
Modelling large-scale scientific data transfers

Joaquin Bogado
Supervisor: Mario Lassnig

Supervisor: Javier Dı́az
Scientific Advisor: Fernando Monticelli

May 13, 2021

A mis Amigues @ CERN.
To my Friends @ CERN.
À mes Amis @ CERN.
An meine Freunde @ CERN.
Ai miei Amici @ CERN.
Στους φίλους mου @ CERN.
Моим друзьям @ CERN.
Aos meus Amigos @ CERN.

A Gabi, que me acompaña
siempre de cerca o de lejos.

A Emil, que llegues a donde
quieras llegar.

1

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Research questions . 5
1.3 Research outline . 6

2 The distributed data management environment 8
2.1 The World LHC Computing Grid 8
2.2 The File Transfer Service . 11
2.3 Rucio . 12

2.3.1 Rucio Data IDentifiers 13
2.3.2 Rucio Storage Elements 13
2.3.3 Replication rules and subscriptions 14
2.3.4 Replica management and transfers 15

3 Data selection and model metrics 17
3.1 Rucio data extraction and selection 17

3.1.1 Transfers and Deletions 17
3.1.2 FTS Server . 18
3.1.3 TAPE activities . 18
3.1.4 Failed transfers . 19
3.1.5 Data extraction and treatment 20

3.2 Metric election . 21
3.2.1 MSE and RMSE . 23
3.2.2 MEA and MedAE . 23
3.2.3 MSLE and RMSLE . 24
3.2.4 Explained Variance and R2 Score 24
3.2.5 Mean Tweedie Deviance 25
3.2.6 MAPE and RE . 26
3.2.7 FoGP . 27
3.2.8 Metrics comparison experiment 27

2

4 Model of intra-rule Rule TTC extrapolation 30
4.1 Transfers per rule distribution 30
4.2 The α and α0 models . 31
4.3 Evaluation of results . 35

5 Model of Rule TTC based on time series analysis 40
5.1 Problem framing . 40
5.2 The βµ models . 41
5.3 The γµ models . 45

6 Model of Rule TTC based on deep neural networks 51
6.1 The δn Model . 51
6.2 The δννn Model . 54
6.3 Comparison of the models performance 56

7 Network time to predict Transfer TTC and Rule TTC 62
7.1 Network Time for a single transfer 62
7.2 Network Time as a Transfer TTC and Rule TTC estimator . . 67
7.3 Results . 72

8 FTS Queue Time to predict Transfer TTC and Rule TTC 74
8.1 FTS queue modeling . 74
8.2 Modeling the FTS queue from Rucio data 76
8.3 Using FTS Queue Time as a Transfer TTC and a Rule TTC

predictor . 78

9 Results and conclusion 82
9.1 Models summary . 82
9.2 Model κ . 84
9.3 Model α . 84
9.4 Models βµ(t0, ρ) and β∗

µ(t0, ρ) 84
9.5 Model γµ(t0, ρ, λ, ψ, ω) . 85
9.6 Models δ and δνν . 86
9.7 Models based on individual transfers 86
9.8 Conclusion and final remarks 87

10 Future work 90
10.1 Possible extensions to the δνν model 90
10.2 More complex auto-regressive models 91

3

Chapter 1

Introduction

The Road goes ever on and on
Out from the door where it
began.

Bilbo Baggins

1.1 Motivation

The ability to predict the transfer times of files that move through the net-
work could lead to significant improvements in job scheduling and equally
significant improvements in storage resource management in the Worldwide
LHC Computing Grid (WLCG).

This work focuses on the creation and study of a publicly available dataset
[1], from which it is possible to reconstruct the internal state of part of the
WLCG’s distributed data management system. The work seeks to investigate
if there are viable models that allow predicting the transfer time of files
and groups of files called rules with sufficient precision to improve existing
scheduling systems.

Rucio is the scientific data management system of the ATLAS Exper-
iment at CERN, service that tracks data placement and movement across
the WLCG and the source of the data of the mentioned dataset. The size
of the files, number of accesses, creation, submission, starting, and ending
timestamps of the requests are stored in the Rucio database, both to comply
with the data retention policy and with monitoring purposes. The Rucio
ATLAS instance processed transfer requests at a rate of 25 Hz during July
2019, totalling more than 788 million transfer requests. This number does
not include the deletion requests, also processed by Rucio.

4

There have been efforts in order to model data transfers in the WLCG
since the Rucio commissioning at the end of 2014. The work cited in [2]
focuses on Transfers Time To Complete (TTC) predictions. The work cited
in [3] focuses on the prediction of the network throughput. The work cited in
[4] focuses on the prediction of the length of the queues of the system, with
emphasis on the importance of network throughput. However, prior studies
have failed to delves into Rucio’s replication rules modeling and Rules TTC
prediction.

The ability to predict the ending time of a transfer after its creation allows
to make scheduling decisions early in the lifetime of the transfer or group of
transfers, called rules. We call this Transfers TTC and Rules TTC. Better
scheduling techniques is expected to lead to network and storage optimiza-
tion.

Rucio stores 4 timestamps related to transfer requests states. Creation
time, submission to transfer tool time, network starting time, and ending
time. These data allow us to reconstruct the lifetime of each transfer pro-
cessed by the system in a detailed way, at a time resolution of seconds. Rucio
also stores the rule id of the transfer, associated to groups of transfers that
belongs to the same dataset. This should allow us to group the transfers
associated to a rule, and to reconstruct the rule life time.

1.2 Research questions

The main research question of this work is if is it possible to predict the Rule
TTC of a given rule using the data available in Rucio at its creation time?
A model able to predict the Rule TTC when the rules are created, within
10% of relative error and more than 90% of the times is considered by the
experts as good enough to be used in scheduling tasks.

The main hypothesis is that given the set of variables account, state,
activity, SIZE, id, rule id, external host, src rse, dst rse, previous
attempt id, retry count,created, submitted, started and,ended, stored

in the Rucio database, it is possible to reconstruct the past state of the
distributed data management system with resolution of seconds. These data
are enough to predict the Rules TTC at rule creation time within 10% relative
error more than 90% of the time, and the individual Transfers TTC at request
creation time, also within similar boundaries.

5

1.3 Research outline

This work studies the Rucio transfers requests data of the REQUESTS HIS-
TORY table in the Rucio database. The studied data comprehends transfers
created during the 2 months of June and July of 2019. The data from the
last 6 months of Rucio operation is available upon request from the ATLAS
Experiment. The data older than 6 months does not comply with the reten-
tion policy and is deleted. To allow further analysis and replication of this
work, data was extracted and made publicly accessible [1].

Chapter 2, starting on page 8, describes the studied system in detail. The
Rucio system and its interaction with File Transfers System version 3 (FTS)
are highlighted. Naming conventions and acronyms used in this work are
presented. A Glossary with common terms and abbreviations can be found
in page 93. The most important aspects of the FTS system are also covered.

In Chapter 3, starting on page 17, the data analyzed in this work is
presented. The dataset extraction, cleaning, and transformation methods
are explained. The calculation of derived attributes like network time, FTS
queue time, and Rucio time, as well as transfer lifetime reconstruction are
discussed. Metrics to determine the accuracy of the models are presented.
Special emphasis is put on the FoPG metric.

In Chapter 4, starting on page 30, a novel family of models α and α0 are
presented. These models for Rule TTC prediction are based on intra rule
transfer time extrapolation. Model accuracy is discussed. The suitability of
the model is put into question.

Time series analysis techniques are used on Chapter 5, starting on page 40
to study the time dependency of the Rule TTC. The novel βµ model family
is featured. Model βµ requires the µ function of the Rule TTC time series
to be known. These data is not available in Rucio Database at rule creation
time, and thus βµ is considered a theoretical model. The novel model family
γµ, also presented in this chapter, utilizes time series analysis techniques to
forecast the value of the µ function from data available in the Rucio database
at rule creation time. The performance of the models are evaluated and the
bounds in accuracy imposed by the theoretical model is discussed. The trivial
κ model, the model that predicts a constant Rule TTC is presented, in order
to have a valid baseline model other models can be compared to.

In Chapter 6, starting on page 51, the novel δ and δνν models based on
neural networks are presented. This chapter describes the methods and tools
used to train the models, as well as the data transformations needed to apply
the techniques. Model δ is a model adapted from literature to forecast the
Rule TTC based on time series in a similar fashion as βµ. Model δνν is a
novel multi-input deep neural network model, that next to the time series

6

used for the δ model, includes information of the current state of the system
reconstructed from the data studied in this work. Performance of δ, δνν,
and κ models are compared, being the last one, a trivial model that predict
a constant time for every Rule TTC.

In Chapter 7, starting on page 62, presents a novel model for Rule TTC
prediction based on network properties inferred from the Rucio data. The
model is based on an equation to predict the transfers rate based on the
size of those transfers. The FoGP metric is used to evaluate the model in
comparison with previous models. A proof that the perfect network time
prediction model for transfers can play an important role in models for Rule
TTC predictions is presented.

In Chapter 8, starting on page 74, a novel model for FTS Queue Time
prediction based on simulation and calculation of internal states of FTS sys-
tem is presented. Availability of the data to feed the model and possibility
to simulate in real time is discussed. A similar proof to the one presented
in Chapter 7 is presented, to show the relevance of FTS queue time of the
transfers in the prediction of Rules TTC.

In Chapter 9, starting on page 82, the main conclusions of this work are
presented, as well as possible future research lines and extensions of this work
are listed in Chapter 10, starting on page 90.

Thesis outline

7

Chapter 2

The distributed data
management environment

¡Oh memoria, enemiga mortal
de mi descanso!

Miguel de Cervantes Saavedra

2.1 The World LHC Computing Grid

The transfers studied in this work take place over the World LHC Computing
Grid (WLCG) infrastructure. The following section describes the what is
WLCG and remarks the aspects that are more relevant for this study.

The Worldwide LHC Computing Grid [5] is a global computing infras-
tructure whose mission is to provide computing resources to store, distribute
and analyze the data generated by the Large Hadron Collider (LHC), mak-
ing these data equally available to all partners, regardless of their physical
location.

WLCG is the world’s largest computing grid. It is supported by many
associated national and international grids across the world, such as the
European Grid Initiative (Europe-based) and the Open Science Grid (US-
based), as well as many other regional grids.

WLCG is coordinated by CERN. It is managed and operated by a world-
wide collaboration between the experiments (ALICE, ATLAS, CMS and
LHCb) and the participating computer centers. It is reviewed by a board of
delegates from partner country funding agencies, and scientifically reviewed
by the LHC Experiments Committee. WLCG computing enabled physicists
to announce the discovery of the Higgs Boson on 4 July 2012.

8

The four main component layers of the WLCG are networking, hardware,
middleware and physics analysis software.

WLCG is organized in four layers, or ”tiers”; 0, 1, 2 and 3. Each tier
provides a specific set of services. Except for Tier 0 which is unique and
CERN based, each tier is composed on many sites or data centers. A site
usually represents a set of resources pledge by an institution.

The Tier 0 is the CERN Data Center, which is located in Geneva, Switzer-
land. All data from the LHC passes through the central CERN hub, but
CERN only provides around 20% of the total compute capacity. Tier 0 is
responsible for the safe-keeping of the raw data, first pass reconstruction,
distribution of raw data and reconstruction output to the Tier 1s, and repro-
cessing of data during LHC down-times.

The Tier 1s are thirteen large computer centers with sufficient storage ca-
pacity and with round-the-clock support for the grid. They are responsible
for the safe-keeping of a proportional share of raw and reconstructed data,
large-scale reprocessing and safe-keeping of corresponding output, distribu-
tion of data to Tier 2s and safe-keeping of a share of simulated data produced
at these Tier 2s.

The Tier 2s are typically universities and other scientific institutes, which
can store sufficient data and provide adequate computing power for specific
analysis tasks. They handle analysis requirements and proportional share of
simulated event production and reconstruction. There are currently around
160 Tier 2 sites covering most of the globe.

Individual scientists will access these facilities through local, also some-
times referred to as Tier 3, computing resources, which can consist of local
clusters in a university department or even just an individual PC. There is
no formal engagement between WLCG and Tier 3 resources.

WLCG can initiate the distribution of data to the hundreds of collab-
orating institutes worldwide thanks to the excellent connectivity and dedi-
cated networking infrastructure set up at CERN and subsequently worldwide.
CERN has its own Internet Exchange Point (IXP). It was set up in 1989 to
be able connect directly to major national and international networks. This
helps to reduce costs, time and the number of different networks, the number
of hops the data needs to pass through into order to reach its destination.

CERN’s Tier-0 can take advantage of CERN’s own internet exchange
point, the CIXP to pass data straight onto the dedicated networks for global
exchange. Connectivity between WLCG Sites usually is through a dedicated
link.

CERN is connected to each of the Tier 1s around the world on a dedicated,
private, high-bandwidth network called the LHC Optical Private Network
(LHCOPN). This consists of optical-fiber links working between 10 to 100

9

gigabits per second, spanning oceans and continents.
Exchanging data between the WLCG centres is managed by the File

Transfer Service or FTS, initially developed together with the Enabling Grids
for E-science projects from 2002 onward. It has been tailored to support the
special needs of grid computing, including authentication and confidentiality
features, reliability and fault tolerance, third party and partial file transfer.

Each grid center manages a large collection of computers and storage
systems. Installing and regularly upgrading the necessary software manually
is labor intensive, so large-scale management systems, some such as Quat-
tor, developed at CERN, automate these services. They ensure that the
correct software is installed from the operating system all the way to the
experiment-specific physics libraries, and make this information available to
the overall grid scheduling system, which decides which centers are available
to run a particular job. Each of the Tier 1 centers also maintains disk and
tape servers. These centers use specialized storage tools such as the dCache
system developed at the Deutsches Elektronen Synchrotron (DESY) labora-
tory in Germany, the ENSTORE system at Fermilab in the US or the CERN
advanced storage system (CASTOR) and EOS developed at CERN to allow
access to data for simulation and analysis independent of the medium, tape
or disk, that the information is stored on.

Middleware is the software infrastructure which allows access to an enor-
mous amount of distributed computing resources and archives, and is able
to support powerful, complicated and time-consuming data analysis. This
software is called ”middleware” because it sits between the operating sys-
tems of the computers and the physics applications software that can solves
a scientist’s particular problem.

The most important middleware stack used in the WLCG are from the
European Middleware Initiative, which combines several middleware provi-
ders (ARC, gLite, UNICORE and dCache); the Globus Toolkit developed by
the Globus Alliance; and the Virtual Data Toolkit.

To analyse the enormous amount of data that the LHC produces, physi-
cists need software tools that go beyond what is commercially available. The
immense and changing demands of the high energy physics environment re-
quire dedicated software to analyze vast amounts of data as efficiently as
possible.

The main physics analysis software is ROOT, a set of object-oriented core
libraries used by all the LHC experiments. It is a versatile open-source tool,
developed at CERN and Fermilab (USA), and used for big data processing,
statistical analysis, visualization and storage.

10

2.2 The File Transfer Service

The File Transfer Service version 3[6] is the latest version of the service
responsible for globally moving the majority of the LHC data across the
WLCG infrastructure.

It has been designed in a modular and extensible way to allow good scala-
bility. FTS is responsible for moving the majority of LHC data across WLCG
infrastructure, which it provides with reliable, multi-protocol (GridFTP,
SRM, HTTP, xroot), adaptively optimized data transfers. Core functionality
of FTS3 is extended with various Web-oriented tools like versatile monitoring
and WebFTS user interface with support of Federated Identity.

According to its public site[7], during 2019, 23 FTS instances were re-
sponsible to move 950 PB of data across WLCG data centers for 30 different
experiments, also called Virtual Organizations (VOs).

WebFTS is a web interface that provides a file transfer and management
solution in order to allow users to invoke reliable, managed data transfers on
distributed infrastructures. FTS provides a Python REST API through it
integrates with frameworks and a CLIs for copying files from one site to an-
other among a monitoring for several profiles: General monitoring, Grafana,
for end users, Discovery Data, Kibana, for researches and Service Specific,
ftsmon/Kibana, for service managers.

An important part of FTS is its optimizer that makes it possible to run
transfers between any two random endpoints with good reliability and perfor-
mance with zero configuration by default. The FTS optimizer has an impact
on how much time take for an individual transfer to start and eventually, to
finish, and thus it is discussed later in this work.

FTS also support a plugin based library for file manipulation supporting
multiple protocols, Webdav/https, GridFTP, xroot, and SRM. This allows
users and other tools, specially Rucio, to move files between endpoints inde-
pendently of the protocol the endpoints accept.

Many instances of FTS are installed in several data centers across the
WLCG, and as this instances usually give services to different experiments or
Virtual Organizations (VOs). The study the transfers between grid endpoints
for a single VO is full of caveats that will be discussed in this work.

It is important to notice that while FTS manages file transfers between
grid sites, FTS does not keep track of where the files are, nor even if the files
exist. It is the responsibility of the users and the experiments to catalog,
curate, organize, and delete files they don’t need anymore. That is the main
reason of Rucio’s existence, to act as the file catalog, allowing access and
location for every single file across the grid.

11

2.3 Rucio

Rucio is the ATLAS Experiment solution to keep track of the experiment
files and datasets. Its development started in early 2012 to cope with the
more demanding requirements of LHC Run 2 in late 2014, and to address
the lack of scalability of it is predecessor, Don Quixote 2 (DQ2). Rucio was
designed from scratch to provide not only file catalog for ATLAS experiment,
but a comprehensive tool for distributed data management, allowing the
experiment to set and enforce a wide variety of policies. Through a complex
system of rules and subscriptions, the ATLAS data management team is able
to set how many copies of what files or group of files should be available in
each WLCG site and for how long should be there. Rucio also generates
automatic deletion orders directly to the endpoints for those files that are
not needed anymore, which i reduces the person power needed for system
operations, and to avoid the ATLAS portion of WLCG storage to become
completely full.

Rucio does not do file transfers. Instead, it delegates the actual transfer of
files between WLCG endpoints to the several instances of the File Transfers
System FTS[6] transfer tool. The instance selected to do the transfers of the
files depends on the destination of the file transfer request. These instances
operate at the WLCG level and serve transfers from several VOs and not only
ATLAS specific transfers. The Rucio database does not contain information
about the transfer tool other than which FTS instance that is used for each
transfer request. Information about FTS queues state, scheduling and retries,
number of nodes, and configuration are hidden from Rucio. Transfers in an
FTS server from other VOs are also hidden from Rucio.

The BNL FTS instance is particularly interesting for this work because
it is the only instance that is ATLAS specific, as other FTS instances also
manage transfers for other experiments, introducing an extra source of com-
plexity to the study.

Each instance of FTS has a centralized database with several nodes, be-
tween three to forty, that access it. Each node processes a part of the transfers
submitted by Rucio. The transfers that can not be processed immediately
are queued, introducing a delay that affects the total transfer time. Rucio has
some limits that avoid FTS instances to get saturated by Rucio’s requests.

This study is centered on the analysis of the data Rucio collects about the
transfers requests, specifically about total transfer times since the creation of
the request in Rucio till FTS communicates back to Rucio that the transfer
is finished. The next subsections will detail the Rucio interaction with FTS
and the internal structure of Rucio, emphasizing the relevant parts covered
in this study.

12

It is important to notice that Rucio is a very dynamic tool. The Rucio
development team needs to cope with new requirements from the physics
community on a weekly basis and has undergone major changes since its
commissioning in late 2014. At that time, Rucio was an ATLAS specific
tool, created, designed, developed, and maintained by the ATLAS experi-
ment community. Since late 2018 that is not the case anymore as Rucio was
presented in the 1st Rucio Community Workshop. Since then, other experi-
ments started to notice the power of Rucio as a distributed data management
tool, and today it is used and supported by more than 20 big experiments
worldwide[8] including AMS, LIGO, CMS, CTA, IceCube, DUNE, LSST,
and Xenon.

Still, the Rucio instance for the ATLAS Experiment at CERN is by far
the largest. This instance had indexed more than 500 Petabytes of data by
middle 2020. This include centrally produced data from the experiment, such
as detector data and MonteCarlo simulations, but also data from groups and
users analysis.

2.3.1 Rucio Data IDentifiers

Data in Rucio is organized using Data IDentifiers. DIDs have three levels
of granularity. The smallest unit of operation in Rucio is the file, which
corresponds with the actual file persisted on the storage systems. The next
level of granularity is the dataset. In Rucio, datasets are logical units that
reference a set of files with purpose of apply bulk operations over a group of
them, i.e, transfers, deletions, or replications. The biggest level of granularity
is the container. Rucio containers allows to make large scale groupings of
files and datasets, like annual detector outputs or physics simulation with
similar properties. Datasets and Containers are referred to as collections.
Files are allowed to be in multiple datasets. Files that belongs to a dataset do
not need to be all in the same endpoint or data center, and can be distributed
all across the grid. Collections can be in state open or close. While it is
possible to add new DIDs to an open collection, it is not to a closed one.
This is important, as shown later, all the transfer requests for files in a
closed dataset are created at once.

2.3.2 Rucio Storage Elements

A Rucio Storage Element (RSE) is the minimal unit of globally addressable
storage in Rucio. Most of the WLCG sites or data centers that pledge storage
for ATLAS VO will expose this storage to Rucio through the setup of an
RSE. This configurations are stored usually in the ATLAS Grid Information

13

System (AGIS) and Rucio will update its database using this information, but
RSEs can be created in Rucio directly using the rucio-admin tool. Rucio
stores data about RSEs that are needed to access them, like the network
address and the port, protocols supported, and the local file system path, but
also support a list of attributes with arbitrary key-value pairs. This helps
to create interesting heuristics like all the tape storage endpoints in Europe
or all the tier 2 sites in Germany or France. All the RSE configurations are
stored in Rucio internally, so no software services are needed in the storage
endpoints in order to work. File DIDs are associated to RSEs when a physical
copy of the file exists in an RSE. The association is called replica. There could
be several replicas for a file, stored in different RSEs across the grid. Files
could also have no replicas, which means the file is in the catalog but will
not be accessible.

2.3.3 Replication rules and subscriptions

The replica management is based on replication rules associated directly or
indirectly to DIDs. A replication rule is an abstraction that defines the
minimum number of replicas for a file to be available at any given time on a
RSE or a group of RSEs in which those replicas should be. Replication rules
serve two main purposes: they allow users to request data transfers between
RSEs and protect DIDs from deletion. As long as there is at least one rule
for a DID, the replica cannot be deleted. Replication rules are owned by
Rucio accounts. Multiple accounts can own replication rules on the same
DIDs, and thus share the same physical copy of the data.

Replication rules are created using a formal language described in [9].
Four parameters are necessary to create a rule. The DID over which the
rule will have effect, an RSE expression that expand to a list of RSEs where
replicas can be placed, the number of copies to replicate and the lifetime for
the rule. If the DID is a dataset or a container, then all the files in that
dataset or container are affected by the rule. If the RSE expression returns
a set of RSEs bigger than the number of copies is up to Rucio to choose the
destination of the replicas. Rucio tries to minimize the number of transfers
needed to satisfy the rule, prioritizing those RSEs where data is already or
partially available. The mechanism that protect the replicas from deletion
is called replica lock. A replica lock is always associated with a rule and
set once the placement decision is made. This will avoid future unnecessary
re-evaluation of the rule and constant data re-shuffling between RSEs. Users
does not have control over replica locks, except indirectly through the cre-
ation of rules. Several replication rules could affect a file, either because a
file is in several datasets or because several users create rules for the same

14

file, but as soon as the last replication rule is removed or it expires, also do
its replica lock. Then the replica is eligible for deletion. The actual deletion
is done asynchronously and not necessarily immediately after the replica is
marked eligible for deletion.

Once a client requests a replication rule for a DID, Rucio evaluates the
RSEs for existing data, creates transfer requests if data is not available in
the specified RSEs, and creates the replica locks for the DID, among other
tasks, i.e., check for user quota or space available in the RSEs. Until the
deletion or expiration of the rule, the replica locks will prevent the deletion
of the DID and the physical files associated with it.

2.3.4 Replica management and transfers

As mentioned before, Rucio relies on FTS3 in order to make transfers between
sites. Rucio is able to use other transfer tools. The abstraction layer between
Rucio and the transfer tool needs to be implemented for each transfer tool
Rucio is supporting. This allow Rucio daemons to submit, query, and cancel
transfers generically.

Files can be placed physically on the storage in two different ways. Either
a replica is uploaded via the command line interface or the web interface, or
the replica is created by a transfer to satisfy a replication rule. Rucio users
only means to request to transfer files between storage elements is through
replication rules. That is the case when a client needs to run a job in a
data center, therefore the files involved in the analysis needs to be there.
The Rucio internal workflow to transfer request handling is detailed in [10].
When a user creates a rule, transfer requests are created simultaneously with
the destination RSEs already defined. The transfer requests are continuously
read by one of Rucio daemons, which is responsible for rank the sources for
each request, selects the matching protocols for source and destination, and
submit the transfers, usually in bulk, to the configured transfer tool. Two
separate daemons continuously check for successful or failed transfers. One
of the daemons checks for FTS messages though polling continuously the
transfer tool in a closed loop, but this polling could have a big impact on the
transfer tool load. Most of the transfers are checked by the daemon listening
at the ActiveMQ message queue[11]. The last step is to update the state of
the replication rules. If all the transfers were finished successfully, the state
of the rule is changed from REPLICATING to OK. Otherwise, i.e., if one of
the transfers fail for some reason, it will be changed to STUCK and another
daemon will decide if the failed transfer should be resubmitted or if a new
transfer request with a different destination RSE should created.

For closed datasets, all the transfers are created at the same time when

15

the rule is created. For open datasets, some transfers can be created as new
files are added to the dataset. Although Rucio does not submit the transfers
of a rule to the transfer tool all at the same time, even if they are all created
at the same time. This is done in order to avoid overload the transfer tool.

Rucio persists data for every transfer request in the REQUESTS table
in the Rucio database. When a transfer is created in order to satisfy a
replication rule, the created at timestamp is logged in the Rucio database.
Likewise, the submitted at timestamp is logged when the transfer is sub-
mitted to the transfer tool. Rucio will know that the transfer ends through
one of its daemons. At this time, Rucio will also know about the started at

and ended at timestamps of the transfer. The first is the time when the
transfer begins and the second, when the transfer ends. Data about the file
name, its size in bytes, source and destination RSEs, associated rule id, ac-
count, activity , priority, and instance of the transfer tool the transfer was
submitted to, is also persisted in the Rucio database.

Using these data it is possible to determine the Rule TTC of a replication
rule once the rule is in state OK. This time will be the difference between the
maximum ended at and the minimum created at of all the transfers of the
rule.

16

Chapter 3

Data selection and model
metrics

In God we trust, all others must
bring data.

W. Edwards Deming

3.1 Rucio data extraction and selection

Through the study of the data persisted by Rucio about the transfers re-
quests, this work tries to probe if it is possible to make a reasonable fore-
cast of the Time To Complete of rules and transfers. The data selection
was planned taking into account the following factors that could impact the
study.

3.1.1 Transfers and Deletions

Rucio handles transfers between sites but also handles the deletion requests
in order to comply with the data retention policy. Both, transfers and dele-
tions requests are stored in the REQUESTS and REQUESTS HISTORY
tables: the REQUESTS table store the current requests, the ones that
will be updated soon, i.e.: with new timestamps or states, while the RE-
QUESTS HISTORY table is an archive of requests that will not be updated
anymore, that is, the requests with final state. Deletion requests do not affect
RSE transfer performance, and then, can be ignored. Only transfers requests
were took into account for this work.

17

3.1.2 FTS Server

There are several caveats about FTS that need to be addressed in order to
create a dataset from the Rucio database that allows the study of the transfer
times. The Rucio database does not contain information about the transfer
tool other than the instance that is used for each transfer request. Informa-
tion about FTS queue states, scheduling and retries, number of nodes, and
configuration are hidden from Rucio. As mentioned in the previous section,
there are several instances of the transfer tool among the grid. These in-
stances work at WLCG level and serve transfers from several VOs and not
only ATLAS specific transfers. Yet transfers in an FTS server from other
VOs are also hidden from Rucio. Given a slice of time, there is no way to
know the total amount of transfers an FTS server is processing other than
ATLAS transfers, looking at the ATLAS Rucio database instance. However,
one hypothesis is that the load in FTS could have an impact in the difference
of the submission and starting time of a transfer. The more load at FTS, the
more time will elapse between the submission and starting of a transfer.

The BNL FTS instance is ATLAS VO specific. Selecting transfers that
only go through this FTS server will prevent effects on data related to trans-
fers Rucio cannot see, but that we assume have an impact on the TTC of
transfers we have in our datasets. The downside is that some transfers pro-
cessed by Rucio going to other FTS servers in the same time span will be
filtered out and it is impact on the transfer time of the studied transfers will
not be taken into account. We assume this impact in negligible, but it is
unproven yet.

For some studies, data was filtered in order to get only those request trans-
fers with external host equal to https://fts.usatlas.bnl.gov:8446, see
Table 3.1. These transfers are served by the BNL FTS, an instance that is
ATLAS specific. This allow to focus on groups of transfers that are not com-
peting for FTS resources with other transfers, invisible to Rucio, from other
VOs.

3.1.3 TAPE activities

The WLCG infrastructure uses tape endpoints present at some sites, usually
Tier 0 or Tier 1, in order to archive datasets. As the access time of tape
endpoints is large when compared to disk, there is a set of policies that
strictly regulate which files are going to tape and who are the users who can
read or write to tape endpoints. Rucio distinguishes between tape or disk
RSEs internally, but for users, the transfer requests are transparent.

However, at infrastructure level, transfers that involve at least one tape

18

RSE behave completely different from the ones that involves disk RSEs only.
When a transfer going from TAPE to DISK RSEs is submitted by Rucio
to the FTS, once the submission is attended by FTS the file in the source
which is in tape support is copied first to a local disk buffer in the same
RSE, in a process called staging. Once the staging is complete, the transfer
of the file to the destination is started. FTS will timestamp this event as
started at indicating the time the transfer of the file starts to consume
bandwidth from the network. Once the file transfer is finished or fail, the
event is also timestamped as ended at. This field is called transferred at

in the Rucio database, but have been renamed for convenience. See Table 3.1
on page 22. Only after the ended at attribute is set, the FTS server generates
the log messages to communicate all these data to Rucio. From the Rucio
database point of view, if the request transfer is from tape to disk there is no
way to identify the time a transfer is queued in FTS from the staging time as
both are contained in the difference between started at and submitted at

timestamps.
For this reason, an important aspect is the number of tape to disk trans-

fers requests in the data sample. A time window in which the tape transfer
activity was low was identified and selected, and only data from this time
period was included in the study. Such period contains the transfers created
between June 6th and July 31st of 2019, with specially low tape activity
during July.

Since the beginning of 2020, the Rucio development team had introduced
a change in the Rucio database that allows to distinguish the staging time
from the FTS queue time for tape transfers. Future studies can benefit from
it and make more detailed analyses.

3.1.4 Failed transfers

Transfer that failed at some point during the network transfer are also a
source of noise. TTC predictions should be intended only for transfers that
do not fail. However an attempt to filter out failed transfers from the dataset
proved to be the wrong decision. That is because the failed transfers usually
fail during the network stage, and thus spend time in FTS queue. FTS still
need to process the transfer that only in a later stage will be marked as
FAILED in the Rucio database. Thus, failed transfers had been included in
the studied dataset, but filtered out later after its effects in FTS queue time
are removed.

19

3.1.5 Data extraction and treatment

Data extraction from the Rucio database was done through a Hadoop script
that dumps the raw content of the REQUESTS HISTORY table in Rucio.
This table stores all the information about the transfer requests that finished.
While the information in the REQUESTS table can be updated by Rucio
daemons, once the transfer is done or has failed then its information is copied
to the REQUESTS HISTORY table for database optimization reasons. As
the REQUESTS table is updated constantly, it needs to be small as each
modification locks the table. The REQUESTS HISTORY table is bigger but
partitioned in several indexes, i.e., by the request created at attribute. The
database retention policy for REQUESTS HISTORY table is six months.

The transfers archived in the Rucio database that were created between
June 6th and July 31st of 2019 affect around 128.6 million rows.

The data was filtered using the criteria described in the previous section,
meaning all the requested transfers with DONE and FAILED state that were
created between June 6th and July 31st of 2019 were included in this study.

Only source and destination RSE identification (id) information are stored
in the REQUESTS HISTORY table, with respect to where the data is coming
from or where is going to. The RSES table has the association between the
RSE id and the RSE name. The mapping between the RSE id and the RSE
name were done using the same Hadoop script mentioned before.

Output was a CSV file of approximately 128.6 million rows with fields
described in Table 3.1, but also src rse and dst rse with the mapped names
of the source and destination RSEs respectively.

If only BNL FTS transfers are accounted, the number of rows to treat
were reduced to 31.8 million. From this, around 18.84% or approximately
6 million rows represent failed transfers. There are 25.5 million rows that
represents files that were successfully transferred. Also there are 238518 rows
with state S or SUBMITTED, 82820 rows with state L or LOST, 2722 rows
with state G or SUBMITTING and 238 rows with state A or SUBMIT-
TION FAILED. These transfers add up to 324295 rows or 1% of the total,
and are in an unfinished state for Rucio. They do not have any value for the
columns started at and transferred at. As is not possible to reconstruct the
full lifetime of this requests, they have been ignored in the studies involving
BNL FTS transfers only.

All the pre-processing beyond this point were done using Python scripts,
with extensive use of numpy [12] and pandas [13] libraries.

The CSV file was read into a pandas DataFrame. The fields created at,
submitted at, started at, and ended at, were mapped from strings to pan-
das Datetime objects, from created at, submitted at, started at, and

20

transferred at respectively. Rows with duplicated transfer id, id field were
dropped, less than 0.01%. Rows that do not satisfy the condition created at

≤ submitted at ≤ started at ≤ ended at were dropped, also less than 1%.
RTIME, QTIME, and NTIME columns were calculated as the number of sec-

onds between created at and submitted at, submitted at and started at

and started at and ended at respectively. The size column was renamed
to SIZE due to pandas.DataFrame.size is an attribute of the pandas Data-
Frame object and SIZE is not. The column RATE was calculated dividing
the SIZE among NTIME. This gives us an approximated rate of the transfer
during its network time. It is an approximation because it is not possible
using these data to know the instantaneous rate of a transfer. The rate of
the transfers is discussed with detail in Chapter 7, starting on page 62.

WLCG and Rucio make a difference between sites and RSEs. While a
site can host several RSEs, the network links of the WLCG are between sites.
This network links are shared among several experiments and VOs. Rucio
however do not know about sites. Site information needs to be reconstructed
from RSE name and data in ATLAS Grid Information System (AGIS). The
information for which RSE pertains to which site is mapped in AGIS and
can be downloaded in JSON format. JSON files are trivially mapped to
Python dictionary objects and equally trivially mapped to pandas DataFrame
columns. A link column was created with the concatenation of the source
site, the string ’ ’, and the destination site, i.e., a transfer from source RSE
CERN-PROD TZERO to destination RSE BNL-OSG2 DATADISK will have a value
CERN-PROD BNL-ATLAS for the link column, indicating that the source site
is CERN-PROD and the destination site is BNL-ATLAS.

The columns account, externa host, src rse, dst rse and link has
been anonymized using the last 15 characters of the result of apply the
SHA512 algorithm from Python’s hashlib to the inputs. The resulting dataset
has been made publicly available[1].

It is possible to calculate how many bytes were transferred between the
sites. From June 6th to July 31st of 2019, Rucio accounts for 78.36 PiB
of data, only including the successful transfers. Of that, 28.72 PiB were
transferred through BNL FTS instance.

3.2 Metric election

In order to evaluate how good different models agree with the data it is re-
quired to define a metric. Standard metrics for regressions tested include
root mean squared error (RMSE) and mean squared error (MSE)[14], mean
absolute error (MAE) and median absolute error (MedAE), mean squared

21

Attribute Name Description Type
id A unique identification number of the transfer string
rule id The identification number of the rule that gener-

ated the transfer
string

account Name of the account in which name the transfer is
done

string

activity Name of the activity of the transfer. string
size Size of the transferred file in bytes number
dst rse id The RSE id of the destination of the transfer string
src rse id The RSE id of the source of the transfer string
external host The network name (protocol://hostname:port) of

the FTS server attending the transfer of the file
string

state The final state of the request, either D for a DONE
transfer or F for a FAILED transfer

string

previous attempt id The request id for the previous request to make the
transfer. Only populated for transfers that have
failed before

string

created at Timestamp of the creation time of the transfer in
Rucio

datetime

submitted at Timestamp indicating the moment the transfer is
submitted from Rucio to FTS

datetime

started at Timestamp of the beginning of the transfer be-
tween source and destination

datetime

transferred at Timestamp indicating the moment the transfer be-
tween source and destination ends

datetime

Table 3.1: Attributes and descriptions of the REQUEST HISTORY table.
This raw data was preprocessed and transformed in order to include more
meaningful information for this study. The transformed dataset and the
description of its fields is available at [1].

22

logarithmic error (MSLE)[14] and root mean squared logarithmic error (RM-
SLE), explained variance score, R2 score, mean Tweedie deviance, mean ab-
solute percentage error (MAPE)[14], relative error (RE) and related metrics,
and finally the Fraction of Good Predictions (FoGP)[15].

In order to analyze the metrics we use the following notation. We define y
as the vector of target or observed values of length n, and about ŷ, the vector
of predictions of the same length, in which ŷi is a prediction for the element
yi of y, with the sub-index i going from 0 to n − 1. In all the equations y
will stand for the arithmetic mean of y.

When the metrics are applied to evaluate two or more models, the target
vector y is assumed to be the same. We denote the predictions of model α
and model β, ŷα and ŷβ respectively and ŷαi to the prediction made for the
model α of the target element yi.

3.2.1 MSE and RMSE

The mean squared error measures the mean of the squared difference between
the vectors y and ŷ, according the Equation 3.1.

MSE(y, ŷ) =
1

n

n−1X
i=0

(yi − ŷi)
2 (3.1)

As the differences are squared this metric penalizes more the big differ-
ences and as it is a mean value it is sensitive to outliers. The RMSE version
is the squared root of the MSE and its units are comparable with the units of
y and ŷ, so if y and ŷ are in seconds, the RMSE can be interpreted in seconds
too. When several models are to be compared or when the values of y have
great variance, MSE and RMSE are not particularly useful. Two models α
and β will be considered with comparable performance if RMSE(y, ŷα) and
RMSE(y, ŷβ) are in the same order of magnitude, but always the model with
less RMSE will be preferred.

3.2.2 MEA and MedAE

The mean absolute error and the median absolute error are the mean and
median of the absolute value of the difference between y and ŷ respectively.
The MAE is calculated using Equation 3.2, whereas MedAE using Equation
3.3.

MAE(y, ŷ) =
1

n

n−1X
i=0

|yi − ŷi| (3.2)

23

MedAE(y, ŷ) = median(|yi − ŷi|), i = 0, 1, 2, ..., n− 1 (3.3)

MAE and MedAE are simpler to interpret than MSE and RMSE, but
MedAE is preferred for its robustness to outliers in y and ŷ. However, the
four metrics are sensitive to the scale of y. This means that when the same
model is evaluated, using two different set of observations y and y0, the metric
will be different for the same model and will depend on the distribution of y
and y0. If y presents outliers and y0 does not, the metric for the same model
will be worse regardless the performance of the model. This is not a problem
when two models are compared against the same y, but it does not give an
idea of the goodness of the models in general.

3.2.3 MSLE and RMSLE

The mean squared logarithmic error is a metric robust against outliers and
not sensitive to the scale of y. It is defined by Equation 3.4 as the mean of
the squared differences between natural logarithms of 1 + y and the natural
logarithm of 1 + ŷ. The root mean squared logaritmic error is the squared
root of MSLE.

MSLE(y, ŷ) =
1

n

n−1X
i=0

(ln(1 + (yi) − ln(1 + (ŷi))
2 (3.4)

Hidden in the definition lies the problem that this metric tends to pe-
nalize more the negative errors than the positive ones, and thus will favor a
model that overestimates the predictions over one that underestimate them.
This could be an advantage in some scenarios. But the metric is difficult
to interpret and the results does not give a good idea of the goodness of a
model.

3.2.4 Explained Variance and R2 Score

The explained variance score and the R2 score are two metrics related to each
other. The differences are subtle but important. The explained variance score
is calculated using the Equation 3.5, which expands to Equation 3.5 or in
a more elegant way as Equation 3.7, in which the overbar stands for the
arithmetic mean and the 1/n has been simplified. It can be interpreted as
the proportion of the variance of y that is explained by the model though
the predictions ŷ.

24

EV score(y, ŷ) = 1 − V ar(y − ŷ)

V ar(y)
(3.5)

EV score(y, ŷ) = 1 −
1
n

Pn−1
i=0 ((yi − ŷi) − 1

n

Pn−1
i=0 (yi − ŷi))

2

1
n

Pn−1
i=0 (yi − 1

n

Pn−1
i=0 yi)

2
(3.6)

EV score(y, ŷ) = 1 −
Pn−1

i=0 ((yi − ŷi) − (yi − ŷi))
2Pn−1

i=0 (yi − yi)2
(3.7)

The R2 score, also known as coefficient of determination, is defined as
Equation 3.8 or more elegantly as Equation 3.9.

R2 score(y, ŷ) = 1 −
Pn−1

i=0 (yi − ŷi)
2Pn−1

i=0 (yi − 1
n

Pn−1
i=0 yi)

2
(3.8)

R2 score(y, ŷ) = 1 −
Pn−1

i=0 (yi − ŷi)
2Pn−1

i=0 (yi − y)2
(3.9)

In Equations 3.7 and 3.9 it is possible to spot the difference at a glance.
Both results are equal if yi − ŷi is zero, meaning the R2 score does not account
for biased models as the explained variance do. This also make the R2 slightly
more sensitive to the scale of y.

Interpretation of both metrics is not clear at a glance but are implied
directly from the equations. In both cases, if the prediction of the model is
perfect, then y− ŷ = 0 and then both scores are equal to 1. This is the best
score a model can achieve. By definition, a model that makes a prediction
using the mean y has an score of 0, so any model with a score bigger than
zero will be better than the naive model. But then the predictions can be
infinitely worse returning negative values in both scores.

3.2.5 Mean Tweedie Deviance

The mean Tweedie deviance is a goodness-of-the-fit metric based on the
Tweedie distribution. The Scykit-Learn mean tweedie deviance() com-
putes the mean Tweedie deviance error between y and ŷ with a power pa-
rameter p, using Equation 3.10. With p = 0, p = 1, and p = 2 the metric
behaves as the mean squared error, mean poisson deviance, and mean gamma
deviance respectively.

25

yα = 1 yβ = 100
ŷ 1.5 150

MTD(y, ŷ, 0) 2.5 2500
MTD(y, ŷ, 1) 0.189 1.890
MTD(y, ŷ, 2) 0.144 0.144

Table 3.2: Summary of the results using the Mean Tweedy Deviance function.

MTD(y, ŷ, p) =

1
n

Pn−1
i=0 (yi − ŷi)

2 for p = 0;
1
n

Pn−1
i=0 2(yiln(yi/ŷi) + ŷi − yi) for p = 1;

1
n

Pn−1
i=0 2(ln(ŷi/yi) + yi/ŷi − 1) for p = 2;

1
n

Pn−1
i=0 2(max(yi,0)

2−p

(1−p)(2−p) − yiŷ
1−p
i

1−p +
ŷ2−pi

2−p) else.

(3.10)

Notice that for a trivial case of two models, α and β with equal rela-
tive error of 0.5, if α([1]) = [1.5] and β([100]) = [150], then for p = 0,
MTD(yα, ŷα, 0) = .25 and MTD(yβ, ŷβ, 0) = 2500; for p = 1,
MTD(yα, ŷα, 1) = 0.189 and MTD(yβ, ŷβ, 1) = 1.890; and for p = 2,
MTD(yα, ŷα, 2) = 0.144 and MTD(yβ, ŷβ, 2) = 0.144. All these values are
summarized in Table 3.2

From these examples we conclude that the MTD with power of 2 is only
sensitive to relative errors, meanwhile MTD with power 0 and 1 are sensitive
to scale.

3.2.6 MAPE and RE

Mean Absolute Percentage Error has the advantage of being easy to interpret.
MAPE is based on the Relative Error, that is the absolute value of the
difference between target and the prediction relative to the target, as shown
in Equation 3.11, and thus, is the error in the prediction relative to the
observed value.

RE(yi, ŷi) =
|yi − ŷi|
yi

(3.11)

If this values are multiplied by 100, this gives the range of the error
percentage or how far away is ŷi from yi in percentage. The MAPE is the
mean of the RE expressed as a percentage, as in the Equation 3.12. But,
as it is a mean value, it is sensitive to outliers in the relative errors. It
is possible to overcome this by taking the median instead of the mean in

26

3.12. Mean Absolute Percentage Error and Median Absolute Percentage
Error both diverge when y values are very close to zero.

MAPE(y, ŷ) = 100
1

n

n−1X
i=0

|yi − ŷi|
yi

(3.12)

Other MAPE derived metrics try to avoid its caveats. That is, it is
known that MAPE penalizes more the positive forecasts values than the
negative ones[16]. sMAPE or Symetric Mean Absolute Percentage Error
and sMedAPE try to address this issue but still can suffer of the divergence
problem due to the sum y+ŷi being small.

In [14], the MASE or Mean Absolute Scaled Error is introduced to cir-
cumvent the mentioned problems. Yet all these derived metrics opaque the
simple interpretation of MAPE. Moreover, the models to evaluate in this
work make predictions over positive integer targets, as both the Rule TTC
and Transfer TTC are measured in seconds.

3.2.7 FoGP

The metric selected to compare models in this work is described in [15] (p.16)
as percentage of predictions with less than X percent RE. We call this metric
Fraction of Good Predictions (FoGP), expressed as a number between 0 and
1, in which X is the threshold of relative error below of which a prediction is
considered good.

Formally, with the trivial function g defined as in Equation 3.13, FoGP
is defined as in Equation 3.14.

g(yi, ŷi, τ) =

(
1 if RE(yi, ŷi) ≤ τ ;

0 else.
(3.13)

FoGP (y, ŷ, τ) =
1

n

n−1X
i=0

g(yi, ŷi, τ) (3.14)

As an example, assume that a certain model made a prediction for y. We
calculate the FoGP with threshold 0.05 and we obtain the 0.5 as results.
Formally, that can be expressed as FoGP (y, ŷ, 0.05) = 0.5. This means that
50% of the predictions in ŷ are less than 5% away from it is real values.

3.2.8 Metrics comparison experiment

To demonstrate the suitability of the FoPG, we run a simple experiment
comparing several of the metrics. We define four artificial target arrays y.

27

The target y1 of 100K integers is in the range (1, 1000), with uniform dis-
tribution. This range is typical of the Rule and Transfers TTC but both
present outliers. Target y2 = y1 ∗ 10, that is y2 is exactly the same as y1,
but all its values were multiplied by a constant to check the sensitivity of the
metric to the scale in y. Target y3 = y1, but a random 0.01% of y3 or 100
values were multiplied by 1000, to simulate 0.01% of outliers. And target
y4 = y2 but a random 0.01% of y4 or 100 values were multiplied by 1000.
Two models, α and β where defined in such a way that the predictions of α
are always overestimated by 10%, and the ones of β underestimated by 10%.
That is, α(yi) = yi + yi ∗ 0.1 and β(yi) = yi − yi ∗ 0.1. These two models are
by definition identically good, and its predictions were compared with all the
metrics mentioned before. Results are summarized in Table 3.3.

From the table it is possible to see that for MAE, MSE, RMSE, both
models are as good as each other, i.e., MAE(y1, α(y1)) = MAE(y1, β(y1)).
But these metrics do not give any information about how good the models
are in general, as the metric values depend on the scale of the target, i.e:
MAE(y1, α(y1)) 6= MAE(y2, α(y2)). That is the case for MedAE, but this
metric is also robust against outliers in the target, i.e., MedAE(y1, α(y1)) =
MedAE(y3, α(y3)). MSLE seems to be sensitive to the scale of y but robust
to outliers. But it is clearly prone to benefit models that overestimate the
predictions, i.e., MSLE(y1, α(y1)) < MSLE(y1, β(y1)). Also it is very
difficult to get an idea of the absolute goodness of a model. EVS and R2 are
both robust to scale in y, but R2 seems to give higher values in the samples
with outliers. More over, contrary to the MSLE, it is not difficult to get an
idea of how good the model is in absolute terms. Both metrics top score is 1,
and the results for this models are very close. Yet both predictions are off by
10%, which can be too high. MTD(power = 1) is both sensitive to scale and
outliers. These problems are solved increasing the power. But both metrics
consistently report lower, better values for the model α that overestimate
the target. It is still difficult to know the goodness of the model in absolute
terms. The MAPE metric for both models is 0.1 as, by definition, both
models predict exactly the target with a relative error of 10%, regardless the
scale and fraction of outliers in y. Yet MAPE will not be robust to outliers
in ŷ, that is, a couple of predictions with high RE will inflate the MAPE
metric artificially. For the FoGP metric, both models are the same, MAPE
sensitivity to outliers in ŷ is not present as only the ”good” predictions are
took into account, and gives a good idea of the absolute goodness of the
model. For that reason this is the main metric used in this study.

28

F
oG

P
M

A
E

M
ed

A
E

M
S

E
R

M
S

E
M

S
L

E
E

V
S

R
2

M
T

D
(p

=
1)

M
T

D
(p

=
2)

M
A

P
E

(τ
=

0.
1)

α
(y

1)
49

.9
63

50
.0

33
25

.2
76

57
.6

65
0.

00
89

8
0.

99
0

0.
96

0
4.

68
64

0
0.

00
88

0
0.

10
1.

0
α

(y
2)

49
9.

63
5

50
0.

0
33

25
27

.5
72

57
6.

65
2

0.
00

90
7

0.
99

0
0.

96
0

46
.8

63
96

0.
00

88
0

0.
10

1.
0

α
(y

3)
10

3.
36

3
50

.0
36

28
96

2.
15

0
19

04
.9

84
0.

00
89

8
0.

99
0

0.
99

0
9.

69
50

8
0.

00
88

0
0.

10
1.

0
α

(y
4)

10
07

.8
06

50
0.

0
35

03
86

23
7.

51
8

18
71

8.
60

7
0.

00
90

7
0.

99
0

0.
99

0
94

.5
28

60
0.

00
88

0
0.

10
1.

0
β

(y
1)

49
.9

63
50

.0
33

25
.2

76
57

.6
65

0.
01

09
6

0.
99

0
0.

96
0

5.
35

66
0

0.
01

15
0

0.
10

1.
0

β
(y

2)
49

9.
63

5
50

0.
0

33
25

27
.5

72
57

6.
65

2
0.

01
10

8
0.

99
0

0.
96

0
53

.5
66

02
0.

01
15

0
0.

10
1.

0
β

(y
3)

10
3.

36
3

50
.0

36
28

96
2.

15
0

19
04

.9
84

0.
01

09
6

0.
99

0
0.

99
0

11
.0

81
58

0.
01

15
0

0.
10

1.
0

β
(y

4)
10

07
.8

06
50

0.
0

35
03

86
23

7.
51

8
18

71
8.

60
7

0.
01

10
8

0.
99

0
0.

99
0

10
8.

04
72

2
0.

01
15

0
0.

10
1.

0

T
ab

le
3.

3:
C

om
p
ar

is
on

of
th

e
d
iff

er
en

t
m

et
ri

cs
u
se

d
in

re
gr

es
si

on
.

M
o
d
el
α

ov
er

es
ti

m
at

e
th

e
ta

rg
et

b
y

10
%

w
h
il
e
β

u
n
d
er

es
ti

m
at

e
it

b
y

10
%

,
th

at
is
α

(y
)

=
y

+
y
∗

0.
1

an
d
β

(y
)

=
y
−
y
∗

0.
1.

T
ar

ge
t
y
1

is
an

ar
ra

y
of

10
0K

in
te

ge
rs

in
th

e
ra

n
ge

(1
,

10
00

);
y
2

=
y
1
∗

10
so

is
in

th
e

ra
n
ge

(1
0,

10
00

0)
;
y
3

=
y
1

b
u
t

a
ra

n
d
om

0.
01

%
or

10
0

va
lu

es
w

h
er

e
ch

an
ge

d
to
y
3 i

=
y
1 i

∗
10

00
to

si
m

u
la

te
0.

01
%

ou
tl

ie
rs

;
y
4

=
y
2

b
u
t

a
ra

n
d
om

0.
01

%
or

10
0

va
lu

es
w

h
er

e
ch

an
ge

d
to
y
4 i

=
y
2 i
∗

10
00

to
si

m
u
la

te
0.

01
%

ou
tl

ie
rs

;

29

Chapter 4

Model of intra-rule Rule TTC
extrapolation

There are two kinds of people in
the world:
1.Those who can extrapolate
from incomplete data.

Anonymous

4.1 Transfers per rule distribution

Using the data in the transfers dataset[1], it is possible to identify and group
the requests triggered by a particular replication rule. In order to calculate
statistics on the rules a new CSV file with summarized information about the
rules was created. We call this dataset the rules dataset. This file contains
the rule id, the number of transfers calculated as the number of transfers
done with the same rule id field, the sum of bytes of the individual transfers,
the min/max created, the min/max submitted, the min/max started, and the
min/max ended timestamps. Figure 4.1 shows the frequency of the number
of rows with the same rule id field. Notice the peaks in 20, 25, 30, 40, 50,
100, and 200. Other notable peaks are 1, 2, 4, and 6.

The number of transfers per rule varies from rule to rule, but there are
notable peaks in some numbers, most notably, rules with exactly 20 trans-
fers. These rules are generated by an automated replication process by the
experiment.

Analysis is done on data from FTS BNL instance for the reasons men-
tioned in 3.1.2. The set of transfers going through the BNL FTS instance

30

Figure 4.1: Distribution of the number of transfers per rule. The maximum
number of transfers per rule in the dataset is 205951 but rules with more
than 250 transfers are summarized in the last bin.

contains 1803027 different rules. The mean rule TTC is 3.1 hours but the
mean varies within two orders of magnitude depending on the number of
transfers per rule, as shown in Figure 4.2.

It can happen that the transfers of the rule are not created at the same
time. This is normal for open Rucio datasets, where new files are added to the
dataset as they are created. However, for 77.72% of the rules, the transfers
are created all at once. It is possible to identify those from the rules summary
file, selecting the rules with min created equal to max created timestamps.

The rules dataset does not provide information about the progress of the
rule, but only historical data about rules that have already finished. This is
important for subsequent models but not for model α described below. In
that case, the transfers dataset was used to build a model that can predict
the rule completion time based on the progress of transfers that already have
finished.

4.2 The α and α0 models

In this section, alpha model family is defined to predict the Rule TTC.The
prediction for the Rule TTC is based on the created at timestamp of the
first created transfer, the ended at timestamp of the first ended transfer and

31

Figure 4.2: Box plots showing the differences in Rule TTC among the number
of transfers per rule. The correlation between the number of files in the rule
and the Rule TTC is weak.

the total number of transfers to be created and transferred to fulfill the rule.
This number is known beforehand by Rucio if the dataset is closed, which
happens approximately 70% of the time. A closed dataset is one at which
no more files can be added, and thus, when a closed dataset is going to be
moved, the total number of files to be transferred is know. If the number of
transfers in the rule is known, it is possible to compute the true percentage
of progress of the rule, using Equation 4.1, where total xfers is the total
number of transfers to be transferred to fulfill the rule and ended xfers, the
number of transfers in the rule that already have been transferred. It is also
possible to compute the elapsed time from the first creation until the ending
time subtracting the minimum created at to the ended at timestamps of the
transfers of the rule. Using regression analysis it is possible to approximate
the Rule TTC using these data.

%Completed =
ended xfers ∗ 100

total xfers
(4.1)

As an example, assume a rule needs 20 transfers done to be completed.
Assume all the transfers are created at the same time, on 2019-07-27 00:00:00,
and then ten seconds later, at 2019-07-27 00:00:10 the first transfer finishes.
When plotted in the xy-plane, the creation of the first transfer is in the

32

Figure 4.3: Regression analysis applied to a rule in order to predict its TTC.
Prediction is made after the first transfer ends. In this rule, with 20 transfers,
this means the prediction is made after 5% of the rule has been completed.

origin, at x = 0% completed and y = 0 seconds after the first creation. The
first completed transfer is at x = 5% and y = 10 seconds. A one degree
polynomial y = 2x + 0 is determined by these two points. Evaluating the
polynomial in x = 100 will give us an approximation of the TTC of this rule,
in this example, of 200 seconds. Figure 4.3 illustrates this approach using a
rule with 20 transfers. The prediction for the Rule TTC is done after the
first transfer is finished, that is, after the 5% rule completion. This case is
a particularly good prediction although not the most common case. Most of
the rules have a behaviour similar to that of Figure 4.4 on page 34 where the
points t0 or the rule creation time, the prediction time or the time after the
first transfer in the rule ends, and the 100% rule completion time do not fall
over a straight line. It is possible to see more examples of this behaviour for
a selection of rules in Figure 4.5 on page 35.

Formally, the method consists of a regression analysis using ordinary least
squares to fit a 1-degree polynomial where the independent variable is the
completions percentage of the rule, and the dependent variable is the time
at which the percentage of completion is reached.

More than two points can be used in the regression analysis. But the
more points are used, the more transfers need to finish before the prediction
can be made, therefore the more the rule needs to progress the less useful the

33

Figure 4.4: Regression analysis applied to a rule in order to predict its TTC.
Prediction is made after the first transfer ends.

prediction will be. This can be an issue to take into account even for a low
number of points, as for rules with two transfers the rule needs to progress till
50% before a prediction can be made. This method also cannot be applied
to a rule with just one transfer. Also, given the non linearity of the behavior
shown by the progress of the rules, adding more points to the fit does not
guarantee improvements on the results.

The model is not computationally demanding and can be applied in real
time in the Rucio dataflows. The method to solve the linear regression prob-
lem is based on the Numpy polyfit() function, which according to experiments
done with %timeit ipython interactive interface puts an upper bound of 59
µs to fit a 1 degree polynomial with two random points, and 64 µs with one
hundred points.

We define the family of models αk as in Equation 4.2, where ax + b is
the polynomial that results from the fit of the predictor vector Xk, using the
Ordinary Least Squares method. We call the predictor Xk to the vector of
points ((χ1j, χ2j)), where χ1j is the component that represents the percentage
of the rule that is completed, and χ2j is the time elapsed in seconds until
that χ1j is reached. The sub-index k is the number of points used to make
the fit, so the range is k = 2, 3, 4, ..., n where n is the number of transfers in
the rule. Thus, j sub-index range from 1, ..., k.

34

Figure 4.5: Time elapsed since rule creation as a function of percentage of
completeness for rules with Rule TTC ≤ 500 seconds.

αk(Xk) = ax+ b (4.2)

One possible interpretation for k sub-index is that k − 1 is the number
of transfers of the rule that needs to be done or finished before a prediction
can be made using the model. Naturally, αn does not work, as the purpose
of the these models is to make a prediction in advance. Hence, only the first
members of the αk family were evaluated.

4.3 Evaluation of results

The models α2, α3, ..., α10 were evaluated using the Fraction of Good Predic-
tions (FoGP) metric and the following procedure.

A sample of 500 rules were picked at random, where all the transfers of
each rule where created at the same time. Predictor vector X was created
from the rule and transfer information. One prediction ŷαki was done using
models αk and Xk, with k = 2, ..., 10 and i = 1, ..., 500. This vector ŷαk was
compared with the vector y with the observed Rules TTC using the FoGP
metric. Only rules with 15 transfers or more were chosen. From all the rules
in the dataset, this rules represent the 20% and cover 85% of the transfers.

35

Figure 4.6: Distribution of the FoGP(y, ŷαk , τ = 0.1) for the first 9 members
of the αk family. The bigger the k, the more points are included in the
regression, the more accurate the results, and the latest the prediction. For
α2, at least one transfer needs to finish before a prediction can be made,
while for α10, at least 9 transfers need to finish in order to make a prediction.

For each model, FoGP(y, ŷαk , τ), were computed, with thresholds τ =
0.1, 0.25, 0.5, 0.75, 0.9, and 1.0.

The experiment has been repeated 1000 times, and the mean of the 1000
FoGP(y, ŷαk , τ) were used as a metric comparison between the models. Fig-
ure 4.6 on page 36 shows the distribution of the FoGP(y, ŷαk , τ) for τ = 0.1
for the different models of the αk family. Notice that the bigger the k, that
is, the more points are used to make the fit and therefore the better perfor-
mance of the model. Similar outcome was produced whatever the value of
τ .

The number of transfers per rule follows the distribution in Figure 4.1 on
page 31. When rules with less than 15 transfers are disregarded, then the
mean transfers per rule is 31.1 and a median is 20. The model α10 will be
able to make a prediction when 33% of the rule is completed on average, or
when 50% of the rule is completed in the most typical case. In the worst case,
the rule will have 15 transfers and the model will need 75% of the rule to be
completed before a prediction can be made. This will happen independently
of model accuracy. The model will need at least 10 transfers finished in the
rule to make a prediction. The hypothesis is predictions made by model α10

36

τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9 τ = 1.0
α2 0.029 0.072 0.145 0.218 0.257 0.284
α3 0.044 0.111 0.224 0.337 0.398 0.439
α4 0.064 0.157 0.308 0.453 0.530 0.579
α5 0.079 0.198 0.384 0.552 0.639 0.691
α6 0.096 0.236 0.451 0.633 0.727 0.780
α7 0.113 0.274 0.513 0.705 0.799 0.851
α8 0.128 0.310 0.574 0.769 0.858 0.906
α9 0.144 0.350 0.631 0.823 0.901 0.940
α10 0.163 0.391 0.687 0.862 0.922 0.954

Table 4.1: Summary of FoGP(y, ŷαk , τ) for different thresholds of τ and differ-
ent αk models. Different thresholds τ are calculated for different αk models.
The bottom right corner shows that for model α10, 95.4% of the predictions
present less than 100% relative error, while the top left corner shows that for
model α2, 2.9% of the predictions lie within ±10% of its real value.

over rules with less transfers will be more accurate than those made over
rules with more transfers, but this is unproven yet. In any case, model α10
will not be able to make predictions over rules with less that 10 transfers.

Table 4.1 on page 37 summarize the results of the experiment. Each
column shows the threshold τ and each row, the model αk of the family,
where k − 1 is the number of transfers in the rule that needs to be done
before a prediction can be made with the model.

A more detailed analysis of the progress of the rules over time determined
that only a fraction of the Rules TTC are co-linear with the first points of the
progress of the rule, including the origin point. That is visible in Figure 4.5
on page 35. This Figure shows the progress of rules with Rule TTC ≤ 500
seconds. Rule progress is not linear in general. This non linearity have a
negative impact in the performance of the model.

From this observation, family of model α0k was created and tested using
the same procedure used on the αk family. Every member of the α0k family
is equal to its relative αk+1, but the origin point where the rule is created is
removed from the regression. Then, α02 is equal to α3, and the ending time
of the first two transfers are used to make the linear regression but the origin
point. An important consequence is that the models α0k and αk+1 can make
a prediction in the same stage of the progress of the rule, that is, when the
transfer k is finished.

37

Figure 4.7: Distribution of the FoGP(y, ŷα0k , τ = 0.1) for the first 9 members
of the α0k family. Unlike Figure 4.6 on page 36, the k index represents the
effective number of finished transfers of a rule before a prediction can be
made. Hence, the results for model α02 are comparable with those for model
α3, as both models can make a prediction only after the first two transfers
of the rule are done.

τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9 τ = 1.0
α02/α3 0.086/0.044 0.213/0.111 0.425/0.224 0.655/0.337 0.801/0.398 0.886/0.439
α03/α4 0.115/0.064 0.275/0.157 0.522/0.308 0.745/0.453 0.858/0.530 0.923/0.579
α04/α5 0.134/0.079 0.317/0.198 0.580/0.384 0.792/0.552 0.892/0.639 0.948/0.691
α05/α6 0.150/0.096 0.350/0.236 0.623/0.451 0.823/0.633 0.916/0.727 0.965/0.780
α06/α7 0.166/0.113 0.382/0.274 0.662/0.513 0.850/0.705 0.932/0.799 0.977/0.851
α07/α8 0.184/0.128 0.414/0.310 0.696/0.574 0.871/0.769 0.944/0.858 0.984/0.906
α08/α9 0.202/0.144 0.447/0.350 0.730/0.631 0.888/0.823 0.953/0.901 0.988/0.940
α09/α10 0.219/0.163 0.480/0.391 0.758/0.687 0.901/0.862 0.959/0.922 0.991/0.954

Table 4.2: FoGP(y, ŷα0k , τ) vs. FoGP(y, ŷαk , τ) comparison. Different thresh-
olds τ are calculated for different α0k and αk models. Comparison criteria is
based on number of finished transfers in the rule the model needs to make a
prediction. α0k and αk+1 are two models that need at least k transfers done.
Top left corner shows that while for model α3 only 4.4% of the predictions
lays within 10% of it is real value, for model α02, 8.8% of the predictions lays
in the same range. This represents an improvement of 95.4% of model α02
with respect to α3.

38

Figure 4.7 on page 38 shows that the FoGP improves significantly if the
origin is not included. The results for α0k model is comparable with the same
results for αk+1 model in Figure 4.6 on page 36, as both models are able to
make a prediction of the Rule TTC only after at least k transfers of the rule
are finished.

Table 4.2 on page 38 shows a summary that compares the performance
of the first models of the α0k and αk+1 family using the FoGP metric. In
the top left corner we can see that while both models α02 and α3 can make
a prediction after the second transfer of the rule is done, only 4.4% of the
predictions of α3 are within 10% of it is real value, while 8.6% of the pre-
dictions of α02 are within the same margin of error. That represents an im-
provement of 95.4%. As expected, this margin of improvement gets smaller
the more points are added to the regression. The FoGP (y, ŷα09 , τ = 0.1)
vs. FoGP (y, ŷα10 , τ = 0.1) for the same 10% threshold of relative error is
99.1% vs. 95.4% respectively, an improvement of α09 over α10 of only 3.8%.

39

Chapter 5

Model of Rule TTC based on
time series analysis

Chaos: When the present
determines the future, but the
approximate present does not
approximately determine the
future.

Edward Norton Lorenz

5.1 Problem framing

One important caveat with the model described in Chapter 4, starting on
page 30 is that it will not be able to make any prediction for the Rule TTC
before at least two transfers of the rule have finished. In order to estimate
the Rule TTC at rule creation time, another approach is needed.

One approach is to use metrics such as the mean or the median of the
Rule TTC of already finished rules as the predictor of Rule TTC of the newly
created rules. Figure 5.1 on page 41 shows an example of how this method
could work. Assume we want to predict the Rule TTC of the rule R6 created
at time t0, with a window of 30 seconds, and the mean of the Rule TTCs of
the those rules created between t0 and t0 − 30 seconds. Rules R1 to R5 were
created over the last 30 seconds, and the mean TTC is 3.8 minutes, so that
will be the prediction for the Rule TTC of R6. This approach is implemented
in model family β, detailed in section 5.2.

The main caveat of this technique is straightforward. None of the Rules
R1 to R5 will be completed at t0, so their TTCs will be unknown and not

40

Figure 5.1: The Rule TTC of rule R6 prediction, based on the mean of the
Rule TTC of those rules created 30 seconds before rule R6 creation.

available to make any prediction, and thus the β model cannot be imple-
mented to be used in real time. The idea of this work is to use time series
analysis techniques in order to predict the 3.8 minute mean in order to use
it as predictor of the rules created at t0. Models that use time series analysis
are implemented in model family γ, in section 5.3.

Time series analysis is a proven technique used in diverse fields, such
as econometrics, weather forecasting, earthquake prediction, or astronomy,
that allows to forecast the values of a time series, that is, a sequence of
observations per unit of time at regular intervals, using known values of the
past.

In the following sections, the validity of the β model is tested taking
advantage of that the real TTC values of all the rules are known, as this
analysis is based on Rucio’s historical data. Then, the γ models using TSA
techniques is discussed and tested. A possible implementation of a real time γ
model is presented. Finally, both β and γ model performance are compared.

5.2 The βµ models

Formally, the βµ(t0, ρ) model family is defined as in Equation 5.1 on page 42.
Here, yRi are the real Rule TTC of those rules created in the left-closed in-

41

terval [t0−ρ, t0), that is, the rules in the dataset with min created < t0 and
min created ≥ (t0 − ρ). The parameter ρ can be interpreted as the size of
the rolling window, usually measured in seconds. The aggregation function
µ will be a function that returns a number that represents a summary of the
information contained in the {yRi} set. The µ functions tested are min(),
that returns the minimum element of the set, max(), that returns the max-
imum element of the set, median(), that calculates the arithmetic median,
and mean, that returns the mean of the values of the set.

For clarity, we will often refer to βµ(ρ) avoiding to mention the t0 pa-
rameter when discussing the performance of the model. The t0 parameter
will be implicitly referenced at the creation time of the rule being predicted.
However, to evaluate the performance of the model, several predictions are
made with a random set of rules with very different t0, and so the parameter
is meaningless when predictions for several rules are compared.

βµ(t0, ρ) = µ({yR1 , yR2 , ...}) (5.1)

Using this notation, the example in Figure 5.1 on page 41 can be anno-
tated as βmean(ρ = 30).

A correlation between the Rule TTC of rules created at t0 and the Rule
TTC of those rules created at some point in the past has been observed in
preliminary studies of the data. To check if this correlation actually exists
four members of the βµ family were evaluated, scanning the ρ space. The
tested models were βµ with µ ∈ {min(),median(),mean(),max()}.

In the experiment, we select a random sample of 300 rules and predict its
Rule TTC with each of the models, using several values of the time window
ρ. We call y to array of observed 300 Rule TTCs, and ŷβµ(ρ), to the array
of 300 predictions done using the model βµ(ρ). For each of these arrays, the
FoGP(y, ŷβµ(ρ), τ = 0.1) metric is computed. This experiment was repeated
100 times.

Figure 5.2 on page 43 summarizes the result of the experiment. The ρ
parameter were selected to explore space and test the predictive power of
each model. The FoGP metric is calculated for the same 300 random rules
for every window size ρ. The experiment is repeated 100 times. Orange lines
are the median FoGP of the experiment and green triangles are the mean
FoGP, for every window size. The observed min/median/mean/max Rule
TTC of the sample was used to make a prediction. This value usually is
not available in real time, i.e.: the rules created during the previous seconds
usually take several minutes to complete. The result with better FoGP was
obtained by the βmedian model with ρ values between 20 and 30 seconds,
through an FoGP(y, ŷβµ(ρ), τ = 0.1) = 0.22, meaning around 22% of the

42

Figure 5.2: Distribution of the FoGP for the prediction of the Rule TTC
of the models βµ for µ one of the min(), median(), mean(), or max(), as a
function of the window size ρ.

Figure 5.3: Distribution of the FoGP for the prediction of the Rule TTC
of the models βµ for µ one of the min(), median(), mean(), or max(), as a
function of the window size ρ but using as input of the model the real time
data available at t0, that is excluding the TTC of the rules that finished after
t0.

43

Figure 5.4: FoGP of of the Rule TTC prediction using a constant value κ. For
each constant value κ, the metric FoGP(y, κ, τ) is calculated using different
values of τ . The peak at FoGP(y, κ = 562, τ = 0.1) = 0.129 (red triangle)
means that 12.9% of the rules finish in 562 ± 56.2 seconds.

predictions will present less than 10% of relative error. Other βs present
lower FoGP, and thus, lower predictive power. A new scanning of ρ in the
interval [20, 30] shows no significant improvement in the FoGP. This also
shows that the values of the µ aggregation function had some correlation
with time and that these values could hold important information about the
Rule TTC of near future rules.

If the βµ model is implemented using only the data at real-time at t0, that
is, at the time to make a prediction for a rule created at t0, then the only
TTCs available will be of the ones of those rules with created and finished
in the semi-open interval [t0 − ρ, t0), that is, the rules with min created ≥
(t0 − ρ) and max ended < t0. Figure 5.3 on page 43 summarizes the results
of the experiment of measure the FoGP over 300 Rule TTCs predictions,
repeated 100 times. The βµ function using the TTC of those rules that
started between t0 − ρ and t0 but also finished before t0. This simulates the
real time data available in the system to make the prediction, as those times
beyond t0 are in the future and Rule TTC data for the rules finishing after
t0 is usually not available. The FoGP metric is calculated for the same 300
random rules for every window size ρ. The experiment is repeated 100 times.
Orange lines are the median FoGP of the experiment and green triangles are

44

the mean FoGP, for every window size. The µ function were calculated using
real time data. If ρ is small, usually the prediction is zero. That is because
at the number of rules created and finished in the interval [t0−ρ, t0), is zero.

Surprisingly, the βmaximum model peaks the FoGP when a window time of
600 seconds is used. This can be explained considering that it is possible to
make a prediction for every single rule using a constant value for several rules
and then calculate the FoGP. We call the model that predict a constant Rule
TTC of κ seconds, κ model. We annotate the performance of that model at
τ = 0.1 as FoGP(y, κ, 0.1). Figure 5.4 on page 44 shows the result of the
FoGP for a prediction with a several members of the κ model family. When
κ = 562 model is used to make a prediction, then the FoGP at τ = 0.1 peaks
at 0.129, meaning κ = 562 is the best constant model for τ = 0.1. When
the ρ is set to 600 seconds, the βmaximum model usually select the maximum
Rule TTC that will be compatible with the results obtained by the κ = 562
model.

5.3 The γµ models

As mentioned previously, model βµ implemented using real time data, has low
FoGP, as the µ aggregation function depends on real observed Rule TTC, and
real time aggregation is not representative of the future Rule TTCs. However,
as was demonstrated in the previous section, there is a time dependency in
the aggregated values of the Rule TTCs. Model γµ presented here uses a
forecast of the time series of the aggregation function µ in order to predict
the Rule TTC of the new rules. Special attention was put in the median()
andmean() aggregation functions, both because of its hypothetical predictive
power and its good statistical properties.

Formally, the γµ model is defined as in Equation 5.2 on page 46 where µ̂
is the estimation of the function µ(yRi) through the use of an auto-regressive
model. As in the βµ model, the set yRi is the Rule TTC of those rules created
in the left-closed interval [t0−ρ, t0), and that have finished before t0 in order
to not include the information from the future. This equation is very similar
to the βµ equation, but in the γ model, the µ function is estimated using
an auto-regressive model with λ lags of size ρ seconds. The ψ parameter
represents the lookback, or how many lags are used to fit the model. The
ω parameter represents the lookahead, or how many lags in the future the
model will predict. As with βµ models, t0 represents the time at which the
prediction is made and it is ignored when the performance of the γµ model
is being discussed.

45

γµ(t0, ρ, λ, ψ, ω) = µ̂ (5.2)

The algorithm proceeds as follows. First, all the rules that have been
created between t0 and t0 − ρψ seconds and that have finished before t0 are
selected. That is, all the transfers in the rules dataset which satisfy the
conditions t0 − ρψ ≤ min created < t0 and max ended < t0. The rules
dataset contains the fields min created and max created time stamps that
represents the time when the first transfer and last transfer of the rules were
created. Thus min created time stamp is equal to the time creation of the
rule and the minimum min created is the time of creation of the first rule
in the dataset. Also, the max ended is the time stamp of the last transfer to
finish, and thus, the finishing time of the rule. The µ function is calculated
over the bins of length ρ seconds, being the value of the first bin, the µ of
the Rule TTC of the rules satisfying the condition t0−ρψ ≤ min created <
t0 − ρψ + ρ, the value of the second bin the µ of the rules satisfying the
condition t0 − ρψ + ρ ≤ min created < t0 − ρψ + 2ρ, and so on. This
generates a time series σµ̂ of frequency ρ with a total of ψ/ρ samples. This
time series differs from the real time series σµ in that the µ Rules TTCs for
the lags closer to t0, due to the filter for select rules described before. Once
the time series is obtained, a standard auto-regressive model AR(p)[17] is
fitted using using the first ψ/ρ − ω samples. The parameter of the auto-
regressive model is p = λ, meaning the model will need λ samples in order to
make a prediction. Model training and prediction is implemented using the
AutoReg function from the Python statsmodels v0.11.1 package[18]. Once
the model is fitted, a forecast is made using the last λ− ω samples in order
to predict the following ω lags. The µ̂, that is, the prediction of the γµ will
be the last value of the returned forecast.

Figure 5.5 on page 47 shows the case for γmedian(ρ = 30, λ = 30, ψ =
90, ω = 16) model. In this case, the t0 is the date 2019-06-12 22:54:31. The
transfers selected to create the time series were those satisfying the conditions
t0−30∗90 seconds ≤ min created < t0 and max ended < t0. The median of
the Rule TTC were calculated to get the time series using bins of 30 seconds.
The σµ̂ time series is showed in orange while σµ time series values, that is
the median of the Rule TTC including those of the rules that end after t0 is
plotted in blue. These time series are very similar except in the last minutes
before t0. The main reason for this discrepancy is that rules created some
minutes before t0 only finish after t0 and are excluded because they do not
satisfy the condition max ended< t0. This will happen in a hypothetical
implementation of this method were everything after t0 is unknown as it is
in the future.

46

Figure 5.5: Time series process to forecast the TTC of one Rule. The rule
to predict was created on 2019-06-12 22:54:31 or t0. Marked with a purple
asterisk at the lower right part of the plot lays its real Rule TTC. Below
there is a black asterisk that correspond with the prediction done by the
γmedian(ρ = 30, λ = 30, ψ = 90, ω = 16) model. The real median Rule TTC
Time Series is plotted in blue. The orange line is the observed median Rule
TTC, or the TTC of those rules that are finished before t0. The green line
in the plot is section of the data used to fit the γmedian model. The red line
correspond to the prediction made for the model for 16 lags ahead of t0 − 8
minutes.

47

Figure 5.6: FoGP comparison of different γµ models when predicting the Rule
TTC. The boxes show the distribution of the FoGP(y, ŷγµ̂(ρ,λ,ψ,ω), τ = 0.1)
for ρ, ψ, and ω fixed and a range of values of λ.

Figure 5.7: FoGP comparison of the different γµ models when predicting the
value of the function µ, that is, the output of the βµ model. The boxes show
the distribution of the FoGP(ŷβµ(ρ), ŷγµ̂(ρ,λ,ψ,ω), τ = 0.1) for ρ, ψ, and ω fixed
and a range of values of λ.

48

The ω parameter for the experiments was set to 8 minutes. This threshold
was estimated based on the median Rule TTC of the rules dataset. This
means that most of the rules created until 8 minutes before t0 will be finished
at t0. All the tested models fix this parameter to represent 8 minutes but as
it depends on ρ, it is different for every model. The parameter is calculated
using the formula ω = 8 ∗ 60/ρ. That is, for the model γµ̂(ρ, λ, ψ, ω) with
ρ = 30 seconds, ω will be 16 lags and for the models with ρ = 60 seconds, ω
will be 8 lags.

For each prediction, a slice of 45 minutes of data is taken. The first 74
lags of σµ̂ which represents 37 minutes are used to fit the model and that is
showed in the green line. Using the last 30 lags or 15 minutes of this series,
the model forecast 16 lags, shown with a red line. In this example, the value
of µ̂ is very close from the real µ, the end of blue and red lines. This value
will be used to approximate the Rule TTC marked as a purple asterisk in
Figure 5.5 on page 47.

We call y the vector of the true Rule TTCs of a random set of rules, ŷβµ(ρ)
the vector of predictions of y using model βµ(ρ), and ŷγµ̂(ρ,λ,ψ,ω) a vector of
predictions using the γµ̂(ρ, λ, ψ, ω) model.

The (ρ, λ, ψ) parameter space was grid searched for possible peaks in
FoGP(y, ŷγµ̂(ρ,λ,ψ,ω), τ = 0.1) , but also in FoGP(ŷβµ(ρ), ŷγµ̂(ρ,λ,ψ,ω), τ = 0.1).
The first metric describes how accurate the γµ model is to predict the Rule
TTCs and with respect to other models as α and βµ. Second metric will
describe how accurate the AR(ρ) model is to predict the value of µ that
model βµ uses to make its prediction.

The evaluation experiment is conducted as follow. First, 200 random
rules are selected from the rules dataset of 1.8 million rules. Then, 200 pre-
dictions are made using the model γµ̂(ρ, λ, ψ, ω) with µ being the minimum,
median, mean and maximum functions and with a particular combination of
the parameters ρ, λ and, ψ and the FoPG with respect to y and with respect
to ŷβµ(ρ) is calculated. Then another model is picked and tested against the
same set of rules. When all the combination of parameters of ρ equal to 30,
60 and, 90 seconds, λ equal to 15, 20, 30, 45 and 60 lags and ψ of 120, 240
and, 480 lags are exhausted, another set of 200 rules are selected. The ex-
periment is repeated 100 times. This means all the models are tested against
the same set of rules.

Figure 5.6 on page 48 summarizes the results of the experiment for
FoGP (y, ŷγµ̂(ρ,λ,ψ,ω), τ = 0.1) for a particular choice of the parameters, that
is, how good the models γµ̂(ρ, λ, ψ, ω) are in order to predict the Rule TTC of
the rules, for µ being the minimum, median, mean and maximum functions.
Figure 5.6 on page 48 can be interpreted as follows. In the lower left plot,
for the model γ ˆmean(ρ = 30, λ = 45, ψ = 240, ω = 16), on average, a bit over

49

10% of the TTC predictions made with the model will have less than 10%
relative error. The (ρ, λ, ψ, ω) parameters where selected using a grid search
in order to maximize the FoGP at τ = 0.1 for the median function and can
be sub-optimal for other µ functions.

Figure 5.7 on page 48 summarizes the results for FoGP(ŷβµ(ρ), ŷγµ̂(ρ,λ,ψ,ω),
τ = 0.1) for a particular choice of the parameters. Instead of compares the
predictions of the model γµ̂ against the observed Rule TTC as in Figure 5.6
on page 48, Figure 5.7 on page 48 compares the γµ̂ predictions against the
real βµ(ρ), showing the accuracy of the model to predict the function µ of
the Rule TTC of those rules that have not finished at t0.

50

Chapter 6

Model of Rule TTC based on
deep neural networks

Truth... is much too
complicated to allow for
anything but approximations.

John von Neumann

6.1 The δn Model

In his book ”Deep Learning with Python”[19], Francois Chollet introduces a
deep neural network (DNN) architecture able to predict the temperatures for
the Jena Dataset[20] slightly better than a naive model. A similar approach
was tried in order to predict the Rule TTC, based on the time series of a
number of observables we suspect could determine the TTC of such rule at
its creation time. This study should not be considered exhaustive, but a
exploratory study about the use of deep neural networks to predict the Rule
TTC.

From the rules dataset it is possible to create a set of time series from
observables which can influence the Rule TTC. The minimum, median, mean,
and maximum Rule TTC of previous transfers demonstrate at least some
predictive power and have been used in previous models with limited success.
Other variables that could influence the Rule TTC of future rules is the
amount of transfers pending and also the amount of bytes pending. A way
to calculate this is by extending the routines to calculate the time series for
the minimum, median, mean, and maximum functions. The bins are filled
with the sum of the bytes or the sum of the transfers of each rule for both time

51

Figure 6.1: Chollet Jena Temperatures Model adapted to solve the Rule TTC
problem. The LSTM layer replaces the GRU layer from the original model.

52

Figure 6.2: Rule dataset split for training, validation and testing

series, the observed and the real one. The difference between the two will
be the time series of unfinished transfers and unfinished bytes. These values
are known at rule creation time or can be approximated. As the majority of
rules affects closed datasets, that is datasets over which new files can not be
added, the number of files to be transferred and the size of each is mostly
known at rule creation time.

We develop a model with a very similar structure of that proposed in
Chapter 6 in [19]. We call it δn, where n is the number of convolutional
filters and the number of LSTM neurons. Figure 6.1 on page 52 shows
the architecture of the δ32 model. The main difference with regard to the
original Chollet model is the substitution of the GRU layer for a LSTM
layer, as was a proposed improvement suggested in the book. The input of
the model consists of 10 channels, each of which represents the time series of
some attribute calculated between t0 or the rule creation time, and t0 − 120
minutes, in bins of 30 seconds. The attributes used to build this time series
were the minimum, median, mean, and maximum Rule TTC of each bin, plus
the sum of transfers and bytes of both, finished, created, and pending rules.
Each model was implemented using the Keras/TensorFlow Python API and
trained for 120 epochs using the RMSProp optimizer to minimize the Mean
Absolute Error loss function.

Training and validation data were selected based on the distribution of
the the Rule TTCs at creation time. The training data consists of all the

53

rules created between June 8th 2019 to July 3rd 2019. The validation set
includes the rules created between July 4th 2019 and July 10th 2019. And
finally, testing set includes the rules created between July 11th 2019 and July
29th 2019. Figure 6.2 on page 53 shows the split for training, validation, and
testing sets.

6.2 The δννn Model

The δn model family does not take into account information about the rule
of which we want to predict the TTC, that is, the model does not include
information about the target rule. In this section we present a model that
includes the number of transfers the target rule consists of, the sum of bytes
of all this transfers, and the links this transfers will affect, that is, the list
of sources and destinations for all the transfers. Unlike the time series in-
formation fed to the previous model, the data about the target rule is point
wise, such that it is not data about the past state of the system, but of the
present or t0 time.

The model has 3 inputs, the several time series representing the past of
the system, the sum of bytes and the number of transfers of the rule, and the
list of links affected by those transfers. The only output of the system will be
the Rule TTC. This kind of models cannot be implemented using the Keras
Sequential Model. Instead, the Keras Functional API was used to conceive
a family of models capable of handling the different type of inputs. We call
this family the δννn model family, where the n parameter is the number of
convolutional filters or the number of LSTM neurons of the model.

Figure 6.3 on page 55 shows the architecture of the δνν32 model. Data
flows from top to bottom. The left branch is the Chollet-Jena (δ32) model in
charge of digesting the time series data. The center branch input is the num-
ber of transfers and sum of bytes of the target rule. The right branch input is
a list of integers, each of which represents a link that will be affected by one of
the transfers. This list is truncated to 50, so only the first 50 links are going
to be accounted. If less that 50 links are used, the sequence is padded with
zeros. There is a special need to convert the (source, destination) pairs
into a unique number in order to feed the emb input layer. This process is
done in a prepossessing stage using the Keras Tokenizer tool. The alphabet
of links is 8762 words of the form SRCSITE DSTSITE. The LSTM layer after
the embedding process the links orderly. Even though link order should not
matter, that is, the order in which the links appear in the embedding should
not determine or affect the Rule TTC, the usage of this layer has proven
important because the prediction rate over the testing set is up to 2% better

54

Figure 6.3: FunnelNet architecture, used for the δνν models.

55

Figure 6.4: FoGP(τ = 0.1) for two variants of the δννn models. Models
without a LSTM layer after the embedding layer performs worse than the
models with a LSTM layer after the embedding layer.

for the model family that use the LSTM layer, as shown in Figure 6.4 on
page 56.

Normalization of all the numerical data was done using Equation 6.1
on page 56. This allows the model not to give more importance to some
observables over others because of the scale. Typical normalization where
values are subtracted the mean and divided by the variance is not enough in
this case, due to the very long tail of the distribution of the values.

‘ = (ln(x) − ln(mean(x))/ln(std(x)) (6.1)

Figure 6.5 on page 57 shows the histograms of the normalized vs. not
normalized Rule TTC.

6.3 Comparison of the models performance

Both models were trained using the EarlyStopping callback that allows to
monitor the progress of the validation loss. The callback stops training if
there is no improvement after a fixed number of epochs and rolls back the
weights to the ones of the last best model.

56

Figure 6.5: Distribution of the Rule TTC without normalization (left) with
normalization (right) as defined in Equation 6.1 on page 56.

Figure 6.6: Training loss vs. validation loss for several δn models. Training
was done by setting an EarlyStopping callback measuring the validation loss
with patience of 10 epochs. This plot suggest the model is not able to learn
from the training data.

57

Figure 6.7: Distribution of 1000 FoGP(y, δ32, τ = 0.1) and
FoGP(y, δνν32, τ = 0.1). Each FoGP is calculated for the predictions
made for 300 random Rule TTCs. The model κ = 562, the one that make
a constant prediction for the Rule TTC of 562 seconds, was included for
comparison. For this model 12.2% of the predictions have less than 10%
relative error.

For δn models, the patience of the callback was set to 10 epochs. Fig-
ure 6.6 on page 57 shows the δn model family stops after 10 or 11 epochs,
meaning the best model is obtained after only 1 or 2 training epochs. The
δn models are not able to generalize, and if trained for more epochs, model
predictions converge to values around 480.

For the δννn models, EarlyStopping patience was set to 5. Figure 6.9
on page 59 shows that this model family learns from the training data until
epoch 12 in the best case, that is for model δνν32. After that, there is no
improvement in validation loss. Naturally, the larger the model, that is the
n, the faster the model overfits.

Figure 6.7 on page 58 shows the comparison of the FoGP(y, ŷ, τ = 0.1)
of the δ32 and δνν32 models. The model κ = 562 that predicts the con-
stant optimal value of 562 seconds discussed in Section 5.2 on page 41, is
included for comparison as a benchmark. A subsample of 300 rules were
selected. For each rule, a prediction is made using all the models. Then, the
FoGP(y, ŷδ, τ = 0.1), FoGP(y, ŷδνν , τ = 0.1), and FoGP(y, ŷκ, τ = 0.1) was
calculated. The procedure was repeated 1000 times. The box plot shows the

58

Figure 6.8: Constant prediction κ that maximizes the FoGP(y, ŷκ, τ) func-
tion. Black line represents the κ with maximum FoGP(y, ŷκ, τ) for a given
τ . The colored points shows the value of the FoGP(y, ŷκ, τ) metric, the bluer
the worse, the redder the better. The red line also represents the achieved
FoGP with the y-axis on the right.

Figure 6.9: Training loss vs. validation loss for several δννn models. Training
was done setting an EarlyStopping callback measuring the validation loss
with patience of 5 epochs.

59

Figure 6.10: Fraction of Good Predictions for several models made over the
testing set. For κ model, the best know constant for every τ was used. For τ
bigger than 1, the κ model returns 0, meaning 100% of the predictions have
less than 100% relative error.

distribution of the different FoGP obtained. Model κ = 562 shows that on
average, 12.2% of the predictions are within a 10% relative error from the
real value. The δνν32 model outperforms the κ = 562 model by a modest
5.7% on average. Numbers show that, on average, 9.96% of the predictions
made with model δ, also known as Chollet-Jena, have less than 10% relative
error. Meanwhile, the 13.03% of the predictions made with model δνν, also
known as FunnelNet, have less than 10% relative error.

It is educative to compare the models with several values of τ , espe-
cially in the range (0.01, 0.25), in order to see the fractions of predictions
of each model with less than between 1% and 25% relative error. For the
comparison with the κ model to be fair, the best constant for each τ must
be selected in order to maximize the FoGP(y, ŷκ, τ). Using the same training
data used to fit models δ and δνν, the κ/τ space was scanned calculating the
FoGP(y, ŷκ, τ) in the ranges κ = (0, 2000) in steps of 1 and τ = (0.01, 2.0) in
steps of 0.01. This procedure gives place to a surface defined in R3 with a
local FoGP(y, ŷκ, τ) maximum for each κ and τ . Figure 6.8 on page 59 shows
this local maximum, that is, the constant that predicts the training set with
the highest FoGP. Several things arise from this analysis. First, there is a
peak at κ = 567 which does not correspond neither with the mean Rule TTC

60

of the training set, that is 1962.1 seconds, nor with the median of 439 sec-
onds. This means that both the prediction using the mean and the median
are sub-optimal in terms of FoGP. Second, when κ = 0 the FoGP tops at
1.0, meaning that all the predictions have always a 100% relative error. The
explanation for this effect is straightforward. If the prediction for the value
of x is 0, then the relative error is calculated as |x− 0|/x = 1, meaning the
error is 100%. As the FoGP measures how many predictions are less than
τ , when τ > 1.0, if the prediction is 0, all the predictions accounted as have
less than 100% relative error. Third, the FoGP values in the τ range (0.01,
0.25) fall between 0.027 and 0.251, meaning between 2.7% and 25.1% of the
predictions presents less than between 1% and 25% relative error.

When κ model is compared with δ and δνν models, we found that the
κ model outperforms δ and δνν when τ is in the range (0.01, 0.04) and for
τ bigger than 0.65. In the range (0.04, 0.65) the δνν model is better. This
results are shows in Figure 6.10 on page 60.

Both δ and δνν models return continuous values and hence do not make
any sense to measure the FoGP when τ = 0 as the probability of the model
to predict the exact value of the Rule TTC is almost zero. It makes sense
to measure it for the κ model as the constant value is integer. This explains
the better performance of the κ model for low values of τ . However, there is
no noticeable change in the FoGP when flooring or ceiling the predictions of
the δ and δνν models.

61

Chapter 7

Network time to predict
Transfer TTC and Rule TTC

There is nothing certain,
but the uncertain.

proverb

7.1 Network Time for a single transfer

This chapter addresses the question if it is possible to predict the Transfer
TTC using the data available in the Rucio database. If so, the the following
question would be whether or not its possible to predict the TTC of a given
Rule knowing the TTC of individual transfers. Previous models centered
the attention on the Rucio replication rules as a whole. However, rules are
typically composed of several individual transfer requests.

The transfers dataset cited in [1] as described in Chapter 3, includes data
at transfer level. Four timestamps are important to reconstruct the lifetime
of a request, namely created, submitted, started, and ended. From these
timestamps, three states in the transfer lifetime can be distinguished. From
the moment where the transfer request is created until it is submitted to
the File Transfer System (FTS) transfer tool, the request is under Rucio’s
responsibility. That means one of Rucio’s daemons is responsible to submit
transfer requests to FTS. These submissions can be delayed at Rucio’s discre-
tion, i.e., when a certain number of transfers have been already submitted to
a particular FTS server, to avoid overloading it. Thus, the difference between
submitted and created timestamps is known as Rucio Time or RTIME.

62

After the request is submitted to FTS, but before the actual transfer
starts, the transfer request is under FTS’ responsibility. FTS queues the
requests, sorts them, and processes them per link. A request transfer could
be delayed in FTS queues only at FTS Optimizer discretion. The FTS Op-
timizer is an algorithm that aims to increase network usage between links,
by managing the number of concurrent transfers a link can handle based on
transfer failures on that link. If a link presents a failure, the FTS Optimizer
reduces the number of concurrent transfers and vice versa. The difference
between the started timestamp and submitted timestamp is known as FTS
Queue Time, or QTIME.

Once FTS triggers the transfer request, the transfer of the file begins.
During this period the transfer will be using the network resources. The
difference between ended and started timestamps is known as Network Time
or NTIME. Intuition tells us that the bigger the file the longer the Network
Time will be, and the wider the link the faster the transfer for transfers of
the same size will be. However the number of concurrent transfers, that is
the number of files being transferred at the same time using the same link,
also influence the Network Time. Rucio knows the created and submitted

timestamps almost instantly after the events have happen. The started

and ended timestamps are known to Rucio after FTS report it, that is, some
seconds after the completion of the transfer. This limits the information
available to Rucio at a given time, as shown during discussion of models βµ,
β0µ, and γµ in Chapter 5, starting on page 40.

Along with the four timestamps already mentioned, the transfers dataset
contains the sizes of the files requested to be transferred, and the links af-
fected by the transfers.

The rate of a transfer is the amount of bytes successfully transferred in
an interval of time[21]. This rate is determined by the network throughput of
the endpoints, but also by the amount of simultaneous transfers happening
at a given time. Rucio does not store information of the throughput of the
links. Rucio neither store nor can infer the amount of simultaneous trans-
fers happening at a given time. That is the most important consequence of
FTS reporting the started and ended timestamps once a transfer ends. It
is possible though, to calculate the amount of concurrent transfers and to
approximate the rate of the link for historical transfers, based on the times-
tamps stored in Rucio. The average rate of a transfer can be approximated
using Equation 7.1 on page 63, that is the size of the transfer divided by the
Network Time.

xferrate =
xfersize

xferended − xferstarted
(7.1)

63

Figure 7.1: Distribution of the individual transfer rate as in Equation 7.1 on
page 63 for the link AGLT2 BNL-ATLAS.

Figure 7.1 on page 64 shows the rate distribution of individual transfers of
a representative link, calculated as in Equation 7.1 on page 63. The mean rate
is 30.26 MiB/s. The rate distribution is not normal. It is important to notice
that first, a particular transfer usually is sharing the link with other transfers.
Moreover, this number is not constant during the Network Time of a transfer,
as other transfer can be submitted or end during this period. Second, if a file
is big enough, the rate will be I/O bound, as network bandwidth is usually
higher than the read/write bandwidth of the storage. Third, if these files are
read/written from different storage pools, each one averaging 80-100MiB/sec,
then between 9 and 11 transfers should saturate a 10Gbps link. If that is
the case mean rate should converge to a constant. As this does not happen
according to Figure 7.1 on page 64, a possible explanations are that the link
bandwidth is not being fully utilized, or that the link is being utilized by
non-ATLAS transfers invisible to Rucio.

A relation between the size of the transfers and the rate was discovered
during the research and is shown in Figure 7.3 on page 67. The figure shows
the rate of a transfer as a function of its size, in logarithmic scale, for the
transfer requests in the link AGLT2 BNL-ATLAS. Two features can be distin-
guished here. Distribution of transfer rate increases proportionally with file
size up to 265MiB. Above that value starts to saturate. For transfers big-
ger than 256MiB the rate does not increase proportionally to the size of the

64

transfer. Similar behaviour has been observed on most of the links.
If the rate is a function of the transfer size, then it is not linear for

all the sizes, and for some file sizes the transfers are bound by the storage
throughput. Also, the transfers suffer a delay product of the time it took
to establish the connection between the source and destination site. This
should be less than few seconds but could be not negligible, especially for
short transfers.

If this is the case, it is possible to express the rate of a transfer as a
function of its size as in Equation 7.2 on page 65. The mean rate of a
transfer ratexfer can be approximated as the size of the transfer sizexfer
divided by the time the transfer needs to finish. This time can be expressed
in seconds, as the size of the transfer divided by the rate that depends on the
size plus an overhead. All these should be bound or be less than some limit
at which the file can be read from or be written to the storage. Therefore,
the rate, the overhead, and the diskrw limit are unknowns. This equation
has infinite solutions for a single transfer. However, for a set of transfer of
a given link it is possible to approximate a solution using the ordinary least
squares method. Moreover, some of the algorithms used to find the solution
can diverge and find no solutions at all or find several solutions for the same
set of data if initial conditions are randomized.

ratexfer =
sizexfer

(
sizexfer
rate

) + overhead)
< diskrw limit (7.2)

Notice that the least squares fit should be done using only transfers of
the same link.

For all the transfers from BNL-ATLAS to AGLT2 or link 955b9..8222e4

in dataset [1], transfers were separated in training and testing datasets. The
training dataset contains all the transfers created between June, 8th 2019 and
July, 4th 2019. The testing dataset contains all the transfers created between
July, 11th 2019 and July 29th 2019. The training dataset contains 121680
transfers and the testing dataset 76093 transfers. The results for 300 different
solutions of rate, overhead, and disk limit were found. Each solution was
found by choosing at random 500 points in the size/rate plane from the
training set, and by solving the least squares for Equation 7.2 on page 65
using the least squares function from the scipy.optimize package. The
number of random points selected was proven sufficient to allow the least
squares algorithm to converge. Initial values for the unknowns were set to
the mean rate of the training set for the rate variable, 1 for the overhead
variable, and 100 to the diskrw limit variable. These values are in the order
of magnitude of the expected results. The least squares fit was constrained to

65

Figure 7.2: Distribution of the results for multiple fits of each variable.
Ranges of the solutions are (51.79 MiB/s, 1670.88 MiB/s) for the rate, (1.19
s, 17.00 s) for the overhead, and (46.02 MiB/s, 299.14 MiB/s) for the storage
read/write limit. Blue asterisk show the values for the fitted variables which
predict best the training. These values are 95.72 MiB/s for the rate, 1.81
seconds for the overhead, and 92.04 MiB/s for the storage bandwidth limit.

allow only positive values. The distribution of the results for each variables
is shown in Figure 7.2 on page 66.

In order to determine which set of results is able to make the best predic-
tions of the Network Time based on the size of the transfer, the FoGP(y, ŷ, τ =
0.1) was calculated for each set of results. In this case, y is the observed
Network Time for the transfers in the training set, and ŷ is the predicted
Network Time, obtained after computing

sizexfer
ratexfer

, where the ratexfer is ap-

proximated using Equation 7.2 on page 65, replacing the variables for a
particular set of results. Blue asterisks in Figure 7.2 on page 66 show the
set of results that obtains the best FoGP, 95.72 MiB/s for rate, 1.81 sec-
onds for overhead, and 92.04 MiB/s for diskrw limit. Using these values,
the FoGP(y, ŷ, τ = 0.1) = 0.3024 means that 30.24% of the Network Time
predictions have less than 10% relative error. If the same analysis is done
using the observed rate instead of the Network Time, then the same set of
results is returned as best but the FoGP metric is around 1% lower. This
set of results were used to predict the Network Time for the transfers in the
testing dataset, obtaining a FoGP(y, ŷ, τ = 0.1) = 0.2838.

66

Figure 7.3: Transfer rate as a function of the transfer size. The blue dots
represent individual transfers of the link BNL-ATLAS AGLT2. The orange
dotted line represents the best fit of the model of Equation 7.2 on page 65.

Figure 7.3 on page 67 shows the observed size and rate of each transfer
in the test dataset. The orange dots are the approximated rate for a given
size using the best set of results following the FoGP criteria to replace the
values in Equation 7.2 on page 65.

The same experiment was repeated for the 10 links with a higher number
of transfers. Table 7.1 on page 68 summarizes the results. The columns show
the link, the results for the best solution according to the FoGP criteria, the
highest FoGP obtained over the training dataset, and the FoGP obtained
for the testing dataset. The split for training and testing set has been done
by creation date of the transfer request, using the same dates interval, from
2019-06-08 to 2019-07-04 for the training dataset, and 2019-07-11 to 2019-
07-29 for the testing dataset.

7.2 Network Time as a Transfer TTC and

Rule TTC estimator

As the ultimate goal is to predict the Transfer TTC and Rule TTC, this
section studies the possibility to use the Network Time of the transfer as a
predictor. First, the observed Network Time was used to predict the Trans-

67

link rate overhead diskrw limit FoGP FoGP
(train) (test)

55ada41.. 16.11MiB/s 8.25 s 12.92MiB/s 0.6479 0.4986
69fda49.. 4486.83MiB/s 2.27 s 1281.95MiB/s 0.0760 0.0064
ab50c34.. 15.74MiB/s 7.60 s 11.89MiB/s 0.6970 0.3853
5d0adae.. 579.06MiB/s 1.09 s 21.40MiB/s 0.3408 0.3278
7b65b5d.. 59.91MiB/s 2.83 s 83.78MiB/s 0.1342 0.0472
9b06f74.. 29.48MiB/s 1.83 s 15.78MiB/s 0.2515 0.0552
38043af.. 12.55MiB/s 4.35 s 7.70MiB/s 0.2050 0.0989
0a88060.. 196.29MiB/s 4.00 s 71.39MiB/s 0.1445 0.0241
c64d4d3.. 53598.56MiB/s 1.01 s 4042.04MiB/s 0.8519 0.0000
6343052.. 25.42MiB/s 2.78 s 24.05MiB/s 0.3767 0.3463

Table 7.1: Summary of the results for the 10 most popular links. Link
hashes correspond to CERN-PROD-->TRIUMF-LCG2, IFIC-LCG2-->SMU HPC,
BNL-ATLAS-->TRIUMF-LCG2, CERN-PROD-->IN2P3-CC,
CERN-PROD-->INFN-T1, CERN-PROD-->NDGF-T1, BNL-ATLAS-->CERN-PROD,
CERN-PROD-->CERN-PROD, UNI-BONN-->wuppertalprod, and
CERN-PROD-->BNL-ATLAS.

Figure 7.4: Transfer rate as a function of the transfer size for the transfers
of the most popular links. The CERN-PROD-->CERN-PROD (0a880..497131)

link was excluded.

68

fer TTC in order to study the properties of the estimator. For each transfer
request for the 10 most popular links, the FoGP(y, tNT , τ = 0.1) was com-
puted, being y the Transfer TTC, the total time of the transfer request need
to finished since its creation until it finishes, and tNT the observed Network
Time. The Transfer TTC can be obtained by subtracting the ending times-
tamp from the creation timestamp, but also can be obtained trough the sum
of Rucio Time, FTS Queue Time, and Network Time. Table 7.2 on page 70
shows the results of predict the Transfer TTC using the Network Time in
the column y, and the same prediction using the Rucio Time plus the Net-
work Time, and FTS Queue Time plus the Network Time in the columns y0
and y00 respectively. The accuracy of the prediction in column y is low in
comparison with the other two columns. 7.4 show the transfer rate as a func-
tion of the size for the most popular links. The UNI-BONN-->wuppertalprod

(c64d4..c47d53) link lacks statistics in test dataset which explains the 0.0
FoGP on Table 7.1 on page 68. Figure 7.5 on page 71 shows the distribution
of these times against each other for the 9 more popular links. Here it is pos-
sible to see how the Network Time is small with respect to the Rucio time
or the FTS queue time, and with respect to the Transfer TTC in general.
This indicates that the Transfer TTC is dominated by the other components
but the Network Time. The FTS Queue Times have a distribution where
the median indicated with the orange line, is generally away from the mean
value indicated with a green triangle, meaning the distributions are heavy
tailed.

In the case of Rules TTC the same analysis was made. The Network Time
approximation using polynomial fitting of Equation 7.2 on page 65 cannot
be applied directly as not always all the transfers in a rule use the network
of the same link. However, the observed Network Time can be computed
for historical rules and this observed time can be used to predict the same
rules in order to check if this is a good predictor for the Rule TTC. The Rule
Network Time rNT is defined as the difference between the maximum ending
timestamp and the minimum starting timestamp of all those transfers with
the same rule id, that is all the transfer of the rule.

This definition of rule Network Time could not represent the actual time
that the transfers of a rule are using the network. Imagine the case of a rule
with two transfer requests. Both transfers are submitted to FTS at the same
time but for some reason, the first starts but the second does not. If the
first transfer ends before the second transfer starts, then the Network Time
defined this way will overestimate the real Network Time. There will be gaps
in time when the rule is not using the network, because transfers are queued
in FTS that will be computed as Network Time.

Figure 7.6 on page 72 shows the FoGP measured for different τ thresholds,

69

link y y0 y00
55ada410b0bd727 0.0151 0.0257 0.2751
69fda492b238ee7 0.0000 0.0000 0.0037
ab50c34f3ee15fc 0.0230 0.0393 0.1651
5d0adae5d1cc106 0.0078 0.0283 0.1401
7b65b5dceb5f355 0.0088 0.0199 0.0940
9b06f74ad5c9293 0.0074 0.0242 0.0806
38043af20f487a7 0.0468 0.0768 0.1497
0a880607b497131 0.0025 0.0135 0.0389
c64d4d37dc47d53 0.0000 0.0000 0.0003
634305259f6b386 0.0072 0.0131 0.2322

Table 7.2: Summary of the FoGP(y, tNT , τ = 0.1), which is the percentage
of predictions with less than 10% relative error, using the observed Net-
work Time as predictor of y. The variables correspond to y the Transfer
TTC, y0 the Rucio time plus the Network Time (RTIME + NTIME), and
y00 the FTS queue time plus the Network Time (QTIME + NTIME). Link
hashes correspond to CERN-PROD-->TRIUMF-LCG2, IFIC-LCG2-->SMU HPC,
BNL-ATLAS-->TRIUMF-LCG2, CERN-PROD-->IN2P3-CC,
CERN-PROD-->INFN-T1, CERN-PROD-->NDGF-T1, BNL-ATLAS-->CERN-PROD,
CERN-PROD-->CERN-PROD, UNI-BONN-->wuppertalprod, and
CERN-PROD-->BNL-ATLAS from top to bottom.

70

Figure 7.5: Rucio, FTS Queue Time, Network Time, and Transfer TTC
distribution for the 9 more popular links. The CERN-PROD-->CERN-PROD link
was excluded. The UNI-BONN-->wuppertalprod link presents an abnormal
population of transfers with Network Time of 1 second for 69% of all the
transfers sampled.

71

Figure 7.6: FoGP for several τ thresholds, when the rNT estimator is used
to predict the Rule TTC y, for all the rules in the dataset [1].

in which the observed Network Time of the rule is used to predict the Rule
TTC for all the rules in the dataset. The results for τ = 0.1 is 0.2128,
meaning the 21.28% of the predictions have less than 10% relative error.

7.3 Results

The results for the best rate, overhead and diskrw limit vary for every link.
For some, the amount of overhead seems to be excessive. This could be due
to lack of statistics in some size ranges or due to too broad distributions. If
the network throughput is effectively constant, then the transfer rate will be
dependent on the history of the active transfers during the Network Time.
That is, the transfer will share the link, and thus the throughput, with sev-
eral transfers that will be done in parallel. Moreover, the number of active
transfers will not be constant, as during the Network Time of one transfer,
some other transfers can start and finish. From the Rucio database it is
possible to reconstruct the history of active transfers for finished transfers.
Through the study of Rucio data it should be possible to check if the link
network throughput converge to a value. But in order to apply any method
to real time, FTS or other transfer tool should provide the timestamp the
transfers request is submitted to the network at the moment of the submis-
sion, instead of at the ending transfer time in order to know the real number

72

of active transfers in the network per link in real time.
On the other hand, the usage of the Network Time as predictor of Transfer

or Rule TTC is limited, as demonstrated in Section 7.2 on page 67. Even if
a model to predict the Network Time with 100% of accuracy could be used,
then using this value will allow to predict the Rule TTC only around 21% of
the time within 10% or less relative error.

73

Chapter 8

FTS Queue Time to predict
Transfer TTC and Rule TTC

The whole is greater than the
sum of the parts.

Aristotle

8.1 FTS queue modeling

The presentations cited in [22] and [4] address the problems in the prediction
of the FTS Queue Time of the transfers, using the data available in Rucio
database. The distribution of FTS Queue Time is not normal but heavy
tailed as shown in Figure 8.1 on page 75.

Several issues arose during the study of the FTS Queue Time. There are
several FTS server instances. From the data stored in Rucio it is possible to
identify which transfer is served by which FTS server instance by the field
external host. However, while Rucio handle transfers request from ATLAS
Virtual Organization (VO) exclusively, some FTS servers attend to transfers
from ATLAS and other VOs. Transfers for other VOs will be opaque to
Rucio and will not appear in the data collected from the Rucio database.
If the number of transfers in the queue of FTS is being approximated from
the number of transfers submissions by Rucio, the real number of requests
queued could be severely underestimated.

In addition, the FTS scheduler algorithm in charge of selecting the trans-
fer to be served next affects directly the queue time of those transfers already
in FTS queue. The algorithm FTS uses to dispatch the transfers is as follows:
The transfer requests submitted to FTS are assigned with a random unique

74

Figure 8.1: Distribution of the FTS Queue Times for the first 10 million data
points in the transfers dataset. The minimum observed value is 0 seconds.
The maximum value is 604747 seconds or 7 days. This threshold corresponds
to an undocumented FTS configuration that boosts those requests that for
some reason are still in the queue after 7 days.

identifier and then added to the FTS queue, a table in a centralized database
per FTS server. This identifier is used to split the jobs between several FTS
nodes that dispatch the requests in parallel. There are typically between 3
and 40 nodes per server. The nodes compete for access to the FTS database.
The scheduler algorithm runs in a closed loop. For every run, the list of links
with pending transfers is retrieved from the database through a SQL query.
The list is randomly shuffled to avoid starvation. The first link is selected.
From the transfers pending for that link a set of transfers are picked with
certain probability that depends on the activity share of the transfer itself.
The activity share is a number between 0 and 1 that guarantees that the
transfers of all the activities make progress. The bigger the share, the more
probable that the transfers of that activity will be processed. Table 8.1 on
page 76 shows the different activity share values for the different activities
defined in Rucio. The transfers are picked from FTS queue with a proba-
bility equal the the share of its activity, until the limit of active transfers in
that link is reached. When all the transfers for the link were processed or
the limit of actives transfers is reached, the next link is processed. Once all
the links are processed, a new list of links with active transfers is retrieved

75

ACTIVITY SHARE
Analysis Input 0.15
Data Brokering 0.3

Data Consolidation 0.2
Data Rebalancing 0.5

Express 0.4
Functional Test 0.2

Production Input 0.25
Production Output 0.25

Recovery 0.4
Staging 0.5

T0 Export 0.7
User Subscriptions 0.1

Table 8.1: Activity share per activity.

from the database and the cycle repeats.
As was mentioned earlier, the FTS scheduler pick transfers from the queue

with a probability equal to the share of its activity. The higher the probability
of the activity share, the most probable for a transfer to be selected to start.
If the activity share for the activity A is 0.9 and for activity B is 0.5, and
for activity C is 0.2, the scheduler will prefer transfers of the activity A
over B and C. The link limit of active transfers per link is dynamic and
managed by the FTS Optimizer algorithm. It depend among other things
on the minimum and maximum number of active transfers configured set per
source, per destination, per link, the throughput of the link, and the success
rate of previous transfers. Details of the algorithm and its implementation
can be found in [23].

8.2 Modeling the FTS queue from Rucio data

Despite the complexity of the FTS scheduler, it is possible to approximate
the number of transfers in the FTS queue and thus the FTS Queue Time
using the data stored in the Rucio database. Uncertainties about the real
number of queued requests will be related to the number of active transfers.
Active transfers are the ones FTS already dispatched at started timestamp.
This timestamp is not communicated to Rucio in real time, but when the
transfer ends, along with the ended timestamp. Therefore, considering all the
transfers that have been submitted from Rucio to FTS as queued transfers

76

in FTS is an overestimation. Some of these transfers may already have been
started, but the started timestamp may not be in the Rucio database yet.

The proposed method consists in simulating the process after the transfers
are submitted to FTS. A simulator was created to emulate the characteristics
of FTS. The code of the simulator is available in the git repository of the
thesis[24].

The simulator works as follows. The FTS state dictionary, a structure
that represents and keep track of the internal state of the FTS server, is
set to zero and the clock of the simulator is set to the minimum submitted
timestamp of the transfers of the sample. A transfer streamer object that
returns all the submitted transfers for the next simulator clock tick is created.
The simulation resolution is 1 second. The simulation process loop begins.
The following items summarize the steps in the loop.

1. Get events from streamer object.

2. Simulate transfers submission to FTS.

3. Simulate transfers activation in FTS.

4. Simulate transfers progress.

5. Save FTS state structure.

6. Increment the simulation clock by one second.

7. Go to 1

The streamer object returns the list of transfers that have been submitted
at simulation clock time. This list is obtained by filtering the dataset to get
all the transfers that have been submitted in a given second, according to
the Rucio database.

The submission to FTS is simulated. The internal state of FTS queues
are updated to reflect that new transfers have been submitted and there are
links with pending transfers in the queue. The simulated submission time
is the observed submission time of the transfer in the Rucio database. The
Rucio Queue Time is not simulated.

The activation of transfers follows the same algorithm the FTS scheduler
uses to select what transfers are dispatched next. The list of links with
pending transfers is randomised. The transfers for a link are activated in
FIFO order until the link limit of active transfers is reached. The activity
shares are not simulated. After the first link is processed, the following link
is selected and its transfers are activated. If all the transfers of a link are

77

activated, the link is removed of the list of links with pending transfers.
Once a transfer is activated, it exits the FTS queue and the transfer starts
its Network Time. The simulated activation time can be different from the
observed started timestamp of the transfer.

The simulation of the transfers progress is determined by the network
throughput of the link. As this value is not known the observed rate of
the transfer is used. When a transfer is activated the remaining bytes to be
transferred is set to the size of the transfer. At each simulation tick, for all the
active transfers, the observed transfer rate is subtracted from the remaining
bytes to be transferred. When the remaining bytes to be transferred is zero,
the transfer ends.

In order to save the FTS state, all the values of the dictionary structure
are converted to integers and the dictionary is flattened to a Numpy Array.

Finally, the clock is increased by one second and the loop starts again.
The simulation finishes when all the simulated transfers are processed.

This simulation model is know as Model B in [22] and is the best known
model to simulate FTS queues. However, the rate of the transfers must
be known in order to simulate the transfers Network Time progress. Other
models in [22] address the problem to simulate the transfer progress when
the rate is not known, with significantly less success. This approach is eas-
ier to implement over one in which mock FTS server, network and storage
endpoints are used.

Failed transfers are also not simulated. Failed transfers can reduce dra-
matically the dynamic limit of active transfers for a given link after a failure.
Future studies should investigate further the influence of failed transfers.

8.3 Using FTS Queue Time as a Transfer TTC

and a Rule TTC predictor

FTS Queue Time can be used as a predictor of the Transfer TTC and Rule
TTC. This value cannot be known at request creation time or rule creation
time. In this section we discuss the use of FTS Queue Time as a predictor
for Transfer TTC and Rule TTC, assuming that the FTS Queue Time can
be known or be predicted with 100% accuracy.

For transfers, the FTS Queue Time can be computed directly from the
dataset, subtracting the started timestamp to the submitted timestamp.
When the observed FTS Queue Time of transfer (tQT) is used to predict the
Transfer TTC (tTTC), the FoGP(tTTC , tQT , τ = 0.1) = 0.0927.

For rules, the FTS Queue Time can be defined in 3 different ways. The

78

Figure 8.2: Times in life cycle for all transfers in one particular rule. First
three colour lines top to bottom correspond to total rule Network Time
(blue), FTS Queue Time (green) and Rucio Time (red). For each of the
30 transfers in this rule, Rucio Time is shown in blue, FTS Queue Time is
shown in orange and Network Time is shown in green.

FTS Queue Time of the rule rQT can be defined as the interval between the
minimum submission time and the maximum started time of all the transfers
with the same rule id. If this is the case, then same as in rule Network Time,
the FTS Queue Time can be overestimated. Figure 8.2 on page 79 shows the
different times in the life cycle of a transfer, for all the transfers of a particular
rule. Transfers are numbered from 0 to 31 in the order they appear in the
dataset. All the transfers were created at the same time at 08:03:23 on July
3rd 2019. Rucio presents no idle time, as all the transfer are created at the
same time. Total FTS Queue Time according to Equation 8.1 on page 80 is
123 seconds. In total, during 42 seconds there were transfers ready in Rucio
but not submitted to FTS (FTS idle time). The effective FTS Queue Time
according to Equation 8.3 on page 80 is 81 seconds.

A second definition of the rule FTS Queue Time, r0QT , is to calculate a
function of the FTS Queue Time of the individual transfers of the rule. The
third definition, r00QT calculate the effective time that transfers of the rule
spend in the FTS queue. From all the Rule TTC, the slices of time where
no transfers are in the FTS queue are discounted from the rQT . Thus, r00QT
should represent the real load of the rule in FTS system. Formally, the first

79

Figure 8.3: FoGP for different τ thresholds to compare the accuracy of the
proposed predictors for Rule TTC based on the FTS Queue Time estimators.
rQT shows the best performance. Next best is r0QT with f = max(), that
is, the model that predicts the Rule TTC using the FTS Queue Time of the
transfer that will spend the most time in the queue.

definitions is as in Equation 8.1 on page 80, where tstarted and tsubmitted are the
respective timestamps of a transfer t that belongs to the rule r. The second
definition is as in Equation 8.2 on page 80, where f is a function of the FTS
Queue Time of the transfers of the rule, i.e., the mean of the FTS Queue
Time of the transfers of the rule will approximate the FTS Queue Time of
the rule. The third definition is as in Equation 8.3 on page 80, where qIDLE
is is the number of seconds between min(tsubmitted) and max(tstarted) of which
there is no transfers of the rule in FTS queue. Figure 8.3 on page 80 shows
the performance of this predictors.

rQT = max(tstarted) −min(tsubmitted) (8.1)

r0QT = f(tQT) (8.2)

r00QT = rQT − qIDLE (8.3)

The different definitions of the rule FTS Queue Time were used as pre-
dictors for the Rule TTC and the results were compared using the FoGP

80

metric. When using predictor r0 only the min(), mean(), median(), and
max() functions were considered.

This results indicate that the FTS Queue Time is a poor predictor for
both Transfer TTC and Rule TTC. Individual transfers FTS Queue Time is,
in general, overlapping with the Rucio Time, FTS Queue Time, and Network
Time of other transfers in the rule, making it more difficult to find a function
f that makes Equation 8.2 on page 80 useful to predict the FTS Queue
Time of the rule. Even if a model to predict the FTS Queue Time, of both
transfers and rules, with 100% accuracy is found, its utility to predict the
Rule TTC is doubtful. The results obtained with the rQT estimator are
the best ones, but the estimator is consistently overestimating the real FTS
Queue Time. These results suggest that the FTS Queue Time of the rules
have very little impact on the Rule TTC and in the Transfer TTC. This
supports the evidence provided by the results summarized in Figure 7.5 on
page 71, in which is clear that the contribution of FTS Queue Time to the
total Rule TTC is low in average and when compared with the Rucio Queue
Time and in some cases with the Network Time.

81

Chapter 9

Results and conclusion

Real knowledge is to know the
extent of one’s ignorance.

Confucius

9.1 Models summary

We have presented a series of models to predict the Rule TTC at rule cre-
ation time and a metric to compare them. The summary of the performance
obtained by the models according to the FoGP metric at τ = 0.1 is shown in
Table 9.1 on page 82. A summary of the models and their most important
characteristics are presented in the following sections, among with a general
discussion of the models, and the possible extensions of this work.

Model FoGP(y, ŷ, τ = 0.1)
κ 0.1323
βmedian 0.2066
β∗
max 0.1547
γmedian 0.0502
δ32 0.1098
δνν32 0.1409

Table 9.1: Summary of FoGP(y, ŷ, τ = 0.1) for the models presented in this
work.

82

Figure 9.1: FoGP comparison over a τ range from 0.01 to 2 for the best
models known, which were presented in this work. Predictions for all the
models where made for all the rules created between 2019-07-11 and 2019-
07-29.

Figure 9.2: FoGP as in Figure 9.1 on page 83 but zoomed over a τ range
from 0.01 to 0.25 for the best models.

83

9.2 Model κ

The κ model, which always predicts a constant value, allows us to put a
lower bound for the performance of the models over a range of interesting τ
values. Optimizing the constant in order to maximize the FoGP results in a
model that is surprisingly difficult to improve upon, both at high and low τ
values. By its simplicity, and because its performance is comparable to other
more sophisticated models, it should be the preferred to be implemented, for
example, in order to give feedback to users about the TTC of their trans-
fers. If that is the case, the upper bound of a confidence interval would be
interesting for users.

9.3 Model α

Model α is the only model of the studied ones that is not directly compara-
ble with the other models due to inability to make predictions at the Rule
creation time. Model α needs at least two transfers within the rule to fin-
ish in order to fit and forecast when the other transfers probably will finish.
This makes the model suitable to give feedback to the users. But this model
will not be helpful to improve the scheduler as the decision about where to
send the transfers will need to be done at rule creation time and before any
transfer is submitted but not finished. The model shows the non-linearity
of the progression of the transfers, giving insights of the nature of the rules
and their behavior. The time between transfer submissions for the transfers
of a rule is not constant. Rucio may consider that FTS has a high enough
number of transfers already and decide not to submit more transfers until
some of those active transfers finish, increasing the Rucio Queue Time for
part of the transfers of the rule. This will impact directly in the Rule TTC
and this model will not be able to forecast these future delays.

9.4 Models βµ(t0, ρ) and β∗
µ(t0, ρ)

Models βµ(t0, ρ) and β∗
µ(t0, ρ) make a prediction calculating a function µ over

the Rule TTC of those rules created in the last ρ seconds. The difference
between βµ and β∗

µ is that β∗
µ excludes those rules that end after t0. The

βµ model cannot be implemented with real time data as it calculates the µ
function over the Rule TTC of all the rules that have started at some point in
the past, including the ones that have not finished yet. This information from
the future added to the model makes the two models radically different. One

84

could assume that if the µ function could be predicted with 100% accuracy,
then FoGP of the model βµ represents the theoretical limit for of FoGP of
the model β∗

µ, as the first include more information than the second. Yet,
this statement does not hold in general, for example, for the function that
takes the maximum, including more information in the model does not make
it more accurate. The βmax model makes a prediction by calculating the
maximum Rule TTC of all the transfers created between t0 and ρ. The bigger
the ρ is the bigger is the chance that there exist a very slow rule. But β∗

max

filters out those transfers that have finished after t0, and thus the Rule TTC
is throttled to the value of ρ. For this reason, the FoGP(y, ŷβ∗

max
, τ = 0.1)

presents a peak when ρ is near 600. This value is close to the best value
for the model κ at τ = 0.1, which is 562. β∗

µ models with other parameters
presents lower FoGP values than β∗

max at τ = 0.1, and thus are considered
inferior models.

Figure 9.1 and Figure 9.2 on page 83 shows that β∗
max(ρ = 600) outper-

forms model κ in the τ range between 0.04 and 0.22. This is the best model
known to date in that range. It is not possible to implement the βmedian
model without known the Rule TTC of rules that didn’t finish yet. If a
model for a perfect prediction of the median of the Rule TTC exists, then
the βmedian(ρ = 30) shows the best performance across a wide range of τ .

9.5 Model γµ(t0, ρ, λ, ψ, ω)

The γµ model family is the first approach to solve the problem using time
series analysis. The γµ is an auto-regressive (AR) model where the input
is the time series of the Rule TTC. The function µ is calculated in bins of
ρ seconds. The input for the AR model consists of λ lags. The model is
fitted using ψ lags and the look ahead of the model is ω lags. The best
model was obtained by scanning the parameter space and maximizing the
FoGP, as detailed in Section 5.3 on page 45. Model γmedian(t0, ρ = 30, λ =
45, ψ240, ω = 16) achieved the best FoGP at τ = 0.1. If this model would
predict the median with 100% accuracy then its results should be comparable
with those obtained with the βmedian. The results show that the γµ model is
not as good, especially at low τ . The γmedian model is better than βmedian only
for τ > 0.91. This model seems to be not accurate enough and other more
complex models are worth to try, as discussed on Section 10.2 on page 91.
Integrated models were discarded after verifying that the time series show no
trend, ergo there is no need for differentiation. Moving Average models are
used after verifying that the time series are not stationary, which is not the
case for long runs of Rule TTC time series. A straightforward check showed

85

that the standard deviation from the mean changes over time, and thus a
General Auto-Regressive Conditional Heterokedasticity (GARCH) model is
more appropriate.

9.6 Models δ and δνν

The δ model is the first attempt to solve the forecast problem with neural
networks using a modified model proposed by F. Chollet. This approach was
shown to be ineffective but its accuracy is higher than the accuracy of model
γmedian. Model δ includes the information of the past state of the system in
the form of time series but it does not include information of the present.
Information from the rule that is know at the creation time like the number
of transfers of the sum of bytes the system must process in order to complete
the rule are not included in model δ. This observation leads to the δνν
model, a deep neural network model with multiple inputs that includes the
time series from δ model, but also the number of bytes, number of transfers,
and the links affected by the rule. δνν model is the best practical model in
the τ range from 0.22 to 0.77, but more important, it is the easiest model to
extend. We expect that this model would benefit enormously if information
about failed transfers per link, history of transfers submitted to FTS, and
history of the rate of the link were available and could be added as inputs.

9.7 Models based on individual transfers

The prediction of the Rule TTC based on the Transfer TTC presents several
problems. First, the random process involved in the shuffling of the links to
be served in FTS introduces noise in the FTS Queue Time of the transfers.
Second, the FTS Optimizer reduces the number of transfers submitted to a
link in ways that depend on the configuration of the link. This information
however is opaque to Rucio, but could be inferred from the number of actives
per link and the number of failed transfers, and ultimately, from FTS server
configuration. But third and more important, even if the Transfer TTC is
known with 100% certainty, due to the overlaps between the Rucio Queue
Time, FTS Queue Time and Network Time of the individual transfers, it is
still not clear how this information could be embedded in a model to predict
the Rule TTC.

The model to simulate the number of queued transfers in FTS works very
well in several scenarios, but discrepancies between the model prediction
and observed values need to be addressed. Any model to should include

86

the number of failed transfers per link in order to simulate the optimizer
algorithm correctly, and again, as some of this configurations are link based
and Rucio does not know about them, additional sources of data must be
included.

9.8 Conclusion and final remarks

The distributed data management for the experiments using the Worldwide
LHC Computing Grid forms a complex ecosystem with dynamic interactions.
Since its commissioning in 2014, Rucio has become the de-facto standard for
scientific data management, even outside the CERN community.

“For many scientific projects, data management is an increas-
ingly complicated challenge. The number of data-intensive instru-
ments generating unprecedented volumes of data is growing and
their accompanying workflows are becoming more complex. Their
storage and computing resources are heterogeneous and are dis-
tributed at numerous geographical locations belonging to differ-
ent administrative domains and organisations. [...] But ATLAS
is not alone, and several diverse scientific projects have started
evaluating, adopting, and adapting the Rucio system for their
own needs. As the Rucio community has grown, many improve-
ments have been introduced, customisations have been added,
and many bugs have been fixed. Additionally, new dataflows
have been investigated and operational experiences have been
documented. In this article we collect and compare the com-
mon successes, pitfalls, and oddities that arose in the evaluation
efforts of multiple diverse experiments, and compare them with
the ATLAS experience. This includes the high-energy physics ex-
periments Belle II and CMS, the neutrino experiment DUNE, the
scattering radar experiment EISCAT3D, the gravitational wave
observatories LIGO and VIRGO, the SKA radio telescope, and
the dark matter search experiment XENON”.[25]

The accuracy of the models to forecast its behavior will be bound for
the amount of data about the system available at a given moment and for
the stochastic processes involved in certain parts of the system. Rucio’s
importance and the rich amount of data gathered about the transfers and
rules life cycles, make its study paramount.

From Rucio’s point of view, the data about the transfers at any given
moment is rich, allowing the reconstruction of the state of the DDM sys-

87

tem in great detail. However, some aspects of the system remain hidden in
these data. First, at the moment of taking the sample of the data during
the months of June and July 2019, the Rucio instance was ATLAS VO spe-
cific, whereas FTS accepted transfers requests from other VOs as well. How
many non-ATLAS transfers have been submitted to a specific FTS server in
a given moment remain hidden to Rucio. Second, the FTS scheduler intro-
duces randomness through the link shuffling and job identifier designation,
transforming the output of the scheduling task into a stochastic process.
Third, Rucio can identify which FTS server will serve each transfer, but not
how many nodes, or even which node, in an FTS server will attend to the
transfer request. This is opaque to Rucio. Fourth, Rucio can identify if the
source of the transfer is a tape endpoint. These transfers represent a small
but significant amount of the total requests. When a transfer source is tape,
the tape system recalls the file to a disk buffer before transfer is made to the
destination. This is known as Staging Time and can represent an important
fraction of the total transfer time. Rucio in versions before 1.21.6 is not able
to differentiate between FTS Queue Time and Staging Time, accounting as
FTS Queue Time the sum of both. After version 1.21.6, the staging start

and staging finished timestamps were included to the Rucio’s REQUEST
table allowing to reconstruct staging times for tape transfers. Fifth, Rucio’s
Conveyor daemon manages the number of transfers that are submitted to
FTS or queued in Rucio at a given time. This daemon is configured dy-
namically to avoid overwhelming the FTS servers. These thresholds are set
by the DDM Operations team, based on several sources that the team uses
to monitor the DDM system. These settings can impact the Rucio Queue
Time of the transfers. Given the contribution of the Rucio Queue Time to
the Transfer TTC and Rule TTC, further study of the Rucio Queue Time is
needed.

Further analysis will be required in order to determine how this factors
affect the Transfer TTC and Rule TTC and the accuracy of future models.

Several models were presented and evaluated during this work, especially
for Rule TTC prediction. All presented models except model α can make
predictions at the rule creation time. Model βmedian(ρ = 30) outperforms
all the models. However, the real median of previous Rule TTC needs to
be known for the model to work and this information is not available at the
time to make a prediction. The β∗

max is the best model following the FoGP
criteria in the intervals of τ between 0.03 and 0.22. Model δνν is the best
in the intervals of τ between 0.22 and 0.77 and is the model with greatest
potential to be extended. The performance of all the models are comparable
with the performance of Model κ, and for its simplicity, should be preferred.
The accuracy of these models does not allow them to be used to improve the

88

schedule of the transfers or rules. The expected threshold that would make
these predictions useful is a FoGP(y, ŷ, τ = 0.1) of around 0.95. Even if the
accuracy of the models presented here is not enough for scheduling purposes,
excluding model α, these are the best models known to date for Rule TTC
prediction at rule creation time. On the other hand, in order to give feedback
to the users about how much time a particular set of transfers will take, these
models could only provide an educated guess.

This work lays the foundation for future models and establishes the metric
by which they should be compared.

89

Chapter 10

Future work

What is coming is better
than what is gone.

Arabic proverb

10.1 Possible extensions to the δνν model

The δνν model is promising. The following section explain the best way to
extend the model, ordered by difficulty with respect to data pre-processing
and coding, from easiest to hardest.

The number of failed transfers per link, aggregated over a the last 10 to
30 minutes or some recent history in time series form could improve the per-
formance of the model. The FTS Optimizer penalizes the links if there are
failed transfers. Those links without failures in the recent history are pre-
ferred over the ones with failures. Thus, the transfers pending over affecting
the links with failures will be delayed more than the transfers that will use a
link without failures. The easiest way to add this information to the model
is aggregated as an array with one value per link in the embedding branch.
Another way, but computationally more expensive, is to add another time
series to the time series branch, but this time series needs to be computed at
link bases and it is not clear how the information needs to be summarized for
rules that affect multiple links. The number of failed transfers per link can
be calculated from the transfers dataset, searching for those transfers with
state == ’F’.

The δνν model could also benefit from knowing how many transfers have
been submitted to the links that the target rule will affect. The easiest
way to include this information is also summarized. The proper way to

90

calculate this from the transfers dataset is to get all the transfers that have
been submitted, but did not finish yet, ignoring the started timestamp, due
to Rucio only knowing when a particular transfer has been started after it
ends. At that moment, the FTS server will make available both timestamps,
started and ended.

The number of transfers that have been submitted to the FTS server and
did not finish yet can also be included aggregated as a time series in the
time series branch, or summarized in the embedding branch. However, early
studies found no evidence of linear correlation between the number of active
transfers and the Rule TTC.

10.2 More complex auto-regressive models

General Auto-Regressive Conditional Heterokedasticity (GARCH) models
have been used in the past in time series where the variance is not con-
stant over time. In [26], the authors introduce a representation space called
Complexity-Entropy Causality plane, based on the Bandt-Pompe[27] prob-
ability patterns for time series. Preliminary studies of the time series used
in this work suggest these series are compatible with white noise, but this
results were not published nor the results should be considered conclusive.
In [28], the authors introduce a method to determine the predictability of
a time series. This methods should be applied to the time series studied in
this work before more complex time series analysis models are implemented.

91

Thanks

Mario Lassnig für alles. Diese Arbeit wäre ohne seine Hilfe nicht ab-
geschlossen worden, was immer weit über seine Verantwortung als Direktor
hinausging. Danke.

A Fernando Monticelli, por todo. Este trabajo no se hubiera terminado
sin su ayuda, la cual siempre fue mucho más allá de sus responsabilidades
como director. Gracias.

A Javier Dı́az, por dejarme elegir el camino y por bancarme siempre.
Gracias.

A Teresa Dova, por abrirme las puertas de ATLAS, con todo lo que eso
implica. Gracias.

An Armin Nairz, für seine Hilfe bei der Finanzierung meiner Aufenthalte
am CERN und dafür, dass ich mich wie zu Hause gefühlt habe, als ich weiter
weg von zu Hause war als je zuvor. Danke.

An Karl Jakobs, für seine Hilfe bei der Finanzierung von Reisen und
Aufenthalten am CERN. Vielen Dank.

Ad Alessandro di Girolamo, per la sua pazienza, e per la sua generosità
nel condividere con me il suo tempo e la sua conoscenza dell’esperimento.
Grazie mille.

An Thomas Beermann, für seine Hilfe bei der Extraktion und Vorverar-
beitung des in dieser Arbeit untersuchten Datensatzes. Danke.

An Martin Barisits, für die unzähligen technischen Konsultationen zu Ru-
cio, für die er Zeit zum Diskutieren fand. Danke.

92

A Cédric Serfon, pour son aide dans la sélection de la fenêtre temporelle
de l’ensemble de données étudié dans ce travail. Merci.

A Vincent Garonne, pour son aide et son accompagnement lors des pre-
mières étapes de ce travail. Merci.

A Jona y Aimé, por facilitarme el acceso al hardware. Gracias.

A Elio y Mimi, Mauro, Eliana, Gino y Pier y a los Reicher, por recibirme
en las navidades durante los últimos 6 años y por haberme hecho sentir como
en casa cuando estaba más lejos de casa que nunca.

A mis viejos Luis y Beatriz, por llevarme y traerme a Ezeiza las veces que
pudieron, y a Joaco y Monti por haber ido las otras veces. Gracias.

A Lau, Fede y muy especialmente a Pau. Por las innumerables veces que
nos juntamos a estudiar, a darnos ánimos y a avanzar con la carrera. Gracias.

A la gente de la oficina de postgrado, especialmente a Alejandra Pizarro,
por estar 24/7 para todo. Gracias.

To the ATLAS Secretariat, especially to Nathalie Schwarzbauer, for her
help with the arrival at CERN and E-Planet Grant paperwork. Thank you.

A Adjani y a Arthur, por su ayuda con las traducciones. Danke. Merci.

Thank you. Danke. Merci. Grazie. Gracias.

93

Acronyms

AGIS ATLAS Grid Information Service.

BNL Brookhaven National Laboratory.

FoGP Fraction of Good Predictions.

FTS, FTS3 File Transfer System (version 3).

LHC Large Hadron Collider.

LSTM Long Short Term Memory.

RSE Rucio Storage Element.

TSA Time Series Analysis.

TTC Time To Complete.

VO Virtual Organization.

WLCG Worldwide LHC Computing Grid.

94

Glossary

Fraction of Good Predictions Metric that, when applied to a set of pre-
dictions made for a model, reflects the fraction of those that present
less than a certain relative error τ . This metric is defined and discussed
in detail in Section 3.2.7 on page 27.

GRU Gated recurrent units (GRUs) are a gating mechanism in recurrent
neural networks. The GRU is like a long short-term memory (LSTM)
with a forget gate,[2] but has fewer parameters than LSTM, as it lacks
an output gate..

Link The pair of source and destination RSEs for a transfer or rule.

Link Homogeneous When all the transfers of the rule go through the same
link.

LSTM Long short-term memory (LSTM) is an artificial recurrent neural
network architecture used in the field of deep learning. Unlike standard
feed-forward neural networks, LSTM has feedback connections. This
kind of artificial neurons present some benefits over the Gate Recurrent
Unit (GRU) described in [19] but take considerably more time to train.

Rucio Replication Rule Rucio abstraction over a set of data identifiers
that allows the data management system to enforce a replication policy.
Every time a rule is created, the system create transfer requests to fulfill
the replication rule.

Rule Time To Complete Rule Time To Complete for a rule is defined as
the difference between the maximum ended at and minimum created

at timestamps of all the transfers with the rule id equal to ruleid.

Throughput The rate at which something is processed. Usually in bytes.

95

Virtual Ortanization In WLGC context, a Virtual Organization define a
logical group of activities and sites that work for a particular experi-
ment. This allows make partitioning of resources from bandwidth to
storage to job slot allocation among the experiments. All ATLAS ex-
periment activities are part of the in atlas VO.

96

Bibliography

[1] J. Bogado, M. Lassnig, F. Monticelli, J. Dı́az, and T. Beer-
mann, “Atlas rucio transfers dataset,” Zenodo, Dec. 2020. DOI:
https://doi.org/10.5281/zenodo.4320937.

[2] M. Lassnig, W. Toler, R. Vamosi, and J. Bogado, “Machine learning
of network metrics in atlas distributed data management,” Journal of
Physics: Conference Series, vol. 898, p. 062009, 10 2017.

[3] V. Begy, M. Barisits, M. Lassnig, and E. Schikuta, “Forecasting net-
work throughput of remote data access in computing grids,” Journal of
Computational Science, vol. 44, p. 101158, 2020.

[4] J. Bogado, F. Monticelli, J. Diaz, M. Lassnig, and I. Vukotic, “Modelling
high-energy physics data transfers,” in 2018 IEEE 14th International
Conference on e-Science (e-Science), pp. 334–335, 2018.

[5] CERN, Worldwide LHC Computing Grid Public Site, (accessed August
4, 2020). https://wlcg-public.web.cern.ch.

[6] A. Kiryanov, A. Álvarez Ayllón, M. Salichos, and O. Keeble, “Fts3
- a file transfer service for grids, hpcs and clouds,” in International
Symposium on Grids and Clouds 2015, p. 028, 03 2016.

[7] CERN, File Transfer Service, (accessed August 4, 2020).
http://fts.web.cern.ch/fts/.

[8] M. B. on behalf of the Rucio Team, Welcome, Introduction and Rucio
Status (presentation), (accessed August 5, 2020). Slides available in
https://indico.cern.ch/event/773489/contributions/3275021/
attachments/1803610/2942599/Welcome Introduction Rucio status.pdf.

[9] M. Barisits, C. Serfon, V. Garonne, M. Lassnig, G. Stewart, T. Beer-
mann, R. Vigne, L. Goossens, A. Nairz, and A. M. and, “ATLAS replica
management in rucio: Replication rules and subscriptions,” Journal of
Physics: Conference Series, vol. 513, p. 042003, jun 2014.

97

[10] M. Barisits, T. Beermann, F. Berghaus, B. Bockelman, J. Bogado,
D. Cameron, D. Christidis, D. Ciangottini, G. Dimitrov, M. Elsing,
V. Garonne, A. di Girolamo, L. Goossens, W. Guan, J. Guenther,
T. Javurek, D. Kuhn, M. Lassnig, F. Lopez, N. Magini, A. Molfetas,
A. Nairz, F. Ould-Saada, S. Prenner, C. Serfon, G. Stewart, E. Vaand
ering, P. Vasileva, R. Vigne, and T. Wegner, “Rucio - scientific data
management,” arXiv e-prints, p. arXiv:1902.09857, Feb 2019.

[11] P. Calfayan, Z. Dongsong, and V. Garonne, “Usage of Message Queueing
Technologies in the ATLAS Distributed Data Management System,”
Tech. Rep. ATL-SOFT-PROC-2011-010, CERN, Geneva, Jan 2011.

[12] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virta-
nen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, pp. 357–362, Sept.
2020.

[13] J. Reback, W. McKinney, jbrockmendel, J. V. den Bossche,
T. Augspurger, P. Cloud, gfyoung, Sinhrks, A. Klein, M. Roeschke,
S. Hawkins, J. Tratner, C. She, W. Ayd, T. Petersen, M. Garcia,
J. Schendel, A. Hayden, MomIsBestFriend, V. Jancauskas, P. Battiston,
S. Seabold, chris b1, h vetinari, S. Hoyer, W. Overmeire, alimcmaster1,
K. Dong, C. Whelan, and M. Mehyar, “pandas-dev/pandas: Pandas
1.0.3,” Mar. 2020.

[14] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679
– 688, 2006.

[15] A. Zheng, Evaluating Machine Learning Models. O’Reilly Media, Inc.,
2015.

[16] S. Makridakis, “Accuracy measures: theoretical and practical concerns,”
International Journal of Forecasting, vol. 9, no. 4, pp. 527 – 529, 1993.

[17] R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applica-
tions (Springer Texts in Statistics). Berlin, Heidelberg: Springer-Verlag,
2005.

[18] S. Seabold and J. Perktold, “statsmodels: Econometric and statistical
modeling with python,” in 9th Python in Science Conference, 2010.

98

[19] F. Chollet, Deep Learning with Python. USA: Manning Publications
Co., 1st ed., 2017.

[20] G. h.-j. The dataset recorded at the Weather Station at the Max
Planck Institute for Biogeochemistry in Jena, Weather archive Jena
Air temperature, atmospheric pressure, humidity, recorded over seven
years, (accessed August 4, 2020). https://s3.amazonaws.com/keras-
datasets/jena climate 2009 2016.csv.zip.

[21] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach. Pearson, 6 ed., 2016.

[22] J. I. Bogado Garcia, M. Lassnig, F. Monticelli, and C. Serfon, “Poster:
Estimating Time To Complete for ATLAS data transfers,” in CHEP
2018 Conference - National Palace of Culture, Sofia, Bulgaria., Jul 2018.

[23] CERN, FTS 3 Optimizer Documentation, (accessed Febru-
ary 10th, 2021). https://fts3-docs.web.cern.ch/fts3-
docs/docs/optimizer/optimizer.html.

[24] J. Bogado, The source code of the FTS simulator used in this thesis.,
2021. https://github.com/jwackito/ftssimu.git.

[25] M. Lassnig, M.-S. Barisits, P. Laycock, C. Serfon, E. W. Vaandering,
K. Ellis, R. Illingworth, V. Garonne, and G. G. Fronze’, “Rucio be-
yond ATLAS: Experiences from Belle II, CMS, DUNE, EISCAT3D,
LIGO/VIRGO, SKA, XENON,” Tech. Rep. ATL-SOFT-PROC-2020-
017, CERN, Geneva, Mar 2020.

[26] O. Rosso, H. Larrondo, M. Martin, A. Plastino, and M. Fuentes, “Dis-
tinguishing noise from chaos,” Physical review letters, vol. 99, p. 154102,
11 2007.

[27] C. Bandt and B. Pompe, “Permutation entropy: A natural complexity
measure for time series,” Physical review letters, vol. 88, p. 174102, 05
2002.

[28] J. Garland, R. G. James, and E. Bradley, “Quantifying time-series pre-
dictability through structural complexity,” CoRR, vol. abs/1404.6823,
2014.

99

