
 

Designing Personalized Web Applications
Gustavo Rossi 

LIFIA - Facultad de Informática. UNLP,  
La Plata 

Argentina 
 

gustavo@sol.info.unlp.edu.ar 

Daniel Schwabe 
Dept. of Informatics, PUC-Rio 

Rio de Janeiro 
Brazil 

+55 21 274 4449 

schwabe@inf.puc-rio.br 

Robson Guimarães 
Dept. of Informatics, PUC-Rio 

Rio de Janeiro 
Brazil 

+55 21 274 44 49 

robson@inf.puc-rio.br 

 

Abstract 
The goal of this paper is to argue the need to approach the 
personalization issues in Web applications from the very 
beginning in the application’s development cycle. Since 
personalization is a critical aspect in many popular domains such 
as e-commerce, it important enough that it should be dealt with 
through a design view, rather than only an implementation view 
(which discusses mechanisms, rather than design options). We 
present different scenarios of personalization covering most 
existing applications. Since our design approach is based on the 
Object-Oriented Hypermedia Design Method, we briefly 
introduce it, emphasizing the way in which we build Web 
application models as object-oriented views of conceptual models. 
We show how we specify personalized Web applications by 
refining views according to users’ profiles or preferences; we 
show that an object-oriented approach allows maximizing reuse in 
these specifications. We discuss some implementation aspects and 
compare our work with related approaches, and present some 
concluding remarks. 

1. Introduction 
Building personalized Web applications, i.e. those applications 
that are responsive to the individual needs of each user, is a 
challenging task. It involves a myriad of different technologies 
that range from simple database views to software agents and 
collaborative filtering algorithms. Personalization has become 
hype in areas such as electronic commerce, and we can find 
hundreds of applications that claim to be fully customizable to 
different user profiles or individuals. The number of possible 
personalization variants seems countless. As with other Web 
features, a great variety of technologies and systems have been 
developed and are available in the market [2], but little or no 
attention has been paid to the process of modeling and designing 
personalized Web applications (an interesting exception can be 
found in [3]). 

In this paper, we claim that adopting a design-centered view of 
personalization allows us to better understand the fundamental 
mechanisms we are using. Consequently, we cannot only build the 
specific (personalized) aspects of these applications, but mainly 
reuse those design aspects that are common to most users. 

We show that focusing on which design abstractions are necessary 
to build highly customizable applications allows modeling most 
personalization features with a few simple design constructs. In 
addition, a clear understanding of basic modeling and design 
mechanisms for personalization can help us reason over the 

development process and uncover reusable patterns, components 
or sub-systems for the key personalization styles or algorithms. 

The discussion is cast using the Object-Oriented Hypermedia 
Design Method (OOHDM) [16] approach to personalization, 
discussing the design primitives we added to our basic object-
oriented notation in order to specify group or individual 
customization in an abstract way. Although we center our 
discussion on OOHDM mechanisms, designers building 
personalized Web applications employing other approaches can 
easily use the ideas in this paper. 

The structure of the remainder of the paper is as follows: we first 
analyze different scenarios of personalization that can be found 
today in the Web. The purpose of this section is to use those 
scenarios as examples during the whole paper. We next introduce 
the basic ideas of OOHDM, in particular the separation among 
conceptual and navigation modeling and the design constructs 
used in OOHDM to build customized applications. We briefly 
show how we can map personalized designs into running 
applications. Finally, we compare our approach with others and 
discuss some further issues such as personalization patterns and 
frameworks. 

2. Scenarios of Personalization 
Although it seems impossible to classify all the existing 
approaches to personalization, using a simple conceptual 
framework allows us to show the main differences between most 
of them. We consider that Web applications are hypermedia 
applications [16] in the sense that users navigate a hypermedia 
information space composed of nodes connected by links. The 
main difference between a “traditional” static hypermedia 
application and most Web applications is that the latter may 
involve some business logic  (application functionality). In 
addition, users may alter information while navigating - adding 
products to a cart for example. There are thus two approaches to 
characterize personalization: analyzing how the underlying 
application logic may change for each user or analyzing what may 
change in the information space the user perceives. We will use 
the second approach, i.e. we will focus on the structure and 
contents of the nodes and link topology. It is obvious however, 
that both aspects are strongly related, as we will show later. 
Additionally, we will also address in Section 4 how an 
application’s logic flexibility - for example assigning different 
recommendation algorithms to different users or using 
intermediaries - can be easily built into our framework. 

In this context, we can basically personalize the linking topology 
or the contents of individual nodes. For the sake of simplicity, we 
discuss each of them in a separate sub-section. It should be clear 
to the reader that both kinds of variability can be, and usually are, 
combined. 

 

Copyright is held by the author/owner. 
WWW10, May 1-5, 2001, Hong Kong. 
ACM 1-58113-348-0/01/0005. 

275



 

2.1 Link Personalization 
This strategy involves selecting the links that are more relevant to 
the user, changing the original navigation space by reducing or 
improving the relationships between nodes. E-commerce 
applications use link personalization to recommend items based 
on the clients buying history or some categorization of clients 
based on ratings and opinions. Users who give similar ratings to 
similar objects are presumed to have similar tastes, so when a user 
seeks recommendations about products, the site suggests those 
that are most popular for his class, or those that best correlate with 
the given product for that class. Link personalization is widely 
used in www.amazon.com (See Figure 1) to link the home page 
with recommendations, new releases, shopping groups, etc. that 
are personalized. Amazon.com has taken this approach to an 
extreme by building a “New for you” home page and presenting it 
to each user, with those new products in which he may be 
interested. 

 
Figure 1: Using Link personalization in www.amazon.com 

The same kind of personalization is often found in paper review 
applications. Each reviewer is presented with a set of links to the 
articles he will review, which may have been assigned manually 
by the PC chair, or just computed using a description of the 
reviewer’s expertise. Implementing this latter example of 
personalization is easier than the previous one, even though their 
specifications are similar.  

2.2 Content Personalization 
We can say that content is personalized when nodes (pages) 
present different information to different users. The difference 
with link customization is subtle since when links are 
personalized, part of the contents (the link anchors) present 
different information. However, we will refer to content 
personalization when substantive information in a node is 
personalized, other than link anchors. Content personalization can 
be further classified into two types: node structure customization 
and node content customization. 

Structure personalization usually appears in those sites that filter 
the information that is relevant for the user, showing only sections 
and details in which the user may be interested. The user may 
explicitly indicate his preferences, or it may be inferred (semi-) 
automatically from his profile or from his navigation activity. For 
example, in my.yahoo.com or in www.mycnn.com users choose a 
set of  “modules” (from a large set including weather, news, 
music, etc…) and further personalize those modules choosing a 
set of attributes of the module to be perceived. Some “automatic” 

customization may occur by using the zip code of the user, for 
instance to select which sport events he may be interested in. The 
approach followed in these applications is that the user should be 
able to “build” his own page; even layout may be customized. In 
Figure 2, we show an example of structure customization in 
my.yahoo.com. 

 
Figure 2: Structure customization in my.yahoo.com 

The objectivity in WAP portals can be improved with the same 
approach. In the Infospace application (www.infospace.com), the 
user can customize the content and the content provider, making a 
kind of content syndication. In this way each customer navigates 
only through the information he desires, improving the usability 
of the site. In Figure 3, we show the customization and its result 
for the WAP phone. 

 
Figure 3: Personalization in WAP Portals 

Personalized Links 

276



 

Applications in which different user roles have different access 
rights or authorizations provide another good example of structure 
customization. For example suppose an academic application 
where teachers and students have different tasks to perform; 
teachers need to access their class schedule to update its contents 
and students have to access the classes that are available for 
enrollment, depending on their GPA. 

Other courses by the
same teacher

Teachers can
update the
Syllabus

 
 

Students need
information about the
course

Others courses
available

 
Figure 4: Structure Customization according to users’ roles 

When a teacher accesses a class node, he can update the class 
information (e.g. the syllabus), so it is important to make the 
update button available for the classes for which he is responsible. 
On the other hand, the student needs to access the syllabus, the 
course location, the course program, and of course, he cannot 
modify the site. See Figure 4. 

Another difference is the links to related information, in each 
case. For the teacher it is relevant to provide links to “other 
courses he teaches”, whereas for the student it is relevant to 
provide links to other “courses that he may take”.  

Node content personalization occurs when different users perceive 
different values for the same node attribute; this kind of content 

personalization is finer grained than structure personalization. A 
good example can be found in online stores that give customers 
special discounts according to their buying history (in this case the 
attribute price of item is personalized). There are many good 
examples of node content personalization in intranet applications, 
where employees’ role and needs determine the tailoring of 
information they see. 

For example in the ATL (a mobile phone company in Rio de 
Janeiro) intranet, different sales channels receive different, 
customized information about business procedures. When a call 
center attendant looks up information about phone repairs he will 
receive the address of a repair center; when a repair center 
employee looks up information for the same procedure, he will 
receive repair instructions for the phone, as shown in Figure 5. 
This type of personalization must be designed from the beginning, 
capturing the personalization rules for the different user groups 
that are identified. 

 

Repair Center view 

Call Center  view 

Instructions to 
repair a phone 

Instructions to 
repair a phone 

 
Figure 5: Node content personalization in the ATL intranet 

3. The OOHDM Design Approach 
OOHDM is a model-based approach for developing Web 
applications. We have used it for years to build different kinds of 
applications ranging from websites to complex e-commerce 
software. 

277



 

The key concept in OOHDM is that Web application models 
involve a Conceptual, a Navigational Model and an Interface 
Model [16]. Those models are built using object-oriented 
primitives with syntax close to UML [20]. 

The concern of the conceptual model is to represent domain 
objects, relationships and the intended applications’ functionality. 
In an electronic store for example, the conceptual model will 
contain core classes such as Product, Order, Customer, etc. with 
their corresponding behaviors. Notice that in some Web 
applications such as e-commerce, these behaviors may be 
extremely complex and specifying them with an object-oriented 
notation is valuable even though the implementation may involve 
different, possibly non object-oriented tools. Most personalization 
mechanisms involve dealing with objects and algorithms that are 
expressed as part of the conceptual model. In Figure 6, we show a 
simplified conceptual model of an electronic store. Objects of the 
class Customer will be responsible to process requests related with 
individual customizations as we show in Section 4. The 
conceptual model in OOHDM subsumes the class model in 
traditional object-oriented methods. Being based on UML, it can 
be obviously complemented with other UML models using use 
cases, sequence diagrams, etc. 

Order

Date:date

CD

Name:string
Description: [string+,
photo]

Keywords:{string}
Price:real
Size:string
Section: {Section}
InPromotion:boolean
Addit_Info:string
DeliveryTime:string

Comment

1 1..*

1 1..*

hasCommentPerformer

Name:St ring 1..* 1..*

performs

PaymentMethod

Date:date

1  Payment_Form    1

Customer

Name: Str ing
Address...

Text: String

madeBy

buys

CdDiscount
Recommendation
s

 
Figure 6: Conceptual Model of CD store 

In the OOHDM approach, the user does not navigate through 
conceptual objects, but through navigation objects (nodes), as we 
consider Web applications as being hypermedia applications built 
on top of the conceptual model. 

Nodes are defined as views on conceptual objects, using a 
language that is similar to object database view-definition 
approaches [10]. Nodes can be atomic (i.e. their attributes are 
primitive types or anchors) or composite. Composite nodes 
express aggregations of simpler nodes, such as usually found in 
home pages or portals. Nodes contain attributes (that are usually 
perceived in the interface) and anchors for links (that may or not 
be perceived in the interface). 

Nodes are complemented with links that are themselves specified 
as views on conceptual relationships. The navigational schema 
shows the node and link classes that comprise the navigational 
structure of the application. Notice that in some way, the 
navigational model allows to specify different Web applications 
for the same conceptual model. In particular, regarding 
personalization, OOHDM provides one easy way to build 
customized Web applications by reusing the conceptual model. 
We do this by building different navigational models (views) for 
each user profile. In Figure 7, we present parts of two different 
navigational schemas for the previously shown conceptual 
schema.  

CD

Name:string
Description: [string+,
image]

Keywords:{string}
Price:real
Size:string
Section: {Section}
InPromotion:boolean
Addi t_Info:string
DeliveryTime:string

Comment

Author: String

Text: String

Performer

Name:String

hasComment

 

7.a. Customer Profile View 

Order

Date:dat e

CD

Name:string
Price:real
Section: {Section}
InPromotion:boolean
Comments: Set o f
Strings

User

Name: String
Addr ess...

boughtBy

includes

 
7.b. Manager Profile View 

Figure 7: Different Navigation Schemata for user and 
manager profiles 

Notice that each one of above schema presents the user with 
different features and links (inducing different navigation 
topologies) according to the needs of the specific user profile. For 
example, while customers may navigate through comments, 
managers only see comments as attributes of CDs; in the same 
way, customers may access information about performers, but 
only managers may navigate the information about users. In 
Figure 8, we show part of the specification of node CD for both 
profiles. In the Customer profile the comments attributes is an 
anchor to Comment nodes (via the Comments link type). This 
means that the user will have to navigate to those nodes to read 
comments. Meanwhile, in the Manager profile, the comments 
attribute is just a list of strings; we could have even omitted this 
attribute, as perhaps managers are not interested in reading 
comments. 

NODE Customer.CD FROM CD: c
Name:String
Price: Real
Description: Image
....
....
 Comments: Anchor [Comments]

NODE Manag er.CD FROM CD: c
Name:String
Price: Real
Description: Image
....
....
Comments:

Set Select text From Comment:Co
Where c hasComment Co  

Figure 8: Specification of Node CD for Customer and 
Manager profiles 

The complete syntax for Node and Link definition can be found in 
[16]. Two problems arise from the previously shown 
specifications: First, how can we improve reuse in the 

278



 

navigational schema, e.g.: how do we express the common aspects 
of both profiles (customer and manager) only once, and which 
mechanism do we use for expressing variability? Second, how can 
we express individual personalization, i.e. the fact that two 
different users may pay a different price for a CD? 

In OOHDM, a Context Schema shows the navigational contexts 
and access structures (indexes) in the application complements the 
Navigational Schema. A navigational context is a set of objects 
that may be explored in some order, e.g., sequentially. For 
example: books by an author, CDs by a rock band, etc. Access 
Structures act as indexes to group of related objects, specified by 
indicating the target objects and the selector to be used in the 
index. Indexes are key customizable artifacts because, as we 
showed in Section 2, many personalization scenarios involve 
defining customized indexes. 

Finally, we specify the abstract interface model that indicates the 
look and feel of navigation objects. Separating the interface from 
the navigation specification allows us to cope with varying 
interface technologies in a modular way. For example, given a 
particular navigation model we can specify different interfaces – 
for a browser or for a variety of mobile devices such as phones, 
palm tops, etc. We also use an object-oriented formalism, called 
Abstract Data Views ADVs [5] that act as Observers [Gamma95] 
of nodes. For the sake of conciseness, we do not address interface 
personalization in this paper, though it is handled with the same 
approach as presented in the following section. 

Summarizing, OOHDM provides some hot-spots in which we can 
specify customized structures and behaviors (the idea of hot-spots 
is borrowed from the domain of application frameworks [7]): 

� in the conceptual model: by explicitly representing users, 
roles and groups and by defining algorithms that implement 
different (business) rules for different users. 

� in the navigational model: by defining completely different 
applications for each profile, by customizing node contents 
and structure and by personalizing links and indexes. 

� in the interface model: by defining different layouts 
according to user preferences or selected devices. 

In section 4, we show how we can specify different kinds of 
personalized behaviors by relating each of the above hot spots 
with the examples presented in Section 2. 

4. Designing Personalized Views 
One of the key issues of the OOHDM meta-model is that we 
emphasize expressiveness and openness using a reduced set of 
primitives. To do this, we adhere to the best object-oriented 
design practices, in particular an appropriate use of Design 
Patterns [Gamma95]. We strongly claim that we can build high 
quality personalized software only if we design that software with 
flexibility and extension in mind from the beginning. Moreover, 
many personalization strategies are simply by-products or design 
refinements of more abstract ones. In most cases, we need to have 
a model of the user or group of users. User or profile modeling is 
a challenging task and it may require the systematic application of 
complex techniques (See [19] for a broad range of approaches). In 
this paper, we are not concerned with which algorithms are used 
to assign a profile to a particular user, but mainly with the way to 
express those algorithms as parts of a complete Web application 
model. We next present each customization-oriented feature of 
OOHDM with an example. 

4.1 Static Customization 
OOHDM supports the design of different applications 
(navigational views) for the same conceptual model, and of 
different user interfaces for the same application. In this way, we 
can customize the conceptual model to different user profiles or 
roles. 

This kind of customization, as shown in Figure 7, results from a 
direct application of the pattern Observer to decouple design 
concerns. More specifically, we decouple three aspects: the base 
information and behavior (conceptual) from what the user 
perceives (navigation) and how he perceives it (interface). This 
kind of customization is static, in the sense that it is fully defined 
at design time. Determining which user is accessing the 
application requires that the user either identifies himself 
explicitly at the beginning, or that different entry points are given 
(externally to the application) to different user classes. We next 
address different kinds of dynamic customization. 

4.2 Link and Content Personalization 
Personalizing content and links in a Web application is by far the 
most popular way of individual customization currently found in 
the Web, with many different variants. For instance, 
recommendations in Amazon.com are based on the history of the 
user; links to specific Purchase groups are built from user personal 
data. 

In Figure 9, we introduce the variable user in the specification of 
Figure 8 to assign a personalized price for a CD according to the 
discount policy of the company; the expression between brackets 
indicates how the value of the variable is computed. Notice that 
user refers to an instance of class Customer in the conceptual 
model (heading of Node definition). It provides the intended 
behavior (CDdiscount, see Figure 6). The method CDdiscount 
calculates the discount rate according to some data related with 
the user’s buying history, his category, etc. The variable subject 
meanwhile refers to the corresponding CD conceptual object. 

NODE Cust omer.CD FROM CD: c, user:Cust omer
Name:Str ing
Pri ce: Real [subject.price – user C Ddiscount]
Description: Image
....
....
 Comments: Anchor [Co mments]

 
Figure 9: Personalizing content in a node 

The expression subject.price – user CDdiscount will be executed 
during node initialization. Notice that in this case the object user 
will be sent as a parameter to the corresponding method 
(CDdiscount). 

In Figure 10, we show how we get individual recommendations 
by mapping the definition of the Recommendation link in the 
home page to the CDs that are recommended for that user. The 
expression user recommendations assumes that Class Customer 
implements an interface (in the sense of Java programs) that 
answers the message recommendations (See Figure 6). 

279



 

LINK Recommendations, user:Cust omer
SOURCE  HomePage
TARGET  CD: C  WHERE C belon gsTo us er reccomendations

 
Figure 10: Link personalization in OOHDM 

The openness of the OOHDM approach resides in that it makes 
easy to apply well-known techniques for building generic designs. 
A first example is the representation of more than one user role in 
the conceptual model (Figure 6). Class Customer thus may be a 
sub-class of a more abstract class Role and this allows us to define 
node features that are valid for all instances of Role or one of its 
sub-classes. 

 A more interesting example arises if we want to improve the use 
of recommendation algorithms. We can model the assignment of 
different algorithms to different users by using Strategies [8] as 
shown in Figure 11. In this way, we can get a further level of 
decoupling: recommendation algorithms are decoupled from the 
user object. Using Strategies to model this kind of personalization 
allows assigning a different recommendation algorithm (an 
instance of a RecommAlgorithm sub-class in Figure 11) to each 
user. The corresponding user instance just delegates the message 
to the current algorithm object. In Figure 12, we present the UML 
sequence diagram explaining how this decoupling works. 

recommender

RecommAlgori thm

Collab orativeFiltering SimpleRecommend Specia lRecommend

Recommendations ()

 recommender getRecomm

getRecomm getRecomm getRecomm

Customer

 
Figure 11 Decoupling users from Recommendation algorithms 

A Link A Customer A RecommAlgorithm

recommendations

getRecomm

 
Figure 12: Sequence Diagram for recommendation strategies 

In the same way the use of third party products (such as 
Netperception), Internet Services [15] is easily modeled by using 
Adapters as shown in Figure 13.  

ThirdPar tyRecomm

ThirdPar tyAdapter

recommender adaptee

getRecomm
  adapt ee recommInterface

Customer

 
Figure 13: Accommodating third party products  

In Figure 13, the Adapter object (ThirdPartyAdapter) acts as a 
Wrapper on the “external” product and “adapts” its interface to 
the existing protocol. Notice that in this way the Customer class 
can be kept unchanged regardless of the specific features or 
implementation style of the third party product. In Figure 14, we 
show the corresponding sequence diagram. 

A Link A Customer ThirdPar tyAdap ter

recommendations

getRecomm

ThirdPar tyRecomm

recommInterface

 
Figure 14: Sequence diagram for adapting third party 

products 

Notice that in the actual implementation, the binding of the 
variable user with the proper instance is done when the user is 
identified and authenticated. In an object-oriented 
implementation, this process involves only a couple of trivial 
messages between objects. In the OOHDM framework we allow 
the designer to define other variables such as profile, group, etc 
which may be used in the same way as user by declaring them in 
the Node definition heading. 

4.3 Structure Customization 
As discussed in Section 2, many Web sites allow the user to select 
which contents he wants to see from a repertoire of options (most 
of them also allow customizing the interface lay-out as well). For 
example, in my.yahoo.com there are two levels of personalization: 
first, which modules the user will get in his site (e.g., Weather, 
Headlines, Financial, etc) and then which information he wants to 
see within each module (cities, types of news, particular stock 
quotations, etc). In Figures 15 and 16, we show (part of) the 
OOHDM specification for this kind of structural personalization.  

280



 

Module

WeatherModule Financial Module NewsModu le

MyHome Pag e

Sections

Headli nes and P olitics Business&Industry     Entertainment

 
Figure 15: Basic Navigational Schema in my.yahoo.com 

NODE MyHomepage
Advertisement: Text
Welcome: Text  [user getName]
Modules: Set [user g etModules]

NODE WeatherModule
cityWeather: Set [user getCities]

NODE NewsMod ule
news: Set [user getNews]

 
Figure 16: Customizing node’s structure  

The navigational class schema in Figure 15 shows MyHomePage 
as a composition of modules (that are themselves instances of a 
sub-class of Module), containing different kinds of information. 
The corresponding user object in the conceptual model provides 
an interface for retrieving his user profile, in this case the modules 
he chose, as well as the structure of these modules (Figure 16). 
Each Module sub-class has a different structure – cities and their 
weather in the Weather Module, list of links to news in the 
NewsModule, etc… – so we cannot factor out attribute definitions 
and include them in the Module Node. Notice that the News 
Module is itself an aggregation of other sub-modules. Using this 
style of specification, we can go even further and personalize 
more specific features, such as the units in which temperatures are 
given (see mycnn.com). 

The conceptual model will contain a class User and the 
corresponding information objects for Modules. As discussed in 
[12] the structure of the user preferences database may be itself 
rather complex and may need further decomposition in the 
conceptual model.  

In the case of applications acting as intermediaries (such as Yahoo 
News with respect to news provided by Reuter), we only need to 
add another level of observation, i.e. objects in the application 
represent views on the information provider (Figure 17). In the 
corresponding OOHDM conceptual model, we define one 
conceptual class for each intermediary. The relationship observes 
abstracts different kinds of intermediary functions, such as 
customization, filtering, annotation, etc [11]. 

In the case of the intermediaries, we may assume “push” or “pull” 
models, since the communication between them may be 
implemented using a proprietary protocol, as customary with news 
providers. The sequence diagram for this Class structure is similar 

to the one in Figure 14; the main difference is the intent of the 
relationship among intermediaries and providers with respect to 
the adapter’s example. 

    NewsPr ovider

IntermediaryNews1

observes

Intermediar yNews2Customer

 
Figure 17: Modeling intermediaries as Observers 

4.4 Context Personalization 
Personalizing navigational contexts is critical when the same 
information (node) can be reached in different situations. As 
mentioned before, a navigational context is a set of nodes that 
usually share some property. For example in a Conference Paper 
Review Application, it is possible to access papers in different 
contexts: the whole set of papers, papers that were reviewed by a 
person, papers in a particular topic, accepted papers, etc. Notice 
that one paper may appear in different sets and that different users 
may have different access restrictions according to their role in the 
Review application. When the program chair accesses a paper in 
this system, he can navigate and see the reviews/reviewers of this 
paper, but when a reviewer accesses the same information, he will 
not able to follow that link (that simply will not exist for him). 

In OOHDM, we use a simple declarative specification to indicate 

1-which nodes are contained in a context and 

2-which user or user profiles are allowed to view a node in a 
particular context. 

The set of nodes are specified using expressions similar to the one 
in Figure 10, while the access restrictions (if any) are specified in 
Context Cards, indicating either a user profile (such as PCChair) 
or an expression indicating a condition on the user object (See 
[16]). Figure 18 shows a portion of an OOHDM context diagram 
for this example, and Figure 19 shows the context cards related to 
Paper. 

Pap er By
Topic

Pap er

by reviewer

by topic

by paper

Reviewer

MyReviews

Review

by author

 
Figure 18: Navigation Diagram of Paper Review system 

scenario 

281



 

Parameters: User

Elements: P:Papers Where p is revised By Reviewer and reviewer.login =
user.login

Navigation: sequencial, order by auhtorName

InContext Cl ass:PaperBYReviewer

Con text: Papers BY Reviewer

Access Restriction:  Reviewers       Permission: read

Comments:

Trace Backward Trace Foward

Parameters: Topic

Elements: P:Papers Where p.topic = topic

Navigation: sequencial, order by auhtorName

InContext Cl ass:PaperBYTopic

Context: Papers BY Topic

Access Restriction: PcChair  Permission: read

Comments:

Trace Backward Trace Foward

 
Figure 19: Context specification card 

4.5 Reusing Specifications 
Different user profiles may share part of the same specification 
and, in fact, share the same information in the final application, in 
many cases. For example, in the online store example (see Figure 
8), both customer and manager specifications of CD Node exhibit 
similar information with just small variations. 

In Figure 20, we show the specification of the base information 
and the corresponding extensions for user profile customer and 
manager. The precise semantics of the extension classes as they 
appear in the OOHDM specification is that they act as Decorators 
[8] of the extended class.  

NODE CD FROM CD: C 
 Name: String 
 Price: Real 
NODE Customer.CD 

EXTENDS CD 
Description: Image 
Comments: Anchor 

[Comments] 
 

NODE Manager.CD 
EXTENDS CD 

Comments: 
Set Select text From 
Comment:Co Where 
C hasComment Co 

 

Figure 20: Extending a Node specification for different user 
profiles 

This same approach can be used for adding specialized behaviors 
for each user profile. For example while Customers can add a 

product to the shopping basket, Managers can eventually change 
the price of a product. 

Notice the subtle difference between defining the Customer and 
Manager CD nodes as decorations on CD with respect to defining 
them as sub-classes. The OOHDM solution is more flexible than 
using inheritance, since one may sub-classify CDs independently 
of Manager and Customer views. A deeper discussion on the 
differences between decorating and sub-classing can be found in 
[8]. 

In the same way, we can use this approach for specifying different 
access rights for different user roles. For example, in the 
Conference Paper Review application, we can define a Node class 
Paper with some basic information and specify that papers be 
linked to reviews/reviewers only in the PcChair.Paper extension, 
by defining the appropriate anchor and other related attributes. In 
Figure 21, we show this example of role customization. 

NODE Paper From 
Paper:p 

Name:String 
Authors: String 
Abstract: Text 

NODE PCChair.Paper 
EXTENDS Paper 

reviews: Anchor 
[ReviewedBy] 

additionalComments: Text 

Figure 21: Expressing different access rights with extensions 

5. From Design to Implementation 
The standard way to obtain dynamic behavior is by using HTML 
pages with calls to server side procedures written in a variety of 
scripting languages, or to components in some framework. This 
type of solution leads to high development costs, as it is necessary 
to develop each solution from the beginning. In this context, a 
personalization solution will lead to calls that pass the information 
about the user and the navigation models to procedures, to 
compute the end result. 

In a higher abstraction level, we can mention the so-called site 
management systems such as MS SiteServer, Broadvision 
OnetoOne and Vignette StoryServer. These systems offer an 
interface between server-based repositories to controlled client 
web delivery, separating content and business rules. The content 
stays in a relational database, and the business rules are stored into 
proprietary components that wrap the association between the 
users, roles and the appropriate content. Our approach is adequate 
to this implementation strategy because the main assumption is to 
design what to personalize and the corresponding conceptual rules 
based on the conceptual model. The main difficulties in this 
approach are due to eventual limitations in the expressive power 
of the proprietary components. 

Although feasible, the use of such systems is still limited to larger 
websites, due to cost and complexity. In addition, none of these 
systems directly supports the notion of contexts as defined in 
OOHDM. We have been using the OOHDM Web environment 
[17] to support the implementation of OOHDM designs. This 
environment is very similar to the systems mentioned previously, 
but with components that directly understand OOHDM primitives. 
Special data structures represent a design; specific library of 
functions access and manipulate these structures, allowing 
automatic generation of index structures, object manipulation and 
context navigation. Currently, it only allows a very simple form of 
role based access control for nodes within contexts. 

282



 

As discussed in sections 3 and 4, the various mechanisms in 
OOHDM directly support many types of personalization, and 
therefore are available through the OOHDM Web environment. A 
more recent development is the upgrading of this tool to support a 
complete specification of user customization rules, and the 
corresponding function libraries to implement them. 

A different architectural approach is the use of proxies that host 
programs that implement filters providing the personalization 
functions. These proxies serve as intermediaries between the user 
and the Web, customizing the user’s view of the web according to 
various rules, policies and preferences [1]. 

6. Related Work 
Personalization is an important topic for the Web industry. 
However, design issues related with personalization are just being 
introduced in the Web community. An interesting approach has 
been discussed in [6]. The Web Site Design Method (WSDM) 
focuses on the construction of “Audience-driven” Web 
applications. Requirements for each potential user profile are 
systematically gathered and a class diagram of user profiles is 
built. Different navigation tracks are specified for each audience 
though there is no notation for expressing individual differences. 

More recently, OOHDM has been extended with a requirements 
gathering phase that uses a new graphical notation and model, 
called User Interaction Diagrams [21], [9]. Requirements are 
gathered collecting scenarios that are subsequently abstracted into 
Use Cases. The analysis of these Use Cases determines the user 
profiles and tasks that the application will support. Although we 
do not yet explicitly extract personalization information, this 
analysis can be extended straightforwardly to achieve this. 
Another interesting approach for dealing with personalization is 
presented in [3],[4]. Using the WebML modeling language and its 
supporting tool (Torii) it is possible to specify the structure of the 
application’s information base (the Structure Schema), the 
structure of nodes (Composition Model) and the navigation 
model. WebML allows representing well known Web patterns and 
supports data derivation and user modeling. Personalization in 
WebML is expressed using event-condition-action rules.  

The main difference with the OOHDM approach is that WebML 
claims to be data-oriented while OOHDM is object-oriented. This 
difference may seem trivial for simple applications, i.e. 
applications in which the behavior can be modeled by using just 
database updates and triggers. WebML rules are concise and 
elegant and can be easily mapped to a database implementation. 
However, we think that applications in which personalization 
patterns may involve either sophisticated behaviors or interaction 
with other systems, such as Internet services or intermediaries, 
require a more expressive specification language. Nevertheless, as 
the approaches are similar, WebML can be used as part of the 
implementation step in the OOHDM life cycle, for example when 
mapping the design to a relational database. 

Finally, it is worth mentioning the relationship of our kind of 
personalization specification with current approaches for 
providing services on the Internet such as Application Services 
Providers (such as www.aspstreet.com). It is reasonable to 
envision that personalization algorithms will be provided as 
services (such as www.moviecritic.com) and applications will just 
use these services as “external” components. In these cases, a 
design notation is necessary; it should be able to express those 
design decisions that make “internal” and “external” components 

interact seamlessly. The OOHDM approach for personalization 
acts as an open framework not only for specifying “ad-hoc” 
customization but also eventually for documenting the use of 
different personalization products. 

7. Conclusions 
In this paper, we presented the OOHDM approach for specifying 
and designing personalized behaviors in Web applications. The 
main goal of this paper is to motivate a design-oriented discussion 
of personalization. We believe that by clearly understanding the 
design structures involved in the process of building a 
personalized application we can obtain more flexible and 
evolvable systems. 

We have shown how we use our notation in a broad range of 
customization cases. For example, we can build different Web 
applications for different profiles by just reusing a conceptual 
schema. A finer grained personalization can be obtained by 
specifying individual contents such as recommendations, 
customized prices, etc. We have shown that our notation and the 
underlying design framework allow us to obtain concise 
specifications by reusing existing ones. The OOHDM notation 
uses a small set of primitives for specifying personalized attributes 
and methods; more complex personalization strategies, such as 
using internet services, can be easily dealt with by just applying 
well-known design techniques that fit naturally with the OOHDM 
approach. 

We are currently extending our Web design pattern language [13] 
with personalization patterns, i.e. patterns that capture recurrent 
customization structures and their underlying designs. We are also 
adapting our Web framework notation [18] to include 
personalization variability as hot spots in the framework structure. 
Building generic personalization engines is an interesting trend as 
discussed in [15], and we aim at representing them not only as 
external services but also in such a way that a designer can reason 
on their structures to extend them to different domains and roles. 
Analyzing personalization from a software engineering point of 
view will allow our community to design more modular and easy 
to maintain and extend customized applications. 

8. References 
[1] Barrett, R., Maglio, P. P.: “Intermediaries: New places for 

producing and manipulating web content”. In Proceedings 
of the Seventh International World Wide Web Conference 
(WWW7), Brisbane, Australia (1998). 

[2] Communications of the ACM. Special Issue on 
Personalization, August 2000, Volume 43, Number 8. 

[3] S. Ceri, P. Fraternali, S. Paraboschi: “Data-Driven One-to-
One Web Site Generation for Data-Intensive Applications”. 
Proceedings of the 25th VLDB Conference, Edinburgh, 
Scotland, 1999, pp 615-626. 

[4] S. Ceri, P. Fraternali, S. Paraboschi: “Web Modeling 
Language”, (WebML): a modeling language for designing 
Web sites. Proceedings of the 9th. International World Wide 
Web Conference, Elsevier, 2000, pp 137-157. 

[5] D. D. Cowan, C. J. P. Lucena: “Abstract Data Views, An 
Interface Specification Concept to Enhance Design for 
Reuse”, IEEE Transactions on Software Engineering, Vol. 
21, No. 3,  March 1995. 

283



 

[6] O. De Troyer, C. Leune: “WSDM: A User-Centered Design 
Method for Web Sites”, Proceedings of the 7th International 
World Wide Web Conference, Elsevier, 1998, pp 85-94. 

[7] M. Fayad, D. Schmidt and R. Johnson (editors): “Building 
Application Frameworks”, Wiley, 1999. 

[8] E. Gamma, R. Helm, R. Johnson and J. Vlissides: “Design 
Patterns: Elements of reusable object-oriented software”, 
Addison Wesley, 1995. 

[9] Guell, N., Schwabe D., Vilain, P.: “Modeling Interactions 
and Navigation in  Web Applications”, Lecture Notes in 
Computer Science 1921, Proceedings of the World Wild 
Web and Conceptual Modeling ’00 Workshop, ER’99 
Conference, Springer, Salt Lake City, 2000. ISBN 3-540-
41073-2. 

[10] W. Kim: “Advanced Database systems”, ACM Press, 1994.  

[11] P. Maglio, R. Barret: “Intermediaries Personalize 
Information Streams”. In [CACM’00], pp 96-101. 

[12] U. Manber, A. Pattel, J. Robison: “Experience with 
Personalization on Yahoo!”. In [CACM2000], pp 35-39. 

[13] G. Rossi, D. Schwabe, F. Lyardet: “Improving Web 
Information Systems with Navigational Patterns”,  

[14] Proceedings of the 8th International Conference on the 
World Wide Web, Elsevier 1999, pp 589-600. 

[15] S. Sarawagi, S. Nagaralu: “Data Mining Models as Services 
on the Internet”. SIGKDD Explorations, ACM Press, June 
2000, pp 24-28. 

[16] D. Schwabe, G. Rossi: “An object-oriented approach to 
web-based application design”. Theory and Practice of 
Object Systems (TAPOS), Special Issue on the Internet, v. 
4#4, pp. 207-225, October, 1998. 

[17] Schwabe, D., Pontes, R. A., Moura, I.: “OOHDM-Web: An 
Environment for Implementation of Hypermedia 
Applications in the WWW”, SigWEB Newsletter, Vol. 8, 
#2, Junho de 1999. 

[18] D. Schwabe, G. Rossi, L. Esmeraldo, F. Lyardet: 
“Engineering Web Applications for reuse”. To appear, IEEE 
Multimedia, Spring 2001. 

[19] User Modeling Home page: www.um.org 

[20] Rational. UML Documentation www.rational.com  

[21] Vilain, P., Schwabe, D., Souza, C.S.: “A Diagrammatic 
Tool for Representing User Interaction in UML”, Lecture 
Notes in Computer Science, Proc. UML’2000, York, 2000. 

284


