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Abstract A fractal model to predict water and air permeabilities of unsaturated fractured
rocks is presented. The derivation of the model is based on physical and geometric concepts.
The pattern of the fracture network is assumed to be fractal and itis described by the Sierpinski
carpet. The proposed expressions for the relative water and air permeabilities are closed-form
and have five independent parameters: the fractal dimension, the minimum and maximum
fracture apertures and the emergence points for water and air flows. The ability of the model
to describe experimental data is illustrated by fitting the derived analytical curve to measured
data from Grimsel Test Site (Switzerland) and numerical experiments designed by Liu and
Bodvarsson (J Hydrol 252:116-125, 2001). In both the cases, the proposed model provides
a very good description of water and air permeabilities over several orders of magnitude
for the whole range of water saturation.

Keywords Air and water permeabilities - Fractals - Fractured rocks - Two-phase flow

1 Introduction

Fluid flow in hard rocks is often dominated by the highly permeable pathways provided by
rock fractures and joints. Immiscible two-phase flow in this type of rocks is of interest to
many research problems in groundwater hydrology, like the storage of high-level nuclear
wastes in geological formations (Bodvarsson and Tsang 1999). In most practical applica-
tions in hydrology and soil sciences, the gaseous phase (air) is assumed to be at a constant
pressure (equal to atmospheric) and the system is reduced to the consideration of the water
phase only (Bear 1988). This approach is called the Richards approximation, and it has been
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shown a good alternative for describing water flow in the unsaturated zone of the soil, where
the influence of the air on the motion of the water is negligible (Celia and Binning 1992).
However, the description of gaseous phase flow is of interest in problems like transport of
volatile organic compounds or soil remediation by vapor extraction (Sleep and Sykes 1989;
Fischer et al. 1998). In these cases, the Richards approximation is no longer valid and a
two-phase model must to be used.

Numerical solution of two phase flow equations in unsaturated porous media requires
knowledge of constitutive relationships between saturations, permeabilities, and pressures
of air and water phases. The experimental determination of permeability relations is tedious
and time-consuming and usually the measurements are variable, error-prone, and applica-
ble to only a narrow range of pressures. An alternative to direct measurement is the use of
theoretical models which predict water and air permeabilities from the water saturation curve
that can be easily measured in laboratory. During the past six decades, several predictive mod-
els have appeared in the soil science, engineering and hydrogeology literature. Among the
most popular predictive models, we could mention the models proposed by Burdine (1953);
Mualem (1976) and Assouline (2001). These models have been developed for describing
unsaturated water flow in sedimentary formations (granular porous media). Specific models
for fractured hard rocks are virtually nonexistent. Liu and Bodvarsson (2001); Guarracino
(2006) and Guarracino and Quintana (2009) have used the Burdine model for predicting water
permeability in fractured rocks using different analytical expressions for the water saturation
curve. In the Burdine model, pores are described by a group of parallel capillary tubes with
different radii, while in Mualem and Assouline models, pore geometries are more complex.
In these works, the use of Burdine’s model is based on the simplicity of the pore geometry,
that allows to describe a single fracture as a linear arrangement of parallel capillary tubes.

In this study, we derive permeability relationships for describing water and air flow in frac-
tured rocks. The fracture pattern is described using the Sierpinski carpet, a classical fractal
object that contains a self-similar geometric pattern of pores. Self-similar scaling is a typi-
cal property of fractal objects that has been observed in fracture networks by several authors
(Turcotte 1986; Obuko and Aki 1987; Barton and Zoback 1992; Berkowitz and Hadad 1997).
Sierpinski carpet has been successfully used to describe water content and permeabilities of
granular porous media. Based on geometrical properties of the carpet, Tyler and Wheatcraft
(1990) obtain water content curves and relate the fractal dimension with the texture of the soil.
Yu et al. (2003) derive the permeabilities for a partially saturated porous media consisting
of a bundle of tortuous capillary tubes whose radii distribution is described by a Sierpinski
carpet. For the particular case of fractured rocks, Guarracino (2006) uses a Sierpinski carpet
to derive an analytical closed-form expression for water content. It is important to remark
that no field or laboratory data exist to support the use of this type of fractal object to describe
fracture patterns. This is the main hypothesis of the model that remains to be experimen-
tally validated. An extensive review on theories, methods, mathematical models and open
questions of flow and transport properties in fractal porous media can be found in Berkowitz
(2002), Doughty and Karasaki (2002), and Yu (2008).

The proposed permeability model is completely derived from the properties of the
Sierpinski carpet, the single-phase flow equation for an individual fracture and classical
capillary relations. Water and air permeabilities have closed form analytical expressions with
five independent geometrical and physical parameters: the fractal dimension, the minimum
and maximum fracture apertures and the emergence points for water and air flows. The fractal
model can represent the water permeability values obtained by Liu and Bodvarsson (2001)
using numerical simulation techniques and the experimental air permeability values of a
fractured crystalline rock at Grimsel Test Site (Switzerland) (Fischer et al. 1998).
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The proposed water and air permeability model and the water content expression obtained
by Guarracino (2006) are based on the same conceptual model of fractured porous media.
The combination of these expressions provides the only set of constitutive relations for
fractured hard rocks entirely derived from the geometric properties of the fracture network
and physical concepts.

2 Description of the Fracture Network

To derive the expressions for water and air permeabilities, we consider a cube of size a as a
representative elementary volume (REV) of the porous medium. The porous medium is con-
ceptualized as an impervious rock matrix with a set of pores defined by a fracture network.
Fractures are assumed to be parallel to the flow direction with a spatial distribution pattern
that can be described by a Sierpinski carpet. This model is conceptually similar to a classical
capillary tube model where the granular porous media is regarded as being equivalent to a
bundle of parallel capillary tubes in the flow direction with variable cross sectional areas
(Bear 1988). Figure 1 shows an example of two levels of recursion of the fracture pattern
obtained with the algorithm described in (Guarracino 2006).

The number / of squares of size x needed to cover the area occupied by fractures of
aperture X greater than or equal to x can be expressed as (Mandelbrot 1983):

a\? a\D
=)
X X
where D is the fractal dimension of the Sierpinski carpet.

For an arbitrary value of /, the cumulative area of fractures whose apertures (X) are greater
than or equal to x is given by

AX > x) = x2l, 2

where x? represents the area of an elemental square. Then from Egs. 1 and 2, we can obtain
the following expression for the cumulative area in terms of the parameters of the Sierpinski
carpet:

AX > x) = a’(1 —aP72x* D). (3)

. - N - Ly 3 2 1 |
Fig. 1 Two levels of recursion of a Sierpinski carpet with fractal dimension D = 1.84. The fracture pattern

is perpendicular to the flow direction
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The area of the carpet covered by fractures whose apertures are within the infinitesimal range
x and x+dx is obtained by differentiating Eq. 3 with respect to x:

—dA(x) = (2 — D)aPx'"Pdx. )

The negative sign in Eq. 4 implies that the area covered by fractures decreases with the
increase of the aperture.

It is important to remark that the Sierpinski carpet represents a geometric pattern which
is self-similar at all scales smaller than the initial size of the carpet. The recursion algorithm,
if carried to infinity, yields a fracture pattern which is everywhere covered by fractures.
However, the fractal behavior typically holds only in a finite range between upper and lower
cutoff scales (Acuna and Yortsos 1995). In order to represent a real fractured medium using
the Sierpinski carpet, we consider a lower cut-off value xpi, and an upper cut-off value xpyax
for fracture apertures. The upper and lower cut-offs are defined by the largest and small-
est apertures observed in the REV, respectively. The lower cut-off is difficult to determine
and is usually decided from practical considerations, like the minimum scale of observable
resolution (Acuna and Yortsos 1995; Berkowitz 2002).

In the analysis of the fractal dimension of Sierpinski carpet presented in Guarracino (2006)
values of D near 2 correspond to lightly fracured media (low density and small apertures)
and values near 1 to highly fractured media (high density and large apertures). However, the
fractal dimension is not sufficient to describe uniquely the interstitial geometry of a porous
medium (Pendleton et al. 2005). In this study, the geometry of a fractured medium is uniquely
determined by the fractal dimension of the Sierpinski carpet, the maximum and minimum
apertures, and the density of the fractures at the first level of recursion.

3 Relative Permeabilities of a Fractured Rock

In this section, we derive closed-form analytical expressions for air and water relative perme-
abilities of a fractured rock. The derivation is based on the following general assumptions:
(a) fractures are parallel to the flow direction; (b) the cross section of the fractured rock is
described by the Sierpinski carpet; (c) Darcy’s law is applicable to immiscible two-phase
flow; (d) water flow is not coupled with air flow; and (e) the viscosities of the water and air
are independent of each other.

The air and water phases contained in the REV are assumed to be subjected to constant
effective pressures p, and py,, respectively. Using the classical capillary theory, it is possible
to define an effective capillary pressure p from the following equation (Bear 1988):

20 cos(p)

Xef

P =Pa— Pw= 5)
where o is the surface tension, § the contact angle between liquid and solid phases, and xef
an effective fracture aperture. Note that Eq. 5 is only valid under capillary equilibrium. Then,
for a given value of p the effective aperture x.f defines a fracture for which liquid and gas
phases are in equilibrium, for any other value of x both phases are flowing.

The two-phase flow problem in the fractured porous media can be separated in two
single-phase flow problems. We assume that fractures are exclusively occupied by water
or air according to the criteria proposed by Pruess and Tsang (1990). The phase occupancy
of a fracture with aperture x is governed by the local capillary pressure p. = 20 cos(B)/x.
When both water and air phases have access to the fracture, the phase “allowability” will
be as follows. For the effective capillary pressure p, the fracture of aperture x will contain
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water if p. > p or air if p. < p. This assumption ignores the film flow that takes place on
opposite faces of some partially filled fractures. Film flow can be an important mechanism
for fast flow in unsaturated fractured rocks and has been included in constitutive models by
Or and Tuller (2003). For cases where film flow is significant, the proposed model may not
correctly predict the air and water permeabilities. The model also ignores possible effects
from water phase which may be held by small-scale roughness or by adsorptive forces in the
walls of the fracture (Pruess and Tsang 1990).

From Eq. 5, it follows that all fractures of aperture x < xer are fully saturated with water
while fractures of aperture x > x.r are only occupied by air. The range of fracture apertures in
the REV is xpmin < x < xmax, then Eq. 5 is valid for the range of effective capillary pressures
Pmin < P = Pmax With pmin = 20 c0s(8)/Xmax and pmax = 20 c0s(B)/xmin. Note that for
P < Pmin, all the fractures are fully saturated with water and air flow is zero (single-phase
flow in the REV). Contrarily, all fractures are saturated with air when p > pmax and water
flow is zero.

At the REV scale py, and p, are assumed to be constant, then effective pressure gradients
are zero and each phase is only driven by gravity. Under this hypothesis, the flow direction is
vertical and the flow rate in a single fracture can be obtained by solving the Navier—Stokes’
equation (Bear 1988):

2 pagxz.

1210 124
where o = a, w denotes air and water phases, respectively, z is the vertical coordinate, g is
the gravity, ;y and py are the dynamic viscosity and the density of the a-phase, respectively.

The total volumetric water flow Q,, through a horizontal cross section of the REV can be
obtained by integrating the individual flow rates g, over the area of fractures occupied by
water (Xmin < X < Xef):

9
qu(x) = ((Tz(pa + Pag2) = a=a,w (6)

Qw(xef)=/qw(X)dA(X) @)

Substituting Egs. 4 and 6 into Eq.7, and integrating yields the expression for the total volu-
metric water flow:

pwga® D —2 (x470 _ x47D)

Ow(xer) = 21 m of min ®)
Equation 8 can be expressed in terms of the effective capillary pressure using Eq. 5:
D
pwga” D —2 _ _ _
Ow(p) = 5 =5 Qo eosB)' P (5P = pt). ©

On the basis of Buckingham—Darcy’s equation (Buckingham 1907), the total volumetric
water flow at the REV scale can be expressed as follows

kw(p)a* 9 kw(p)pwga®

—(pw + pwg2) = ————, (10)
0z Mw

Ow(p) =

w

where ky, is the water permeability, and a? represents the area of the horizontal cross section

of the REV. It is worth to mention that Eq. 10 is valid if the REV contains a dense network

of highly interconnected fractures. If the REV can only be defined at a scale similar to the

problem of interest, as is the case of poorly connected networks then Eq. 10 is inappropriate
(Berkowitz 2002).
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Combining Eqgs. 9 and 10, we obtain the following expression for the water permeability:

aD72

D -2
5 Qocos(B)* P (pP = pRiY). an

The expression for the air permeability as a function of the effective capillary pressure can
be derived following the same reasoning over the range of fracture apertures occupied by air
(Xef <X < Xmax):

kw(p) =

D-2

D -2
% 540 cos(B))* " (Pgi;4 - pD74) ' (42

The fully saturated permeability or absolute permeability £ can be obtained both from
Eq. 11 when p = ppin (fully water saturated REV) or from Eq. 12 when p = ppax (fully
air saturated REV):

ka(p) =

aP=2 D-2 4-p ( D—4 D4

o oy QocosB)* P (nBat - pi). (13)
The relative permeabilities of water and air, k; w(p) and k; 4 (p), are defined as the quotient
between Eqgs. 11 and 13 and Eqs. 12 and 13, respectively:

k =

ky(p) _ pP=* — pbr4
kew(p) = == = 550y (14)
Pmin — Pmax
ka(p) _ phit—pP*
kra(p) = == = 53— 57 (15)
min Pmax

The above equations are valid for ppin < p < pmax. For values of p < ppm;y all the fractures
are fully saturated with water and k; v (p) = 1, kr a(p) = 0. On the other hand, all fractures
are fully saturated with air for p > pmax and kr w(p) = 0, kra(p) = 1.

The relative permeabilities are usually expressed in terms of water saturation Sy,. The
saturation curve for the proposed model of fractured rock was derived in (Guarracino 2006)
and is given by:

pP2— pb2 (o cos(B)/p)* P — xpi P (16)

SwP)= 55— p5 = 2D _ _2-D
min ~ Fmax Xmax  — Xpip

Then by substituting Eq. 16 into Eqs. 14 and 15, we can obtain expressions of k; w(Sy) and
kr,a(Sw):

D
2-D 2-D 2-D|2-D 4-D
[(xmax ~ *min ) Sw+ “*min ] ~ *min

kr,W(SW) = — — ’ (17)
xﬁnaXD - x?ninD
2 2 %
- —_ -D _p12=
ke (Su) xr[;axD - I:(xr%axD ~ Xmin ) Sw +xmin ] (18)
r,alPw) = — — .
xﬁme _xfninD

Equations 17 and 18 are closed form analytical functions of water saturation Sy, that depend
on the fractal dimension and the minimum and maximum fracture apertures. Both & v and
ky,a are defined over the full range of water saturation 0 < Sy, < 1. However in real porous
media, the water phase becomes disconnected at very low values of Sy, and no water flow
can be observed through the REV. In contrast, when S,, approximates to 1, the air phase
becomes disconnected and no air flow can be detected (Kaviany 1995). These facts limit the
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“effective” water saturation to a narrower range, which can be defined as 0 < Sy ¢ < Sw < 1
for water flow and 0 < Sy, < Sy < 1 for air flow, where Sy . and S, . are the emergence
points for water and air flows, respectively (Stonestrom and Rubin 1989; Dury et al. 1999).
The emergence point of water flow Sy, . must be addressed as the value of water saturation
above which water phase becomes connected and water flow takes place. Analogously, the
emergence point of air flow S, ¢ must be addressed as the value of water saturation below
which air phase becomes connected and air flow is observed.

In order to obtain a more realistic model, we introduce the emergence points and
rescale the water saturation Sy, of Eqs. 17 and 18 in the following fashion (Fischer et al. 1998;
Dury et al. 1999):

0 0 <S8y =< Swe
4-D
krw(Sw) = [(x%;,?—xrzn;‘D>sf”;¢+x27D] =D _y4-D (19)
W.e min min
D 4D Swe < Sw=1
Xmax” —Xpmin
%70
4—-D 2—-D 2—-DY\ S 2—-D|2—
Xmax _[(xmax “Xmin )ﬁ+xmin ] 0<S., <S
kya(Sw) = AD_ 4D = Ow = Vae (20)
max ‘min
0 Sae < Sw =1

Note that now k. varies from O to 1 for the range of water saturation Sy < Sw < 1, while
ky,a varies from 1 to 0 for 0 < Sy < Sye.

Figures 2 and 3 show the influence of the fractal dimension D and range of fracture
apertures (Xmin/Xmax) on relative water permeability &; . In both the figures, the emergence
point for water flow is assumed to be Sy . = 0.1. Figure 2 shows that the smaller the fractal
dimension, the greater the values of k; v, for the whole range of water saturations. On the other
hand, the values of k; ,, increase with the decrease of range of fracture apertures (Fig. 3). The
influence of xmin/Xmax 18 significant for small values of water saturation where k; \, can vary
several orders of magnitude. Similar behavior is observed for the dependence of relative air
permeability k; , with D and xmin/Xmax-

The water and air permeabilities given by Egs.19 and 20, and the water saturation
proposed in (Guarracino 2006) provide a constitutive model specifically designed for describ-

Fig. 2 Relative water 1
permeability curves for three -
different values of fractal -
dimension and 2 0.1
Xmin/Xmax = 1072 3 B
B L
e 001
s L
o L
§ 0.001 =
=t L
s L
2 0.0001 |-
g L
(0] =
T 1e-05
1e-06 L1 ' I
0 0.2 0.4 0.6 0.8 1

Effective water saturation
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Fig. 3 Relative water 1
permeability curves for three -
different ranges of fracture 5
aperture and D = 1.5 0.1k
b -
5 -
< 0.01
o L
£
5 L
a 0.001
8 L
(] =
= 0.0001 -
g B /
= [ : / Xmax=10"]
© - Xmin’ *max=_ " o h
CGC) 1e-05 | [ Xemin xmax=10_3 ————— —
R Xmin/ Xmax=10" - ----- ]
1e-06 —L—1 ' ' '

0 0.2 0.4 0.6 0.8 1
Effective water saturation

ing two-phase flow in fractured rocks. This constitutive model is based on the assumption
that the fracture pattern is self-similar and can be described by a Sierpinski carpet. Both k;
and k; , have analytical close-forms with five independent parameters with geometrical and
physical meaning: D, Xmin, Xmax, Sw.e, and Sg .

4 Comparison with Experimental and Numerical Data

In the present section, we test the ability of the proposed analytical model to reproduce
available measured and simulated data from unsaturated fractured rocks. The relative water
permeability given by Eq. 19 is tested with numerical experiments designed by Liu and
Bodvarsson (2001), while the relative air permeability given by Eq. 20 is tested with experi-
mental data from a fractured crystalline rock at Grimsel Test Site (Gimmi et al. 1997; Fischer
et al. 1998).

Direct measurements of water permeability for fractured rocks are particularly difficult
to obtain and experimental data for model validation are virtually nonexistent (Liu and Bod-
varsson 2001; Tuller and Or 2002). For this reason, the proposed analytical model (Eq. 19)
is tested with numerical relative water permeability relations obtained by Liu and Bodvars-
son (2001) using a computational procedure which is similar to the laboratory technique of
measurement. In their work, the fracture network at REV scale is considered to be a fracture
continuum where each fracture is conceptualized as a two-dimensional porous media. For a
number of different uniform effective pressures at the REV boundaries, the corresponding
values of saturation and relative water permeability are obtained by numerical approxima-
tion of Richards’ equation. Using this computational procedure Liu and Bodvarsson obtained
numerical relations of k;  (Sy) for two different fractured networks.

The parameters of the proposed model are estimated by fitting the permeability curve
(Eq. 19) to the simulated values by Liu and Bodvarsson using an exhaustive search method
(Sen and Stoffa 1995). The estimated values of D, Xmin, Xmax, Sw.e and S, ¢ for the fracture
networks 1 and 2 presented in the paper by Liu and Bodvarsson (2001) are listed in Table 1.
Figures 4 and 5 show the comparison, on a logarithmic scale, between the simulated values of

@ Springer



A Fractal Model for Predicting Water and Air Permeabilities

787

Table 1 Fitted parameters of the
proposed model for the tests
designed by Liu and Bodvarsson
(2001) and for the experimental
data at Grimsel Test Site

Fig. 4 Comparison between the
simulated values of kr w(Sw)
obtained by Liu and Bodvarsson
(2001) for fracture network 1 and
the predicted values using Eq. 19

Fig. 5 Comparison between the
simulated values of ky w (Sw)
obtained by Liu and Bodvarsson
(2001) for fracture network 2 and
the predicted values using Eq. 19

Fracture network 1

Fracture network 2 Grimsel Test Site

D 1.468 1.422 1.020
Xmin (cm) 0.1836 x 1074 0.1249 x 10~* 0.4701 x 1073
Xmax (cm) 0.1452 0.1419 0.1556 x 1072
Sw.e 0.46 x 107! 0.82 x 1071 -
Sa.e - — 0.76
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01 +,//+
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© 1607k |
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1e-08 Simulated +
- proposed model ————-
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Effective water saturation
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2 N o7 i
S 001 A+ =
S C y ]
0.001 |~ 4 —
I ]
(o) - Y 4
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o) I ]
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S F ]
_2 1e-06 = A_ =
«© L i
o 1e-07f | -
o - 1
1e-08 - -’- Simulated + 3
- proposed model ————- 7
1e-09 E——1 L L
0 0.2 0.4 0.6 0.8 1

Effective water saturation

ke .w(Sw) and the predicted values using Eq. 19 for fracture networks 1 and 2. In both cases, an
excellent agreement between the fitted curve and simulated values is obtained for the whole
range of water saturations and over eight orders of magnitude of water permeability.
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Fig. 6 Comparison between
measured data of kr 5 (Sw) at
Grimsel Test Site (GTS) and the

predicted values using Eq. 20 >
E
o 4
[}
£ 4
[0
aQ
‘S 0.1 :— _:
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=2 - .
= [ 4
© i + 1
o - + e
proposed model ——— + T
GTS data + +
0.01 ] ] ] ]
0 0.2 0.4 0.6 0.8 1

Effective water saturation

The dataset for a fractured crystalline rock at Grimsel Test Site (Switzerland) reported by
researchers of the Swiss Federal Institute of Technology is used to test the proposed model
for relative air permeability (Eq. 20). The geological situation of the site is described in detail
in Bossart and Mazurek (1991). The rock samples consist of fault gouge with cohesionless
material created by brittle deformation (mylonite). For eight rock samples, the relative air per-
meability as a function of water saturation was measured using a special apparatus designed
by Fischer et al. (1998). Gas permeability was determined for dry samples and at various
water saturations. Starting with the fully saturated samples, different water saturations were
established by evaporation of a certain amount of water.

The values of the different model parameters leading to the best fit of Eq. 20 to the mea-
sured data are listed in Table 1. Note that the value of the fractal dimension is very close to
1 indicating the high degree of fracturing of rock samples. Figure 6 shows the comparison
between predicted and measured values of k; 4 (Syw). The measurements show some scatter,
but the proposed model can predict fairly well the air permeability values in the whole range
of water saturation.

5 Conclusions

A fractal model for predicting relative air and water permeabilities of fractured rocks has
been presented. The geometric pattern of fracture network is described by the Sierpinski
carpet. The model has closed-form analytical expressions that are easy to evaluate with five
independent parameters: the fractal dimension, the minimum and maximum fracture aper-
tures and the emergence points for water and air flows. The derived relative water permeability
curve was tested with the simulated values obtained by Liu and Bodvarsson (2001), while the
relative air permeability curve was tested with experimental data from a fractured crystalline
rock at Grimsel Test Site. In both the cases, excellent agreements were found for the whole
range of water saturation and over several orders of magnitude of air and water permeabilities.
Finally, it is important to remark that the combination of the proposed permeability model
and the water saturation curve derived by Guarracino (2006) provides a constitutive model
specifically designed for air and water flows in unsaturated fractured rocks.
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