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Abstract
Trypanosomatid-caused diseases are among the neglected infectious diseases with the highest disease burden, affecting about 
27 million people worldwide and, in particular, socio-economically vulnerable populations. Trypanothione synthetase (TryS) 
is considered one of the most attractive drug targets within the thiol-polyamine metabolism of typanosomatids, being unique, 
essential and druggable. Here, we have compiled a dataset of 401 T. brucei TryS inhibitors that includes compounds with 
inhibitory data reported in the literature, but also in-house acquired data. QSAR classifiers were derived and validated from 
such dataset, using publicly available and open-source software, thus assuring the portability of the obtained models. The 
performance and robustness of the resulting models were substantially improved through ensemble learning. The performance 
of the individual models and the model ensembles was further assessed through retrospective virtual screening campaigns. 
At last, as an application example, the chosen model-ensemble has been applied in a prospective virtual screening campaign 
on DrugBank 5.1.6 compound library. All the in-house scripts used in this study are available on request, whereas the dataset 
has been included as supplementary material.
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Introduction

Protozoa from the trypanosomatid lineage (which include 
leishmaniasis, Chagas disease and African sleeping sick-
ness) affect more than 27 million people worldwide and 
are the etiologic agents of some of the neglected diseases 
with the highest disease burden [1]. Their treatments are 
exclusively dependent on chemotherapy since no vaccines 
are available. They primarily affect populations living in 
conditions of socio-economic vulnerability and limited 
access to healthcare facilities. For example, only 10% of 
the 6–7 million people suffering from Chagas disease are 
diagnosed, and less than 1% have access to treatment [2]. 
The available treatment relies on only two drugs, benzni-
dazole and nifurtimox, which were developed more than 
50 years ago. Both drugs are primarily used for treating 
acute cases, as their efficacy in the chronic stage of the dis-
ease is limited, or at least controversial [3–5]. Altogether, 
this highlights the historical lack of investment in novel 
therapeutic solutions to fight neglected conditions.

The thiol-polyamine metabolism of trypanosomatids 
has long been regarded as a suitable pharmacological 
target because of its indispensable role in redox homeo-
stasis and the uniqueness of several of its molecular com-
ponents [6]. In these organisms, the low-molecular mass 
thiol-polyamine conjugate trypanothione (bisglutathio-
nyl spermidine) [7] takes over most redox functions car-
ried out by glutathione in other living organisms [8, 9] 

(Fig. 1). Trypanothione and the enzyme in charge of its 
synthesis, namely trypanothione synthetase (TryS), are 
absent in mammals, which turns the latter an attractive 
drug target for the development of selective therapeutic 
agents against trypanosomatid-caused conditions. In this 
regard, the essentiality and druggability of TryS have been 
genetically and chemically verified in the major patho-
genic species [10–12]. Moreover, metabolic control analy-
sis positions TryS among the pathway components of the 
trypanothione-dependent redox system most vulnerable to 
therapeutic intervention [13]. This study predicted that a 
reduction of 50% in the trypanothione synthesis flux can 
be achieved by partial (63%) inhibition of TryS.

TryS inhibitors have been reported using experimental 
approaches that included the development of substrate-like 
and mechanistic-based inhibitors [14–16] as well as small to 
large random or scaffold-focused screening campaigns [17, 
18]. So far, there are no reports on the identification of TryS 
ligands/inhibitors using computational or structure-based 
strategies. Both approaches are commonly applied in the 
field of medicinal chemistry and represent powerful tools 
that may speed-up and increase the chances of identifying 
novel molecular entities with drug-like properties and TryS 
inhibitory activity. A consistent in silico screening strategy 
demands the development of robust analytical tools to mine 
chemical libraries and predict with high confidence the 
inhibitory potential of a molecule against a specific molecu-
lar target.

Fig. 1  Schematic representation of the low-molecular mass thiol-
dependent redox systems of trypanosomatids and mammals. a The 
low-molecular mass thiol-dependent redox system of trypanosoma-
tids depends on bisglutathionylspermidine (trypanothione), which 
is stepwise synthesized by trypanothione synthetase (TryS) at the 
expense of ATP and the substrates glutathione (GSH), spermidine 
(Sp) and monoglutathionylspermidine (Gsp). The NADPH + -depend-
ent enzyme trypanothione reductase (TR) recycles reduced trypan-
othione (T(SH)2) from its oxidized/disulfide form (TS2). The oxi-
doreductase tryparedoxin (TXN) and, to a minor extent, glutaredoxin 
(Grx) receive reducing equivalents from T(SH)2. Reduced TXN 

and Grx catalyze the reduction of several protein and non-protein 
homo- or hetero-disulfides  (XS2 and XS-SX´) that fulfil different 
and indispensable functions in the cells. b Mammals lacks TryS and, 
hence, trypanothione, and their low-molecular mass thiol-dependent 
redox system relies on the use of the tripeptide glutathione. Glu-
tathione is maintained in its reduced form (GSH) by the action of the 
NADPH + -dependent enzyme glutathione reductase (GR), which is 
absent in trypanosomatids. Grx uses GSH as redox cofactor to cata-
lyze the oxidoreduction of different protein targets engaged in the 
regulation of important cellular processes
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Thus, as a first step toward the identification of new TryS 
inhibitors, we report the development and validation of TryS 
ligand-based models. The individual models were subse-
quently combined through ensemble learning to improve 
their robustness and predictive ability. Noteworthy, the mod-
els were inferred from a dataset combining compounds with 
activity data retrieved from the literature and from results 
of TryS assays measured in house. A prospective screening 
campaign on the DrugBank database was performed apply-
ing the model ensemble that showed the best performance.

Materials and methods

Dataset collection

A dataset of 401 compounds previously tested against Trypa-
nosma brucei TryS was collected: One hundred and forty-
one of such compounds were retrieved from the literature 
[10, 12, 14–22], whereas the data on the remaining 260 com-
pounds were acquired in house, as described earlier [23]. 
Standardized molecular representations of the dataset com-
pounds were initially obtained using Instant Jchem’s Stand-
ardizer (v 16.10.10.0) (ChemAxon), applying the following 
commands: Clean 2D, Aromatize, Strip salts, Clear stereo, 
Remove absolute stereo, Remove solvents, and Add explicit 
hydrogens. The compounds were flagged as either ACTIVE 

or INACTIVE based on their experimentally observed inhib-
itory data. Those that inhibited TryS by more than 50% at 
concentrations ≤ 30 µM were assigned to the ACTIVE class; 
if not, they were assigned to the INACTIVE class. Consid-
ering such criterion, the dataset comprised 111 active com-
pounds and 290 inactive compounds. The diversity of the 
entire dataset and within each class is graphically displayed 
in the heatmap in Fig. 2. The heatmap exhibits, for each pos-
sible pair of compounds, the Tanimoto distances computed 
using ECFP_4 molecular fingerprints. The heatmap was 
built using Gitools v. 2.3.1 [24] and Tanimoto distances were 
calculated using ScreenMD—Molecular Descriptor Screen-
ing v. 17.3.27.0 (ChemAxon). The dataset has been included 
as Supplementary Material (Data Sheet 1).

Molecular descriptors calculation

A set containing 66,128 conformation-independent descrip-
tors of the TryS datasets was calculated using various freely 
available and open-source software packages, as described 
below, with compounds provided in MDL sdf format.

The Pharmaceutical Data Exploration Laboratory 
(PaDEL)-Descriptor (v. 2.20) [25] was utilized to compute 
the values of 17,536 0D-2D molecular descriptors and fin-
gerprint types, using the options Standardize nitro groups 
and Detect aromaticity.  Mold2 [26] calculates 777 1D-2D 

Fig. 2  Dissimilarity heatmap 
for the dataset compounds. 
Red areas indicate the pair of 
compounds under comparison 
exhibits high dissimilarity, 
whereas white areas indicate the 
opposite
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molecular descriptors. The ISIDA/Fragmentor [27] counts 
atom types and linear structural fragments ranging from 2- to 
6-atom lengths. In the present study, 2,487 atom and fragment 
types were computed. Finally, Molecular Descriptors from 
Local Vertex Invariants (MD-LOVIs) (v. 1.0) were applied 
to compute molecular descriptors from local vertex invariants 
(LOVIs) [28]. The selected options were: total (global) and 
local (fragment-type) indexes, with atoms labels: chemical 
properties‒atomic number (Z), polarizability (P), van der 
Waals volume (VW), Pauling’s electronegativity (E), AlogP 
(L), atomic mass (A), covalent radius (R), total polar surface 
area (T), charge (C), molar refraction (M),; vertex degree (N), 
bond vertex degree (BD), intrinsic state (I), eccentric connec-
tivity (Y), electrotopological state (S), Kupchik’s vertex degree 
(KU), Li’s vertex degree (LI), Hu-Xu’s vertex degree (HX), 
Ivanciuc vertex degree (IN), Alikhanidi vertex degree (Alk), 
and distance counts (DC). No standardized invariants were 
used. The Aggregation operators chosen were: norms (met-
rics)—Euclidean distance (N2); mean first moment — arith-
metic mean (M); statistics—standard deviation (DE); classical 
algorithms — autocorrelation (AC(i)), gravitational (GI(i)), 
Kier-Hall connectivity (CN(i)), total sum k lags (TS(i)), total 
information content (TI), mean information content (MI(i)), 
standardized information content (SI), electrotopological state 
(ES), Ivanciuc Balaban type (IB). For the local indices, the 
following local types were kept: heteroatoms (HT), C-atoms 
(CB), halogens (HL), H-atoms acceptor (HA), H-atoms donor 
(HD), methyl group (MD), unsaturated bonds (IS), aliphatic 
atoms (LA), aromatic atoms (RA), group_lagk (GL) (topologi-
cal distances 1–8, with all the above-mentioned group types 
HT-RA, cut-off 1). These options led to 48,400 molecular 
descriptors of the LOVIs type.

Molecular descriptors pruning

The 66,128 molecular descriptors computed were analyzed to 
eliminate collinear descriptors with redundant information. 
Thus, highly correlated descriptor pairs were identified 
(descriptors pairs with maximum squared correlation coeffi-
cient R2max

ij
= 1 ), and only the most interpretable variable from 

each pair was maintained for further analysis. Moreover, 
descriptors with scarce information content (those with con-
stant and near-constant values) and descriptors with missing 
values were also eliminated. This procedure led to a final 
descriptor pool comprising 44,209 linearly independent 
descriptors.

Dataset partition

The molecular set was partitioned into training, validation, 
and test sets by means of the Balanced Subsets Method 
(BSM) [29]. The training set (train) includes compounds that 
are used for model calibration purposes, the validation set 
(val) comprises instances used for internal model validation, 
while the test set (test) comprises compounds completely 
independent from the calibration procedure, which help to 
assess the true predictive power of the obtained QSAR.

The BSM approach is a sampling procedure that was 
developed by our group to ensure that balanced, representa-
tive subsets are derived from the dataset, in such a way that 
training, validation and test instances are not chosen ran-
domly but provide similar structure–activity relationships 
within each subset. It is based on k-means cluster analysis 
(k-MCA) [30]: in essence, k-MCA creates k groups of com-
pounds in such manner that the compounds within a given 
cluster are very similar in terms of a distance metric (here, 
Euclidean distance), whereas compounds in different clus-
ters are very dissimilar.

Variable subset selection

The Replacement Method (RM) [31] has been devised in 
our group as an efficient variable selection approach to build 
multiple linear regression models from training samples, by 
searching for a subset comprising d descriptors through a 
large pool of D descriptors (d being much lower than D). In 
the current study, the RM technique has been modified in 
order to be applicable to classification problems. Therefore, 
the highest value of the non-error rate (NER) or average 
sensitivity [32] has been searched in the training set. The 
quality of the models built by this method is close to that of 
the models obtained through a full search of all the possible 
combinations of d independent variables from a pool of D 
variables.

The fundamental principle underlying the RM is that one 
can approach the maximum of NERtrain by sensibly consider-
ing the relative errors of the coefficients of the least-squares 
model provided by the subset of d descriptors. This is to 
say, the global maximum of NERtrain(d) will be pursued in a 
subspace of D!∕[d!(D − d)!] possible classifiers.

All the Octave [33] programmed algorithms used for this 
study have been developed in-house and are available to the 
reader upon request.
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Retrospective screening campaigns

By conducting thorough simulated ranking experiments, 
Truchon and Bayly [34] have formerly proven that the area 
under the receiver operating characteristic curve (AUC 
ROC), a commonly used enrichment metric to evaluate 
and compare the performance of virtual screening meth-
ods, depends on the proportion of active compounds in the 
screened library, and that the standard deviation of this 
metric tends to a constant value when a small proportion 
of active compounds (or yield of active compounds, Ya) 
is present in the screened library (Ya below 0.05 seems to 
provide robust results). What is more, a small Ya avoids 
or at least limits the saturation effect. Accordingly, a large 
number of decoys (about 1,000 or above) and a small Ya 
contribute to a controlled statistical behavior.

Therefore, a retrospective virtual screening experiment 
was implemented for further validation of the individual 
classifiers (which were built as described in the preceding 
subsections). A library for such retrospective screening 
campaign, which will be termed DUDE-1, was obtained 
by seeding 18 known active compounds among 913 decoys 
retrieved from the Directory of Useful Decoys Enhanced 
[35]), a broadly used benchmarking application used to 
obtain putative inactive compounds. Besides assessing 
the performance of the individual classifiers, DUDE-1 
was used to train classifier ensembles (see next subsec-
tion). A second retrospective screening library (DUDE-2), 
obtained in a similar manner than DUDE-1 and compris-
ing 18 active compounds and 872 decoys was utilized to 
independently estimate the performance of the best model 
ensemble.

Ensemble learning

Generally speaking, it is recognized that classifier ensem-
bles (meta-classifiers) tend to enhance the predictivity and 
robustness in comparison with individual (single model) 
classifiers [36, 37] and it may be useful to mitigate the 
impact of noisy data [38].

In the present study, the best individual classifiers were 
hence systematically combined using the AUC ROC in the 
first retrospective screen (DUDE-1) as criterion of perfor-
mance. To choose the optimal number of individual clas-
sifiers to be included in the ensemble, the performance of 
systematic combinations of the 2 to 10 best-performing 
individual classifiers was assessed (the two best-performing 
classifiers were assembled, then the three best-performing 

classifiers, and so on up to a total of 10 classifiers). Four 
schemes have been used to get a combined score: Aver-
age Score (AVE); Average Ranking (RANK), MIN opera-
tor (which considers the minimum score across the scores 
of the individual classifiers included in an ensemble) and 
Average Voting (VOT). Voting was computed as formerly 
described by Zhang and Muegge [39]. AUC ROCs were 
computed with the pROC package [40] and Delong’s method 
was applied for the statistical comparison of the AUC ROC 
using the open-source application Rocker [41]. BEDROC 
(alpha = 20) and the enrichment factor in the top-ranked 1% 
of the libraries (EF1%) were also computed.

Use of positive predictive value surfaces 
to guide the choice of a score cut‑off value

A practical concern in any virtual screening campaign 
relates to estimating the probability that a predicted in silico 
hit will corroborate its activity when subject to experimental 
testing (such probability is termed Positive Predictive Value, 
PPV, also known as precision). Still, prospective estimation 
of such probability is not feasible owing to its dependency 
on the yield of active compounds of the screened library, 
which is a priori unknown in a prospective (real) virtual 
screening experiment:

where Se symbolizes the sensitivity associated to a given score 
cut-off value, and Sp denotes the specificity. As in previous 
reports (see, for instance, [42] and [43]), we applied Eq. (1) 
to build PPV surfaces. In order to decide on an optimal score 
cut-off value to later select hits in prospective virtual screen-
ing experiments, 3D plots displaying the interplay between the 
Se/Sp ratio, Ya and PPV were generated for the best individual 
classifier and for every classifier ensemble. Using the library 
built for the retrospective screening experiment, Se and Sp 
were calculated in all the range of possible score cut-off val-
ues. Because controlled statistical behavior has been observed 
for libraries of about 1,000 compounds or more and Ya below 
0.05, we may reasonably assume that the ROC curve and its 
derived metrics will be similar when applying the classifi-
ers or meta-classifiers to screen other chemical libraries with 
similar features. Bearing in mind that in prospective virtual 
screening experiments Ya is ignored beforehand but always 
low, the hypothetical yield of active compounds has been var-
ied between 0.1% and 1%. PPV graphs were obtained via the 
R package plotly. PPV surfaces were visually inspected to 
select a score cut-off associated to the required PPV range.

(1)PPV =
Se × Ya

Se Ya + (1 − Sp) (1 − Ya)
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Prospective virtual screening

The best model ensemble was applied to screen 10,759 
compounds from DrugBank 5.1.6, an online database con-
taining extensive information about approved, withdrawn, 
experimental and investigational small drugs and biologics, 
as well as nutraceuticals and illicit drugs [44]. DrugBank is 
commonly utilized for computer-guided drug repurposing 
campaigns. The screened compounds were pre-processed 
using Standardizer 16.10.10.0 (ChemAxon). The following 
actions were applied to obtain standardized representations 
of the molecular structure for the subsequent in silico screen: 
(1) Strip salts; (2) Remove Solvents; (3) Clear Stereo; (4) 
Remove Absolute Stereo; (5) Aromatize; (6) Neutralize; (7) 
Add Explicit Hydrogens; and (8) Clean 2D.

Whether each screened compound belonged or not to 
the applicability domain of the models included in the best 
ensemble was estimated through the extent of extrapolation 
approach [45], with the warning leverage fixed at 2 k/n, k 
being the number of descriptors in the model and n being 
the number of training set examples.

Results and discussion

The BSM procedure led to a dataset partition with 74:73:254 
representative compounds in the training, validation, and 
test sets, respectively. The training and validation sets were 
sampled in such a way that they contain the same number 
of active and inactive compounds. Thus, active compounds 
were in a 37:37:37 proportion, while inactive compounds 
are in a 37:36:217 proportion.

Equation (2) presents the best-performing individual clas-
sifier (AUC ROC = 0.954, standard deviation = 0.0099):

(2)Class = − 1.63 + 0.49 * Frag43 + 1.13 * Frag295 + 0.07 * ATSC5p + 2.05 *

1CN − NE(DE) − E −WH − HT + 2.05 * 2TS − NE(DE) − R −WH − GL_1_2_3_4_5_6_7_8

Table 1 includes the classification results for the best 
models established in the present QSAR study through the 
RM technique; here, different classification measures are 
reported: the non-error rate (NER), accuracy (Acc) and the 
Matthews correlation coefficient (MCC).

The best model is highlighted in Table 1 (M7), which 
had the best performance in the validation set for the 
NER parameter. This QSAR classification model involves 
five conformation-independent molecular descriptors 
selected out of 44,209 variables: two fragment descrip-
tors: Frag43, the count of C–N–C*C*C–Cl fragments 
(where * denotes aromatic), and Frag295, the count of 
C*N*N–C–C–N fragments; a 2D-autocorrelation descrip-
tor: ATSC5p, the centered Broto-Moreau autocorrela-
tion-lag 5/weighted by polarizabilities; and two alge-
braic MD-LOVIs indices: 1CN-NE(DE)-E-WH-HT and 
2TS-NE(DE)-R-WH-GL_1_2_3_4_5_6_7_8.

Both Frag43 and Frag295 descriptors are intuitive for 
their structural interpretation.

The ATSC5p descriptor is an autocorrelation function 
between selected atom pairs of the molecule, with the main 
purpose of capturing the degree of interaction between 
atoms at a given topological distance (lag). The contribu-
tions to this bidimensional autocorrelation are obtained by 
considering at lag 5 the atomic polarizabilities involved.

The two MD-LOVIs local descriptors represent an alter-
native strategy that generalizes the traditional method of 
obtaining a topological descriptor by summation of the local 
vertex invariants. The first one is 1CN-NE(DE)-E-WH-HT, 
which describes heteroatoms, and the second one is 2TS-
NE(DE)-R-WH-GL_1_2_3_4_5_6_7_8, describing group 
lags 1–8. The hydrogen-filled graph is used as molecular 
representation in both cases. The Pauling’s electronegativ-
ity (E) and the covalent radius (R) are used, respectively, as 

Table 1  QSAR classification 
results for the TryS inhibitors 
dataset. The best model appears 
in bold

Model d NERtrain NERval NERtest Acctrain Accval Acctest MCCtrain MCCval MCCtest

M1 2 0.89 0.89 0.87 0.89 0.89 0.86 0.78 0.79 0.60
M2 3 0.91 0.89 0.87 0.91 0.89 0.86 0.81 0.79 0.60
M3 3 0.89 0.89 0.83 0.89 0.89 0.84 0.78 0.79 0.54
M4 4 0.96 0.90 0.86 0.96 0.90 0.82 0.92 0.82 0.56
M5 4 0.97 0.89 0.85 0.97 0.89 0.82 0.95 0.79 0.54
M6 4 0.96 0.89 0.85 0.96 0.89 0.82 0.92 0.79 0.55
M7 5 0.95 0.93 0.90 0.95 0.93 0.89 0.89 0.86 0.66
M8 5 0.95 0.92 0.89 0.95 0.92 0.89 0.89 0.84 0.66
M9 5 0.96 0.90 0.87 0.96 0.90 0.87 0.92 0.81 0.62
M10 6 0.97 0.90 0.82 0.97 0.90 0.84 0.95 0.81 0.53
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atomic weights for characterizing the nature of atoms. For 
the first descriptor, the Kier-Hall connectivity of order 1 
(1CN) operator is first applied on the atomic weights of the 
heteroatoms, while for the second descriptor the total sum 
of 2 lags (2TS) operator is applied. The standard deviation 
is finally used as aggregation operator of these no-standard-
ized LOVIs. Noteworthy, all the regression coefficients are 
above zero (positive terms), indicating that all the features 
described above directly contribute to the inhibitory activity 
against TryS. For instance, the counts of C–N–C*C*C–Cl 
and C*N*N–C–C–N directly correlate with inhibitory activ-
ity, indicating that the presence of aromatic heterocycles 
containing nitrogen atoms (e.g., pyridine or pyrrole rings) 
are favorable to activity. Similarly, inhibitory activity is 
seemingly potentiated by the present of atoms with relatively 
high product of their correspondent atomic polarizability 
at a topological distance of five, as suggested by ATSC5p.

Table 2 shows the AUC ROC of the single best-perform-
ing model and the model ensembles obtained by system-
atically combining 2–10 models using the AVE, RANK, 
MIN and VOT operators (first retrospective virtual screen-
ing, DUDE-1). The standard deviation estimated by boot-
strapping is also included. As expected, the performance 
of the model ensembles is, in all cases, significantly bet-
ter (p < 0.05) than the one of the best individual model. 
This seems to confirm the ability of ensemble learning to 
enhance predictivity. On the other hand, the robustness is 
also apparently improved through ensemble learning, as 
judged from the comparatively lower standard deviations 

of the best-performing ensembles compared with the one of 
the best individual model.

By jointly considering the performance (based on the 
AUC ROC metric), the standard deviation of such met-
ric and the principle of parsimony, we chose the 4-model 
ensembles for further validation (note that these ensembles 
behave practically identically or, in some cases, better than 
the 5-. 6- and 7-model ensembles, but with a smaller num-
ber of combined models). The principle of parsimony or 
Occam’s razor indicates that, given two solutions of similar 
performance, the simplest one should be kept.

After selecting the 4-model ensembles for further analy-
sis, we relied on PPV surface analysis to decide on an opti-
mal score threshold for forthcoming prospective virtual 
screening applications. With the support of PPV surfaces, 
the relationship between the Se/Sp ratio and the PPV or pre-
cision (i.e., the probability that the predicted activity of an 
in silico hit will be verified when subject to experimental 
validation) can be visually (or, eventually, mathematically) 
optimized across a pertinent range of Ya values. Note that, 
from a pragmatical viewpoint, PPV is possibly the most rel-
evant metric when realizing virtual screening experiments, 
as it allows deciding what number of in silico hits should be 
acquired and tested to expect one true, verified experimental 
hit. For such analysis, we have considered that the associa-
tion between the Se/Sp and the score values of the model 
ensembles observed in the first retrospective screen would 
remain approximately unmodified when conducting screens 
on other libraries. This strong assumption is not necessarily 

Table 2  Performance of the best individual classifier and the classifier ensembles in the first retrospective screening experiment (DUDE-1)

The AUC ROC and its correspondent standard deviation (sd) are shown for the best individual model and for each model ensemble. The 4-model 
ensembles (in bold) displayed, in general, the best performance (highest AUC ROC with comparatively low sd). The 2- to 7-model ensembles 
showed excellent performance (AUC ROC above 0.99) and low dispersion (sd < 0.010), no matter which combination scheme was utilized. 
Remarkably, the performance dropped from the combination of 8 models and beyond, with a considerable raise in the standard deviation of the 
metric.

MIN AVE RANK VOT

AUC 
ROC

sd AUC 
ROC

Sd AUC 
ROC

Sd AUC 
ROC

Sd

Best individual 
model

0.954 0.010 0.954 0.010 0.954 0.010 0.954 0.010

E-2 0.993 0.003 0.99 0.003 0.996 0.002 0.996 0.002
E-3 0.990 0.006 0.987 0.006 0.996 0.002 0.996 0.002
E-4 0.994 0.004 0.997 0.002 0.997 0.002 0.997 0.002
E-5 0.994 0.004 0.997 0.002 0.992 0.004 0.993 0.004
E-6 0.993 0.004 0.994 0.003 0.988 0.005 0.987 0.006
E-7 0.995 0.003 0.995 0.003 0.990 0.005 0.986 0.007
E-8 0.971 0.028 0.993 0.003 0.991 0.004 0.986 0.008
E-9 0.971 0.027 0.992 0.003 0.991 0.004 0.987 0.006
E-10 0.962 0.036 0.988 0.004 0.988 0.005 0.986 0.006
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true. Since the AUC ROC values obtained for the retrospec-
tive screen are, however, undeniably high (above 0.99, which 
indicates a nearly ideal performance), while on the other 
hand, the yield of actives (0.02) and size (≈1000 molecules) 
of the library favor a controlled statistical behavior [33], our 
assumption is sensible in the present setting (also note the 
extremely low standard deviations obtained by bootstrap-
ping for the ensemble models). The resulting PPV surfaces 
are shown in Fig. 3. All the combination schemes resulted 
in similar surfaces (similar shape and height) except for 
AVE, which seems to provide smaller PPVs than the other 
operators.

The 4-model ensembles were further validated through 
our second retrospective virtual screening experiment 
(DUDE-2). Table 3 shows the correspondent results, in 
comparison with the best-performing individual model. Note 
that, in good agreement with previous reports [42, 43, 46], 
the rather conservative MIN operator (which assigns as the 
ensemble output the lowest score given by the individual 
models comprised by the ensemble) seems to exhibit the 
best and most robust performance, either in terms of aver-
age performance across the whole ranking (as reflected by 
AUC ROC) or in terms of early recognition (quantified by 
BEDROC and EF1%). The comparisons of the AUC ROCs 
for the best individual model and the 4-model ensembles 
for both the first and second retrospective screen are shown 
in Fig. 4. Table 4 displays the optimal score cut-off value 

selected for the 4-model ensembles for each combination 
scheme, and the associated PPV (Ya = 0.01) obtained from 
the second retrospective screen. It can be observed that the 
PPV associated to the optimal cut-off value for the 4-model 
ensemble obtained with the MIN operator is higher than the 
ones achieved with the other schemes. These theoretic values 
suggest that, if a prospective screening were implemented 
and the yielding of active compounds was 1%, about one 
in three in silico hits would be a true, confirmed hits at the 
experimental validation step.

Table 5 shows the ten top-ranked in silico hits emerg-
ing from the prospective virtual screen of the DrugBank 
database. It can be appreciated that the compounds in the 

Fig. 3  PPV surfaces of the 
4-model ensembles

Table 3  Performance of the best individual classifier and the 4-clas-
sifier ensembles in the second retrospective screening experiment 
(DUDE-2)

AUC ROC Sd EF1% BEDROC 
(alpha = 20.0)

Sd

Best 
individual 
model

0.899 0.028 9.51 0.438 0.0496

MIN-4 0.958 0.020 35.20 0.814 0.0451
AVE-4 0.948 0.025 21.19 0.760 0.0436
RANK-4 0.943 0.030 35.20 0.817 0.0409
VOT-4 0.947 0.028 35.20 0.795 0.0467
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table display several of the features that, according to the 
best individual model (Eq. 2) are favorable for inhibitory 
activity on TryS. For example, heterocyclic rings with one or 
more nitrogen atoms, occurrence of pairs of highly polariz-
able atoms at topological distances of five (e.g., Cl–S, C–S, 
C–Cl), etc. According to the analysis of the PPV surface 
for the 4-model MIN ensemble, these compounds present a 
PPV above 0.35 for a Ya = 0.01, which suggests that upon 
experimental assays at least one third of these in silico hits 
are expected to confirm inhibitory activity against TryS. 
Most of them, except one, display high probability of being 
orally bioavailable through passive diffusion, as they meet 
at least three of the four propositions of Lipinski’s rule of 
five. The hits belong to a diversity of therapeutic classes, 
including antivirals, diuretics, anti-obesity drugs, and others. 
Noteworthy, most of the listed hits display limited freedom-
to-operate, as, with one exception (the off-patent drug azo-
semide), they are experimental or investigational drugs that 

belong to proprietary chemical libraries. Furthermore, not 
all the hits are identically attractive as potential treatments 
against Chagas disease. Azosemide, for example, is a loop 
diuretic which can improve cardiac output and congestive 
symptoms [47], one of the typical cardiac manifestations 
of Chagas disease; this therapeutic effect could add to its 
trypanocidal action, if confirmed. In contrast, rimonabant 
is a poor repurposing prospect, as it was promptly removed 
from the markets where it got approval due to severe mood 
disorders [49].

Conclusions

Linear classifiers to identify TryS inhibitors were derived 
using the Replacement Method and a pool of molecular 
descriptors entirely computed through publicly available 
and open-source software, which maximizes the portability 
of the obtained models (furthermore, all the in-house scripts 
used are available on request). Remarkably, a substantial 
proportion of the dataset used here (65%) corresponds to 
highly standardized in-house acquired data of inhibitory 
activity against T. brucei TryS, which can be regarded as 
low noise data, Whereas the individual models obtained 
showed good performance at the validation and retrospec-
tive screening steps, they were considerably outperformed 
by ensemble learning. The so derived meta-classifiers dis-
played not only improved enrichment metrics, but also a 

Fig. 4  AUC ROCs for the best individual model (BIM) and the 
4-model ensembles obtained though the four combination schemes: 
minimum (MIN), average score (AVE), average raking (RANK) and 

voting (VOT). The curves for the first retrospective screen are shown 
on the left, and the results for the second retrospective screen are 
shown on the right

Table 4  Score cut-off values chosen from visual inspection of the 
PPV surfaces, and associated Se/Sp ratio and PPV (for Ya = 0.01)

Operator Score cut-off Se/Sp PPV

MIN −0.42 0.85 0.35
AVE 0.23 0.85 0.30
RANK  < 121 0.91 0.24
VOT 5.25 0.80 0.22



1370 Molecular Diversity (2021) 25:1361–1373

1 3

Table 5  List of the ten top-
ranked hits from the DrugBank 
database, according to the 
predictions of the best 4-model 
ensemble (only compounds 
belonging to the applicability 
domain of at least three of the 
four models that comprise the 
ensemble were considered). As 
the MIN operator assigns the 
lowest score from the individual 
classifiers that compose the 
ensemble, the remaining three 
models have assigned a higher 
score than the one tabulated. 
The number of propositions in 
the Lipinski rule that are met by 
each hit is indicated

Compound Structure Score Status Lipinski rules

Avagacestat 0.38 Investigational 3/4

SC-236 0.20 Investigational 4/4

N-[4-
(aminosulfonyl)benzyl]

-5-(5-chloro-2,4-
dihydroxyphenyl)-1H-

pyrazole-4-
carboxamide

0.20 Experimental 4/4

Lenacapavir 0.20 Investigational 2/4

Taselisib 0.18 Investigational 4/4

CCX-354 0.18 Investigational 4/4
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more robust behavior according to the standard deviation 
in the enrichment metrics estimated by bootstrapping. The 
score cut-off values of the best-performing model combina-
tions were rationally optimized though inspection of Positive 
Predictive Value surfaces; the optimized score threshold was 
then applied here in the illustrative prospective screening of 
DrugBank, a database commonly used for computer-aided 
drug repurposing implementations. It is worth mentioning 
that out models are only predictive of inhibitory effects on 
TryS and should thus be complemented with other in silico 
filters or in vitro assays related to pharmaceutically relevant 
properties, such as drug bioavailability (e.g., Lipinski rules, 
models to predict P-glycoprotein efflux liability, etc.).

Computer-aided drug discovery represents a key strategy 
for the identification of new active scaffolds in a cost- and 
time-efficient manner, which is particularly relevant when 
seeking for novel therapeutic solutions for neglected condi-
tions, such as trypanosomatid-caused diseases.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11030- 021- 10265-9.
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