symplectic eigenvalue f α.

Symplectic eigenvectors ψα of the matrix D are the regular
eigenvectors of the matrix DM with ψ†

αMψα > 0.

For a pure gaussian state f α = 0.

J.M. Matera (UNLP) II JFC 2012 10 / 36



II JFC 2012

J.M. Matera

Gaussian
states
Gaussian states

Weakly correlated
pure gaussian states

Area laws

Results

Conclusions

References

Gaussian states Gaussian states

Entanglement in Gaussian states (Fock version)

For a pure state , the entanglement between a subsystem A
and its complement Ā is given by the entropy of any of both
subsystems:

EAĀ = SA = SĀ (5)

For pure gaussian states this quantity can be expressed in
terms of the symplectic eigenvalues of A:

SA =
Ø
α

h(f αA ) (6)

where f αA are the symplectic eigenvalues associated to DA (the
contraction matrix of the subsystem) and
h(x) = −x log x + (1 + x) log(x) is a convex function.

J.M. Matera (UNLP) II JFC 2012 11 / 36
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Logarithmic negativity in Gaussian states (Fock
version)

For non pure states or non complementary subsystems B, C, a
measure of entanglement is given by the Logarithmic negativity

EN
BC = log ëρtB

BCë1 (7)

where ρtB
BC is the partial transposed density matrix associated

to ρBC with respect to the subsystem B and ëAë1 = tr
√

A†A is
the sum of the absolute values of the eigenvalues of A.

J.M. Matera (UNLP) II JFC 2012 12 / 36
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Logarithmic negativity in Gaussian states (Fock
version)

For Gaussian states,

EN
BC =

Ø
α/f̃ α

BC<0

log(1 + 2f̃ αBC) (8)

where f̃ αBC are the negative symplectic eigenvalues of the
contraction matrix D̃BC associated to the density matrix ρtB

BC .

As the partial transposition is equivalent in this context to
change ak ↔ a†

k for each k in the subsystem B and revert its
order in each product, D̃BC has blocks F̃ ±

BC given by

F̃ ±
BC =

A
F̄ ±

B F̄ ∓
B,C

F ∓
C,B F ±

C

B
(9)

J.M. Matera (UNLP) II JFC 2012 13 / 36
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Symplectic eigenvalues in the weakly correlated
limit

In the weak correlated limit,
relation (3) reduces to

F + = F −F̄ − + O4(|F −|∞)
(10)

At this order, symplectic
eigenvalues coincide with the
regular eigenvalues of the
matrix

F + − F −F̄ −u = λu (11)

For a pure the state,
F + − F −F̄ − = 0 so, for a given
subsystem A,

F +
A = F −

A F̄ −
A +FA,ĀF̄ −

Ā,A (12)

⇓

at this order, f α are the
eigenvalues of the matrix
|F −

AĀ|2 = F −
AĀF̄ −

ĀA, i.e. the
square of the Singular Values
σαA,Ā of the matrix F −

AĀ.

⇓

EA,Ā ≈
Ø
α

h
1

(σαA,Ā)2
2

J.M. Matera (UNLP) II JFC 2012 14 / 36
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Logarithmic negativity

Negative symplectic eigenvalues
f̃ α also are related with the
singular values of F −

A :

F̃ ±
B,C =

A
F̄ ±

BB F̄ ∓
BC

F ∓
CB F ±

CC

B

At leader order, the negative
symplectic eigenvalues are the
negative eigenvalues of the
matrix

F̃ +
BC − F̃ −

BC
¯̃F −

BCu = λu

Assuming F −
B,C º F +

B,C (at
least, over certain subspace)

f̃ αB,C ≈ −σB,C
α +

(ḠB)αα + (GC)αα
2

where

GS = F̃ +
S − F̃ −

S
¯̃F −

S ≈ F̃ −
S,S̄

¯̃F −
S̄,S

i.e. the term GS takes into
account the effect of the
environment over the effective
entangled modes between B
and C.

J.M. Matera (UNLP) II JFC 2012 15 / 36
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What did we get upto this point?

• A little reduction in the computational requirements.
• A more clear analytical picture of the relationship between
entanglement, correlations and influence of the
environment.

In the next slides we will see how this picture also give us a
geometrical intuition about the entanglement of subsystems:
the emergence of area laws
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Why area laws?

In classical thermodynamics, usually we find two classes of
quantities:

• Intensive quantities: independent of the size of the
subsystem considered. (for instance, pressure, densities)

• Extensive quantities: proportional to the size of the
subsystem considered.

However, in the quantum regime, the entropy of certain
systems - which in the classical regime is an extensive quantity
- acquires a different behaviour, becoming a function of the
area of the subsystem.
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The idea:

• For a pure state, entropy of a subsystem
is just entanglement, representing the
(non-local) information lost when we can’t
access to the complementary subsystem.

• For systems with short range interactions
(and short range correlations) all the
information shared by complementary
subsystems belongs to the boundary.

• States which satisfie area laws are easier
to be simulated, because entanglement is
not too big.

• If a family of states are not able to
present area law scaling, quantum
correlations can not be well reproduced.
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Simulating quantum systems

The size of the space of states B(H) of a system grows
exponentially with its size. It implies that the simulation of a
general process demands an exponentially large amount of
classical resources.
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Simulating quantum systems

The size of the space of states B(H) of a system grows
exponentially with its size. It implies that the simulation of a
general process demands an exponentially large amount of
classical resources.

However, systems satisfiying area laws form an small subset
inside the set of all possible quantum states of a system. If we
know that the state of certain system belongs to this subset,
simulations are easier.
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Area law in weakly correlated gaussian states

Now, we will consider the case of a gaussian
state where F − have al its non-null entries of
the same order: F − ≈ f 0Mij where Mij = 1
if the site i is correlated with the site j and
0 otherwise.

In this case, singular values of F −
AĀ becomes

proportional to the singular values of MAĀ:

SA ≈ −(f 0)2 log((f 0)2/e)trMAĀMĀA = −f 0 log f 0/e
Ø

k
nk (13)

where nk is the number of modes k in B̄ correlated with the
k-esim mode in B, which for a system “locally” correlated,
implies that for large B, SB scales with the area.
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Area laws in weakly correlated gaussian states

If each mode in Ā is correlated with just one
mode in Ā

σαAĀ = f 0√nk

which leads to the following approximation
for the entanglement entropy and negativity

EAĀ ≈ −(f 0)2 log (f 0)2

e ëMë2
2 (14)

EN
AĀ ≈ 2 log(e)f 0ëMë1 ≈ 2 log(e)f 0Ø√nk

(15)
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Area laws in weakly correlated gaussian states

In this sense, |∂A|1 = ëMë1 and |∂A|2 =
ëMë2

2 define two non equivalent measures
of the area of the boundary, which are not
necesarily coincident with the euclidean area
of any surface bounding the subsystem.
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Some examples

This is a comparison for different partitions in the case of a
first neighbour correlated square lattice:

a) b)

c) d)

Partition Euclidean |∂A|2 |∂A|1
a) 4 4 2
b) 4L 4(L − 2) + 8 4(L − 2) + 4

√
2

c) 4
√
2L 8 (L − 2) + 12 16

π L ≈ 1.27 × 4L
d) 2n2 2n2 8 n2

π2 ≈ .81n2
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Area laws in weakly correlated gaussian states

For “bordering” non complementary subsys-
tems B and C, EN

BC can be evaluated as

EN
BC ≈ 2 log e|∂B ∩ ∂C|1 (16)

which extends the case of complementary
subsystems.
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Entanglement and Log-Negativities in a square
lattice

In the next slides, we will consider global states ρ ∝ |0êé0|
where |0ê is the ground state of the Hamiltonian

H = λ
Ø

i
a†

i ai −
Ø
i,j

|j−i|1=1

C
∆+

4 a†
i aj +

∆−

4 (aiaj + a†
i a

†
j )

D
(17)

for i, j ∈ Z2 the positions of different modes in a square lattice.
In particular, we will consider the case of 30 × 30 lattices with
∆−/∆+ = 2/3.
These systems are stable for the local energies λ is above
λc ≈ 2(∆+ + ∆−).
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Scaled Entanglement entropy and Log-Negativities
for some bipartitions
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Figure: Scaling of EAĀ and ENAĀ.

a) b)

c) d)

Figure: Different kind of partitions
considered.
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Some possible non-complementary partitions in a
lattice
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tilted and parallel results for
adjacent and 1 mode separated
partitions.
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Figure: Different kind of partitions
considered.
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Scale law for the Log-Negativity
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Figure: Scaled Logarithmic Negativity for the previous partitions.
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Blocks with different widths and the role of the
environment

e) f)

0.00

0.02

0.04

0.06

0.08

2 4 6 8 10 12 14 16 18 20

λ/λc

 asymp. d=1

 asymp. d>1

d=1
d=2
d=3

EN
B,C

Figure: Blocks with parallel boundaries of different widths and the
correspondent log-negativity.
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Conclusions

Conclusions

• For weakly correlated gaussian states, the singular values of the
contraction matrix F−A gives an accurate approximation for the
exact symplectic eigenvalues of the matrix DA.

• It allows to evaluate, for pure states, the entanglement between
complementary subsystems just in terms of correlations between
A and Ā.

• For the non-pure case, also the symplectic eigenvalues of D̃BC
can be evaluated. In this case, the competition between
correlations between subsystems and correlations with the
environment becomes apparent.

• The formalism also shows the emergence of area laws, giving
the right scaling laws for several types of partitions.
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