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Abstract We investigate the secular dynamics of two-planet coplanar systems evolving
under mutual gravitational interactions and dissipative forces. We consider two mechanisms
responsible for the planetary migration: star-planet (or planet-satellite) tidal interactions and
interactions of a planet with a gaseous disc. We show that each migration mechanism is char-
acterized by a specific law of orbital angular momentum exchange. Calculating stationary
solutions of the conservative secular problem and taking into account the orbital angular
momentum leakage, we trace the evolutionary routes followed by the planet pairs during the
migration process. This procedure allows us to recover the dynamical history of two-planet
systems and constrain parameters of the involved physical processes.

Keywords Secular evolution · Migration · Dissipation laws · Tidal force · Drag force

1 Introduction

Recently, Michtchenko and Rodríguez (2011) have proposed a new method for a qualitative
study of the planet migration originated by a generic dissipative mechanism. It has been
shown that, under assumption that the dissipation processes are sufficiently slow, the evolu-
tionary routes of migrating planets in the phase space are traced by stationary solutions of
the conservative secular problem. Therefore, the modeling of planet migration consists in the
calculation of families composed by Mode I and Mode II stationary solutions, parameterized
by the mass ratio, for all possible values of planetary semi-major axes and orbital angular
momentum of the system.
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It is presently accepted that the main mechanisms responsible for planet migration are the
star-planet (and planet-satellite) tidal interactions and gravitational interactions of a planet
with a gaseous disc. Dissipative interactions remove (or add) orbital energy from the plane-
tary system, producing changes of semi-major axes. In the case of tidal interactions, orbital
energy is transformed into thermal energy, which is dissipated in the interior of the tidally
deformed body. Migration of the system can be either toward or outward the central body,
depending on the properties of the tidal interactions and some parameters such as Love
numbers and quality factors (Darwin 1880; Jeffreys 1961; Goldreich and Soter 1966; Hut
1981; Dobbs-Dixon et al. 2004; Ferraz-Mello et al. 2008). During disc-planet interactions,
orbital energy is exchanged with a surrounding gaseous protoplanetary disc and, generally,
the planetary orbital decay occurs (for a review, see Armitage 2010 and references therein).
In addition, migration can also occur through gravitational scattering between planets and a
remnant planetesimal debris (e.g. Fernández and Ip 1984; Kirsh et al. 2009).

Dissipative forces also alter the orbital angular momentum of the system. Indeed, tidal
torques modify the rotational angular momenta of the interacting bodies, which are trans-
ferred to the orbits of planets or satellites (e.g. Mignard 1979; Correia et al. 2008). During
disc-planet interactions, the angular momentum is exchanged through gravitational torques
between the planets and the disc (e.g. Lin et al. 1996; Goldreich and Sari 2003; Masset
et al. 2006). In Michtchenko and Rodríguez (2011), we have proposed a generic approach
to describe the exchange of the orbital angular momentum of the system during migration.
We have introduced the orbital angular momentum leakage, defined as a portion α of the
orbital angular momentum variation produced by migration (i.e. expansion or shrinkage of
the planetary orbits), which is extracted (or added to) from the planet system.

In this paper, we show that each physical process is characterized by a specific law of
orbital angular momentum leakage. We show that α is a function of the eccentricity of the
planet affected by the dissipative force. Moreover, we show that α also depends on a set
of physical parameters related to planets, star and disc. Finally, owning the characteristic
α-function, we construct the evolutionary routes of the system for each specific mechanism
driving the planet migration. This approach provides us with a general idea of how the system
could evolve under a variety of migration conditions and physical models.

In Sect. 2 we briefly introduce some basic aspects of the secular dynamics of two-planet
systems evolving under dissipative forces. Section 3 addresses tidal interactions, where we
include the cases of a close-in planet and a satellite interacting with their parent star and
planet, respectively. Migration driven by disc-planet interaction is discussed in Sect. 4. The
dissipation is modeled through a drag Stokes-like force. Finally, Sect. 5 is devoted to con-
clusions.

2 Some aspects of the secular dynamics under dissipation

2.1 Orbital angular momentum exchange

We consider a three-body system consisting of a central star with mass m0 and two coplanar
planets with masses m1 and m2. We assume that the system is far away from any mean-motion
resonance. Hereafter, the indices i = 1, 2 stand for the inner and outer planets, respectively.

In the astrocentric reference frame, the orbital angular momentum of the system is given,
up to second order in masses, as

Lorb = m′
1

√
a1

(
1 − e2

1

) + m′
2

√
a2

(
1 − e2

2

)
, (1)
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where m′
i ≡ mi

√
G(m0 + mi ), ai and ei are planetary semi-major axes and eccentricities,

and G is the gravitational constant.
The migration of planets is originated by dissipative forces which affect the energy and

the orbital angular momentum of the planets and results in variations of their semi-major
axes and eccentricities. If dissipation is sufficiently slow (its rate is smaller than the proper
frequency of the secular motion), the long-term variations of the orbital elements can be
separated into two components: one is produced by secular interactions with the companion
and the other is due to external interactions. Hence, we can write

ȧi = ȧi
sec + ȧi

ext, (2)

ėi = ėi
sec + ėi

ext, (3)

where the indices “sec” and “ext” stand for secular and external contributions of the total
variation of each element.

The secular theory provides that ȧi
sec = 0 (to first order in masses) and, as a consequence,

ȧi = ȧi
ext. We stress that, since we are studying the secular evolution of the system, short-

period variations of the orbital elements (of the order of orbital periods) are omitted in the
analysis. Thus, Eqs. (2)–(3) should be considered as the averaged equations describing the
long-term variations of semi-major axes and eccentricities. In addition, the contribution of
resonant terms is also neglected.

Assuming that the planetary masses are unaltered during migration, the time variations of
Lorb, in terms of the time variation of the planetary semi-major axes, ȧi , and eccentricities,
ėi , is written as

L̇orb =
m′

1

√
1 − e2

1

2
√

a1
ȧ1 − m′

1
√

a1e1√
1 − e2

1

ė1 +
m′

2

√
1 − e2

2

2
√

a2
ȧ2 − m′

2
√

a2e2√
1 − e2

2

ė2. (4)

The total angular momentum of the whole system (including the three-body system under
study and the external component) is conserved during migration. Thus, we can write that
Lorb+Lext = const, where the external component of the total angular momentum is denoted
as Lext. It should be emphasized that the generic definition “ext” does not necessarily mean
that the exchange of the orbital angular momentum occurs with an exterior medium. For
instance, in the case of tidal interactions of planets with a central star, the ‘external’ contri-
bution to the angular momentum comes from the rotation of the star, as described in the next
section. On the other hand, in the case of disc-planet interactions, there is a flux of angular
momentum between the planet system and an external protoplanetary disc, as described in
Sect. 4.

For sake of simplicity, we restrict our investigation to the case in which only one planet
is directly affected by dissipative forces and, consequently, its semi-major axis is changed.
This implies that the semi-major axis of the other planet remains unchanged during secular
evolution of the system. Assuming that the i th-body is affected by dissipative forces and
combining Eqs. (2)–(4), we use the conservation of the total angular momentum to find that

ėi
sec = −m′

j

m′
i

√
a j

ai

e j

ei

√√√√1 − e2
i

1 − e2
j

ė j
sec (5)
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and

ėi
ext = (1 − e2

i )

2ai ei
ȧi +

√
1 − e2

i

m′
i
√

ai ei
L̇ext, (6)

where i �= j and ei �= 0. Equation (5) shows that, under mutual secular perturbations, the
eccentricities of the planetary orbits oscillate in anti-phase. Equation (5) also shows that the
evolution of e j depends implicitly on the migrating evolution of the companion, through the
external variations of ai and ei .

Equation (6) can be re-written as

ėi
ext = (1 − α)

(
1 − e2

i

)

2ai ei
ȧi , ei �= 0, (7)

where

α = −2ai

ȧi

L̇ext

Li
, ȧi �= 0, (8)

with Li being the partial angular momentum of the body affected by dissipation. The function
α can thus be used as a convenient measure of the non-conservation of Lorb, since it quanti-
fies the variation of the external component of the orbital angular momentum of the system.
Indeed, if α = 0, Lext remains constant and Lorb is conserved during migration. According
to Eq. (7), the limit case ei = 0 implies that ȧi = 0 for α = 0, that is, the migration must
be stopped when the planet orbit is circularized in the system with no exchange of angular
momentum.

For α �= 0, the portion 1−α of the Lorb- change produced by ȧi is absorbed by the system
through the variation of ei , while the rest (α) is transferred to Lext. We say that there is a
leakage (or gain) of the orbital angular momentum in the system. According to Eq. (7), for
α = 1, the dissipative force produces no change of the eccentricity and the change in Lorb due
to ȧi is totally transferred to Lext. This particular case of the angular momentum exchange
was used to modeling of planet-planetesimal interactions (Malhotra 1995).

The range of theoretical values of α is large; according to Eq. (8), α can be positive or
negative, depending on the signs of ȧi and L̇ext. Moreover, α is a function of the orbital
elements of the migrating planet and, consequently, varies during migration. Knowing that
each physical process is characterized by a specific law of angular momentum exchange,
in the next sections, we develop the α-function for several kinds of dissipative interactions.
Using Eq. (7), we write α in general form as

α = 1 − F(ei , par)
2e2

i

1 − e2
i

, (9)

where F(ei , par) is a characteristic function of the migration process, defined through the
condition

ėext
i

ei
= F(ei , par)

ȧi

ai
, (10)

where the vector par is composed of physical parameters of the process under study.

2.2 Evolutionary routes in the phase space

As shown in Michtchenko and Rodríguez (2011), under assumption that dissipation is weak
and slow, the evolutionary routes of the migrating non resonant planets are traced by the
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Mode I and Mode II stationary solutions of the conservative secular problem (see also Had-
jidemetriou and Voyatzis 2010). The ultimate convergence and the evolution of the system
along one of these secular modes of motion are determined by the condition that the dissipa-
tion rate is smaller than the proper secular frequency of the system. We have shown that, for
values of α less than 1, the Mode I secular solution (characterized by aligned orbits) plays a
role of an attractive center when planetary orbits diverge and the condition

√
a1/a2 < m2/m1

is satisfied, or, when planetary orbits converge and
√

a1/a2 > m2/m1. In opposite cases,
the Mode II (characterized by anti-aligned orbits) is the attractive center of the migrating
two-planet system.

In practice, the calculation of evolutionary tracks is simple. The current location of the
system in the phase space provides the starting values of the orbital angular momentum, Lorb,
and the semi-major axis ai of the planet directly affected by dissipation. The set, composed
by Lorb, masses and semi-major axes, uniquely defines two stationary solutions (e∗

1, e∗
2) of the

conservative secular problem at the current configuration. In order to model the migration
process, the semi-major axes of the affected planet is incremented by Δai (which can be
either positive or negative), while the semi-major axis of the other planet is kept unaltered.
The orbital angular momentum of the system is then corrected by the amount

ΔLorb = α
Li

2ai
Δai ,

where the function α is defined by Eq. (9). For a new set of ai and Lorb values (with fixed
masses), we calculate new values of stationary solutions, (e∗

1, e∗
2). The procedure is repeated

until the system reaches domains with no possible stationary solutions. The obtained values
of (e∗

1, e∗
2) are then plotted on the representative planes (n1/n2, ei ), where ni (i = 1, 2)

are mean motions of the planets. The family of stationary solutions shows two evolutionary
routes, one of which the system will follow during migration.

In the above described process, stationary solutions can be calculated using the precise
semi-analytical approach developed in Michtchenko and Malhotra (2004), with no restric-
tions on the values of planet eccentricities. An alternative is the use of the expansion of the
disturbing function in series of a1/a2, e1 and e2, given by

R =
N∑

l=0

l∑

m=0

N ′∑

l ′1,l ′2=0

Rl,m,l ′1,l ′2

(
a1

a2

)l

e
l ′1
1 e

l ′2
2 cos(mΔ�),

where Rl,m,l ′1,l ′2 are numerical coefficients which do not depend on the physical and orbital
parameters of the system and Δ� ≡ �1 − �2 is the difference of planetary longitudes of
pericenter.

The main difficulty in the calculation of migration routes is that the characteristic function
F(ei , par), which is needed to obtain α through Eq. (9), is unknown a priory. Thus, the next
sections of this paper will be devoted to calculate the function F for some specific dissipative
processes.

3 Tidal interactions

We first consider the case of tidal interactions, which affect orbital elements and rotations
of the deformed bodies, while energy is dissipated due to internal friction. The tidal force
is inversely proportional to the 7th power of the distance between interacting bodies and is
effective in both planetary and satellite systems (e.g. Mignard 1979). In this paper, we assume
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that only the central and close-in bodies are mutually affected by the raised tides, whereas
the outer companion is not directly affected by the tidal force. The orbital planes of planets
are assumed to be coincident.

3.1 A system with a close-in planet

We consider a short-period planet orbiting a slow-rotating central star (Ω0 � n1), where
Ω0 and n1 are the angular velocity of rotation of the star and the mean orbital motion of the
planet, respectively.

The long-term variations (averaged over the inner planet orbital period) of the planetary
elements, due to the combined effects of tides raised on the star and on the inner planet, are
written, up to O(e3

1), as:

〈ȧ1〉 = −4

3
n1a−4

1 ŝ
[(

1 + 23e2
1

) + 7e2
1 D

]
(11)

and

〈
ėext

1

〉 = −2

3
n1e1a−5

1 ŝ[9 + 7D], (12)

where

D ≡ p̂/2ŝ, (13)

with

p̂ ≡ 9

2

k1

Q1

m0

m1
R5

1 and ŝ ≡ 9

4

k0

Q0

m1

m0
R5

0 (14)

being the strengths of stellar and planetary tides, respectively (Dobbs-Dixon et al. 2004;
Ferraz-Mello et al. 2008; Rodríguez and Ferraz-Mello 2010). ki and Qi are the Love number
and the dissipation function of the deformed body, where the indices i = 0 and 1 stand for the
central and inner bodies, respectively. In above equations, it is assumed a quasi-synchronous
rotation state of the close-in planet (Ω1 
 n1). In addition, is is also assumed a linear depen-
dence between phase lags and the corresponding frequencies appearing in the decomposition
of the tidal potential of each body (Mignard 1979; Ferraz-Mello et al. 2008). For sake of
simplicity, we consider that Qi are constant; however, it should be kept in mind that their
dependence on frequencies can be important in the long-term evolution. The reader is referred
to Efroimsky and Williams (2009) for more discussions on the frequency dependence of Qi .

Combining Eqs. (10) and (11)–(12), we obtain the characteristic function

F(e1, D) = 9 + 7D

2
[
1 + (23 + 7D)e2

1

] , (15)

where par is defined by the parameter D. The Lorb–leakage or the function α is then calcu-
lated through Eq. (9) to give

α = 1 − (9 + 7D)e2
1(

1 − e2
1

) [
1 + (23 + 7D)e2

1

] . (16)

Figure 1 shows the variation of α with e1. We observe that, for all values of D, α varies in
the range between 0 and 1. The immediate consequence is that the tidal decay of a close-in
planet is generally accompanied by the loss of orbital angular momentum of the system.
The portion 1 − α is absorbed by the system, damping the eccentricity of the inner planet
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Fig. 1 The Lorb—leakage α as a
function of e1, in the case of a
close-in planet tidal evolution.
The curves are parameterized by
several constant values of D
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. The amount α is transferred to the central star and accelerates the stellar rotation (see
discussion of the next paragraph).

The stellar rotation changes due to tides on the star and, from the above discussion, it is
clear that its variation plays a role of external source of the angular momentum. The rate of
variation of the rotational angular momentum is given by L̇ext = L̇ rot = C0Ω̇0, where C0 is
the stellar moment of inertia (assuming that the inner planet has reached stationary rotation,
we can neglect the spin variation of the planet; e.g. Rodríguez et al. 2011 for more details).
Hence, using the definition of α given in Eq. (8), we obtain, for ȧ1 �= 0,

α = −2C0a1

L1ȧ1
Ω̇0. (17)

Since ȧ1 < 0 and α > 0 during orbital decay of the inner planet, above equation results in
Ω̇0 > 0, as previously discussed.

On one hand, Eq. (17) shows that, for α = 0,Ω0 is a constant and there is no tides on
the star (i.e. ŝ = 0). In this case, the orbital angular momentum of the system is conserved.
Inversely, knowing that D ≡ p̂/2ŝ, ŝ = 0 means that D → ∞ and, according to Eq. (15),
F(e1, D) = 0.5e−2

1 . Hence, to second order in e1 and according to Eq. (9), we have α = 0.
Note that, for α 
 0 (very large D), the migration is halted when the orbit circularizes, that
is, a1 becomes constant because there is no orbital angular momentum transfer and e1 = 0.

On the other hand, when planetary tides are neglected, we have p̂ = D = 0 and, up
to second order in e1, (1 − α) = 9e2

1/(1 + 23e2
1). This last expression shows that, after

circularization of the inner planet orbit (e1 = 0), the orbital angular momentum change due
to the orbital decay is totally transferred to the stellar spin (α = 1). Evidence for excess of
rotational angular momentum of the parent stars due to the tidal interaction with close-in
giant planets have been already addressed in previous studies (e.g., Pont 2009).

It is important to note that, during tidal interactions, α is not constant but varies as a
function of e1, according to Eq. (16). The sign of α is always positive, meaning that the
decreasing of the orbital angular momentum due to the orbital decay of the inner planet is
compensated by both the damping of e1 and the increase of Ω0.

Figure 2 shows the evolutionary tracks of a migrating pair of planets. They were obtained
as discussed in Sect. 2.2, where the orbital angular momentum variation for each curve was
defined by the function α, according to Eq. (16). An application to the CoRoT-7 plane-
tary system, characterized by very small current eccentricities (Ferraz-Mello et al. 2011)
was considered, whose results are plotted in the planes (n1/n2, ei ). The adopted migration
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Fig. 2 Evolutionary routes of CoRoT-7 system parameterized by constant values of D. The angular momen-
tum exchange is determined by the α-function (9) defined through (16). The current position of the system
is shown by a star symbol, whereas the locations of some mean-motion resonances are indicated by dashed
lines. A schematic view of the migration scenario is shown in the box illustration at the top panel

scenario is schematically shown on the top of the figure. The divergent migration, together
with the condition m2/m1 >

√
a1/a2, results in the Mode I (Δ� = 0) of secular motion as

an attractive center (Michtchenko and Rodríguez 2011). The current position of the system
is marked with a star symbol and the arrows indicate the direction of the evolution (orbital
decay of the inner planet).

We can note that migration tracks are sensible to the values of the parameter D, and con-
sequently, to the orbital angular momentum exchange. For small D (α 
 1), corresponding
to the nearly-total loss of the angular momentum variation produced by the orbital decay of
the inner planet, both eccentricities vary only slightly during evolution. In this case, when
the strength of the stellar tide is dominating, the orbital configuration of the system in the
past would be not different from the present one.

The situation is very different in the case of large values of D, when the strength of the
planetary tide is dominating. Large D-values imply that the orbital angular momentum of
the system is almost conserved (α 
 0). In this case, the orbital configuration of the system
in the past should be characterized by high eccentricities, as higher as larger are D-values.
Therefore, in the cases with dominating planetary tides, the origin of such high eccentric
planetary orbits must be investigated.

Note that, during migration, the two-planet system could cross several mean-motion reso-
nances, resulting in the temporary excitation of eccentricities but without trapping, since the
orbits are divergent. Several numerical simulations performed in Rodríguez et al. (2011) and
Michtchenko and Rodríguez (2011), show that the system ultimately returns to the stationary
secular solution after leaving the mean-motion resonance.

123



Secular migration of two-planet systems 169

3.2 A system of satellites

We consider now the case of a pair of satellites orbiting a rapidly rotating parent planet
(Ω0 
 n1). We assume that only the inner satellite is affected by tidal interactions with the
planet. According to the linear tidal model, the averaged variations of the orbital elements
are given by

〈ȧ1〉 = 4

3
n1a−4

1 ŝ
[
1 + (27/2 − 7D)e2

1

]
(18)

and

〈
ėext

1

〉 = 2

3
n1e1a−5

1 ŝ(11/2 − 7D) (19)

(Goldreich and Soter 1966; Ferraz-Mello et al. 2008). Note that the only difference with
respect to the previous case is in the tides raised on the planet (or central body). We still note
that the mean variations can be positive or negative, depending on the value of D. Hence,
the combined effect of planet and satellite tides can induce either inward or outward migra-
tion, as well as either damping or excitation of eccentricity. The sign of ėext

1 depends on the
value of D in such a way that ėext

1 > 0 if D < 11/14. The sign of ȧ1 depends on both
D and e1-values. For small eccentricities (e1 ≤ 0.2) and moderate D (in the range from 1
to 5), we would expect outward migration and damping of eccentricity, a typical behavior
observed in the tidal evolution of Solar System satellites (e.g. Peale 1999). In this case (i.e.,
ȧ1 > 0 and ėext

1 < 0), the total angular momentum conservation implies that α > 1 (see
Eq. 7) and, according to Eq. (17), Ω̇0 < 0. The Earth-Moon tidal evolution, with the satellite
moving away from the Earth and the increasing length of day of the planet, corresponds to
this scenario.

Combining Eqs. (9)–(10) and (18)-(19), we have

F(e1, D) = 11/2 − 7D

2
[
1 + (27/2 − 7D)e2

1

] , (20)

and

α = 1 − (11/2 − 7D)e2
1(

1 − e2
1

) [
1 + (27/2 − 7D)e2

1

] . (21)

Figure 3 shows the variation of α with e1, for different values of D. With the exception
of the example with D = 0, α > 1 always, indicating that the external source of angular
momentum (planet rotation) injects angular momentum in the satellite system, which is used
to expand the inner planet orbit and circularize both inner and outer orbits.

Figure 4 shows the migration routes of a hypothetical system in which the central body is
an Earth-like planet, the inner satellite has the Moon mass and the outer companion is three
times smaller than the Moon. The curves are parameterized by several values of D. For D in
the range from 0 to 5, the inner satellite migrates outward when the eccentricity of its orbit is
not too large (e1 < 0.2, according to Eq. 18). Since the semi-major axis of the outer satellite is
unaltered during the secular interaction with its companion, we have a convergent migration
and, together with the condition m2/m1 <

√
a1/a2, results in the Mode I (Δ� = 0) as the

attractive center. The direction of migration along evolutionary routes is shown by arrows in
Fig. 4.

For D ≥ 1, the satellite eccentricities decrease during migration: larger is the value of
D, more rapid is the damping of eccentricities. In this way, the satellite system approaches
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Fig. 3 Dependence of α on e1,
in logarithmic scale, for the tidal
evolution of a close-in satellite.
Illustrations are shown for
different values of D. Here, α can
adopt values larger than unity, but
not in the close-in tidal evolution
case (see Fig. 1 for comparison)

 0.1

 1

 10

 0  0.05  0.1  0.15  0.2

α

e1

D=0

D=3

D=5

Fig. 4 The same as in Fig. 2, except the angular momentum exchange is determined by the α-function defined
through (21)

to main mean-motion resonances with low-eccentricity orbits which allow a smooth capture
into one of these resonances (e.g. Tittemore and Wisdom 1988). The behavior of the sys-
tem described by D = 0 is different, because in this case the eccentricities of the satellites
increase during migration (see Eq. 19). As a consequence, the capture inside a low-order
mean-motion resonance would be strongly improbable.

4 Disk-planet interactions

In this section we study the migration of a two-planet coplanar system assuming that dissi-
pative forces affect only the outer planet. We also assume that the two planets are interacting
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secularly, that is, the planets are far enough from any mean-motion resonance. Disc-planet
interactions are the natural mechanism which results in the orbital decay of the outer planet
due to energy and angular momentum exchange with an outer gaseous disc (e.g. Kley 2000,
2003).

4.1 Evolutionary tracks under Stokes interactions

For sake of simplicity, we suppose that the outer planet is forced to migrate under the action
of a dissipative drag force (Stokes-like force) of the type

f = −10−ν(v2 − γ v2c), (22)

where ν > 0 and v2c is the Keplerian circular velocity at the astrocentric distance r2. Due to
the negative radial pressure gradient, the gas velocity is a bit less than the circular velocity at
the same point. Consequently, the value of the factor γ should be slightly smaller than unity
(see Adachi et al. 1976; Patterson 1987). γ is also frequently used as a free parameter of the
problem, in order to model different conditions of disc-planet interactions (e.g. Beaugé et al.
2006). Several previous works have investigated the evolution of a two-planet system evolv-
ing under a Stokes drag force (e.g., Beaugé at al. 2006; Hadjidemetriou and Voyatzis 2010),
with the majority devoted to the study of the evolution inside mean-motion resonances.

In order to obtain the variations of the semi-major axis and the eccentricity of the outer
planet produced by the force f , we use the Euler–Gauss’s equations (Brouwer and Clemence
1961):

da2

dt
= 2

n2

√
1 − e2

2

[ fr e2 sin u2 + ft (1 + e2 cos u2)]

de2

dt
=

√
1 − e2

2

n2 a2

[
fr sin u2 + ft

e2

(
1 + e2 cos u2 − r2

a2

)]
(23)

d�2

dt
=

√
1 − e2

2

n2 a2 e2

[
− fr cos u2 + ft

(
r2

a2
(
1 − e2

2

) + 1

)
sin u2

]

d l0
2

dt
=

√
1 − e2

2

e2

[
(a2

(
1 − e2

2

)
cos u2 − 2e2r2) fr − (

r2 + a2
(
1 − e2

2

))
sin u2 ft

]
,

where l0
2 is related to the mean anomaly, l2, through l2 = l0

2 + ∫
n2dt . fr and ft are the

radial and transverse components of f , whereas u2 is the true anomaly of the outer planet.
The first-order averaging over the outer planet orbital period gives, to fourth order in e2 and
assuming m2 � m0:

〈ȧ2〉 = −10−νa2
[
2(1 − γ ) + γ

(
5e2

2/8 + 119e4
2/512

)]
(24)

〈ė2〉 = −10−νγ e2
(
1 − 13e2

2/32
)

(25)

〈�̇2〉 = 0 (26)

(for comparison, see Beaugé and Ferraz-Mello 1993). It follows from above equations that
the disc-planet interactions produce orbital decay and circularization. If we set γ = 1 (see
Hadjidemetriou and Voyatzis 2010) and e2 = 0 into Eq. (24), then we have ȧ2 = 0, indicating
that there is no orbital decay of the outer planet in the case of circular orbit.
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Fig. 5 Variation of α with e2, for
two values of γ , corresponding to
the case of disc-planet interaction
simulated with a drag force of the
type (22). Note that, depending
on e2, α can adopt negative
values (see text for details)
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Using Eqs. (9)–(10) and (24)–(25), we obtain

F(e2, γ ) = γ
(
1 − 13e2

2/32
)

2(1 − γ ) + γ
(
5e2

2/8 + 119e4
2/512

) (27)

and

α = 1 − 2γ
(
1 − 13e2

2/32
)

e2
2(

1 − e2
2

) [
2(1 − γ ) + γ

(
5e2

2/8 + 119e4
2/512

)] , (28)

where par is given by the parameter γ .
Figure 5 shows the function α(e2, γ ) parameterized by two values of γ . We note that, as

in the case of star-planet tidal interactions (see Sect. 3.1), α is always smaller than 1, which
means that the orbital decay of the outer planet is always accompanied by damping of the
eccentricity of its orbit (see Eq. 7). We also see that, for e2 = 0, α = 1 for any value of
γ (we have discussed that γ < 1), indicating that, after circularization of the planet orbit,
the change of Lorb due to the orbital decay is totally transferred to Lext, in this case, to the
gaseous disc.

In contrast with the case of star-planet tidal interactions, the function α is not saturated
at 0 (see Fig. 1), but decreases monotonously with eccentricities towards negative values.
According to Eq. (8), negative values of α imply in the loss of angular momentum by the
disc during the orbital decay of the outer planet (L̇ext < 0). Thus, during migration, the pair
of planets can either gain or lose orbital angular momentum, depending on the eccentricity
of the migrating planet.

A transition between leakage or gain of angular momentum occurs at α = 0, when e2

reaches a critical value ecr
2 which is determined from Eq. (28), for a given γ . For instance, for

γ = 0.995, ecr
2 
 0.085. For e2 = ecr

2 , the orbital angular momentum of the planet system
is conserved (since α = 0), however, this condition is only transitory. For e2 < ecr

2 , we have
0 < α < 1, indicating that a portion α of the orbital angular momentum change due to
migration is removed from the system and transferred to the disc (L̇ext > 0, see Eq. 8), while
the portion 1 −α is absorbed by the system altering the value of e2. When e2 > ecr

2 , we have
α < 0 and the system gains angular momentum from the disc. Note that, in the latter case,
the planet system gains angular momentum, despite the semi-major axis of the outer planet
is decreasing.

The evolutionary routes of the planet pair, obtained for several values of the parame-
ter γ and for the angular momentum exchange defined by (28), are shown in Fig. 6. The
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Fig. 6 Evolutionary routes for a disc-planet interaction simulated through the force given in Eq. (22), parame-
terized by constant values of γ . In this case, the angular momentum exchange is determined by the α-function
(28)

hypothetical system is composed of a Sun-like central body and two planets of equal mass.
The migration scenario shown on the top of the figure corresponds to the outer planet moving
towards the inner planet. In this case, migration is convergent and the Mode II plays a role of
an attractive center, since m2/m1 >

√
a1/a2 (see Michtchenko and Rodríguez 2011). Planet

eccentricities are damped during migration (see Eq. 25), while the system approaches to one
of the main mean-motion resonances, whose locations are indicated in Fig. 6. Because of
small eccentricities, the probability of capture in a mean-motion resonance would be high,
mainly for larger γ -values. It is worth noting that, to achieve the current position of the
system (marked by a star symbol), a past orbital configuration with higher eccentricities is
needed for all considered values of γ .

It is important to stress that, during the migration path, the system crosses several mean-
motion resonances, as shown in Fig. 6. One should keep in mind that, when the rate of
dissipation is small, the system may be trapped one of such resonances. Since we restrict
our investigations to the secular evolution of the systems, we fix the initial configurations of
planet pairs far away from mean-motion resonances and, according to our model, neglect the
possibility of a resonant capture.

4.2 The factor K

Several works have simulated the disc-planet interaction adopting a simplified model of
planetary migration (e.g. Lee and Peale 2002; Beaugé et al. 2006, among others). The
method avoids the use of hydrodynamic numerical simulations involving an accurate
description of the interaction process between the gas and the planet body. The model
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Fig. 7 Variation of K with e2,
for two values of γ . When e2 = 0
and γ = 0.995, K = 100 is
obtained, reproducing the result
of previous works (Lee and Peale
2002). Moreover, K strongly
varies with e2 and for high
eccentric orbits is almost
independent on the value of γ
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introduces the relationship between the migration rates of semi-major axis and eccentric-
ity as follows

ė2

e2
= −K

∣∣∣∣
ȧ2

a2

∣∣∣∣ , (29)

where K is a constant (positive) parameter. Given a value of K , the migrating systems are
modeled through numerical integrations of the equations of planetary motion, with constant
perturbations in the orbital elements according to Eq. (29).

As shown in Beauge and Ferraz-Mello (1993) and Gomes (1995), the time evolution
of orbital elements due to the action of the drag force given by (22) is, to first order in
eccentricity:

a2(t) = a20 exp(−At) and e2(t) = e20 exp(−Et),

where A and E are the inverse of the e-folding times of a2 and e2, respectively. Introducing
above equations into Eq. (29) we obtain that K = E/A. Moreover, using Eqs. (24)–(25)
we also obtain that, to first order in e2, K = γ /2(1 − γ ). In this way, we have shown that
the condition (29), with a constant value of K , can be directly obtained from the averaged
variations of the orbital elements produced by the Stokes force. It is worth noting that, for
γ = 0.995, which is the usually adopted value (Beaugé and Ferraz-Mello 1993), we obtain
K = 100, which matches the value determined empirically by Lee and Peale (2002) for the
GJ 876 resonant system (the planets b and c evolve inside the 2/1 mean-motion resonance).

The relationship (29) is frequently applied in moderate and even high eccentricity domains,
specially when the evolution of resonant pairs of planets is modeled. However, comparing
Eqs. (10) and (29) we note that K = F(e2, γ ), that is, the assumption of constant K is not
appropriate in the case of eccentric orbits and the function F(e2, γ ), given by Eq. (27), should
be used instead K = const (see also Kley et al. 2004). The variation of K as a function of e2

is shown in Fig. 7.

4.3 A general drag force

The Stokes force (22) belongs to the class of a more general dissipative force given by

f = −10−νρ(r2)(v2 − γ v2c), (30)
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where ρ(r2) is the density profile of the gas in the disc (see Smart 1960). In this work, we
assume that ρ(r2) = r−β

2 , with β ≥ 0 (see Kominami and Ida 2002, for an example with
β = 2). Some works also adopt a more general dependence on the relative velocity, intro-
ducing powers of (v2 − γ v2c) larger than 1. This case is related to high Reynolds numbers
and correspond to regions of turbulence in the gas medium.

Using the Euler-Gauss equations with the external force (30) and applying the averaged
procedure (over orbital periods), we obtain the long-term variations of semi-major axis and
eccentricity of the outer planet, up to O(e5

2), as follows

〈ȧ2〉 = −10−νa1−β
2

[
2(1 − γ ) + e2

2 G1(γ, β) + e4
2 G2(γ, β)

]
, (31)

〈ė2〉 = −10−νa−β
2 e2

[
γ (1 − β) + β + e2

2 G3(γ, β)
]
, (32)

where

2G1 = 3β + β2 + γ

(
5

4
− 2β − β2

)
,

16G2 = 7β + 23

2
β2 + 5β3 + 1

2
β4,+γ

(
119

32
− 3β − 27

4
β2 − 4β3 − 1

2
β4

)
,

4G3 = −3β + 3

2
β2 + 1

2
β3 + γ (β − 1)

(
13

8
− β − 1

2
β2

)
.

It is clear that the case β = 0 corresponds to the previously studied Stokes force (see
Eqs. 24–25).

Interesting features can be highlighted from the above equations. On one hand, we note
that fixing a2 and e2, the rate of migration increases when β < 1 and decreases if β > 1.
Moreover, for β = 1, 〈ȧ2〉 does not depends on a2. On the other hand, the rate of e2-damping
decreases for β > 0 and it is independent of a2 for the Stokes drag (β = 0).

Through Eqs. (9)–(10) and (31)–(32), the characteristic function F(e2, γ, β) is given by

F(e2, γ, β) =
[
γ (1 − β) + β + e2

2 G3(γ, β)
]

[
2(1 − γ ) + e2

2 G1(γ, β) + e4
2 G2(γ, β)

] (33)

and the function α

α = 1 − 2e2
2

[
γ (1 − β) + β + e2

2 G3(γ, β)
]

(
1 − e2

2

) [
2(1 − γ ) + e2

2 G1(γ, β) + e4
2 G2(γ, β)

] , (34)

where par is given by two parameters of the system, γ and β. Figure 8 shows the variation of
α(e2, β, γ ) as a function of e2, for γ = 0.995. We show curves parameterized by β = 0, 1, 2.
Note that α has a strong dependence on e2 for all β. For high eccentricity (e2 ≥ 0.2), α < 0
for all values of β illustrated. When α < 0, the planetary system gains orbital angular momen-
tum, because ȧ2 < 0 and, looking at Eq. (8), we have L̇ext < 0. Moreover, the gain is larger
as smaller is the power β. In the limit of very small eccentricity (e2 ≤ 0.05), α is almost
independent on β.

The dependence of the planet evolution on the power β is illustrated in Fig. 9, where we
show the migration paths of the fictitious two-planet system, previously analyzed in Sect. 4.1.
Several values of β are used, with γ fixed at 0.995. We can note that, at least for the given γ ,
the different density profile distributions produce only quantitative differences in the damp-
ing of eccentricities, which are significant only at high eccentricity domains. The convergent
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Fig. 8 Variation of α with e2 for
the case of a general dissipative
force given by (30). Three values
of the power β are illustrated for
γ = 0.995

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

α

e2

γ =0.995

β =0

β =1

β =2

Fig. 9 Evolutionary routes for a disc-planet interaction simulated through the general force (30), parameter-
ized by constant values of the power β and γ = 0.995. The angular momentum exchange is determined by
the corresponding α-function, given by Eq. (34)

migration of the planets can results in the crossing or capture in a mean-motion resonance,
as in some previous discussed cases.

5 Conclusions

In this work we model analytically the orbital angular momentum exchange of two-
planet coplanar systems evolving under dissipative forces. Two migration mechanisms were
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considered: tidal interactions in star-planet and planet-satellite systems and gaseous disc-
planet interactions. Our approach is based on the model developed in Michtchenko and
Rodríguez (2011), which shows that the angular momentum exchange between the orbital and
the exterior components of the total angular momentum can be calculated through the α-func-
tion, referred to as the orbital angular momentum leakage. For each dissipative mechanism
considered, α was calculated as a function of the planet eccentricity of the migrating planet
and physical parameters involved in the process.

Using the obtained α-function, stationary solutions of the secular conservative problem
were calculated for each specific migration scenario and for several values of physical param-
eters. Stationary solutions provide evolutionary routes that the system would follow in the
process of planetary migration and allows us to understand the dynamical history of the
system evolving under dissipative forces.

The tidal interactions between a close-in planet with its host star results in the orbital decay
of the inner planet. The angular momentum exchange between the orbital component and the
stellar rotation imposes constraints on the α-function in such a way that 0 ≤ α ≤ 1. During
migration, the planet system always loses some part of the orbital angular momentum, which
is used to accelerate the rotation of the star. Large (small) values of the parameter D (ratio
between the strengths of planetary and stellar tides) are associated to weak (strong) stellar
tides, enabling a substantial conservation (dissipation) of the orbital angular momentum of
the system.

In the planet-satellite tidal interaction, the situation is generally opposite. In this case, the
migration of the inner satellite is predominantly outward. For typical values of the parameter
D (in the range between 1 and 5) and moderate eccentricities (e1 < 0.2), the α-function is
always larger than 1. This means that angular momentum is injected into the satellite system,
with the planet spin as the supplier source.

Disk-planet interactions modeled through a drag Stokes-like force, have shown that α ≤ 1
always. Angular momentum can be removed (0 < α ≤ 1) or injected (α < 0) into the planet
system. We have shown that the factor K (the ratio between eccentricity damping and orbital
decay), which is frequently adopted as a free parameter of the dissipative problem, is a func-
tion of the outer planet eccentricity. In addition, K also depends on the parameter γ , related
to the disc properties. Moreover, the assumption of constant K is only valid in the domain
of very small orbital eccentricities.

Finally, the development of the α-function for each dissipative process, and the conse-
quent calculation of evolutionary routes allow us to reassemble the starting configurations
and migration history of the planet systems on the basis of their current orbital configurations.
In addition, the analysis of the orbital angular momentum evolution during migration of the
system allows us to constrain parameters of the involved dissipative physical processes.
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