
Multimedia Tools and Applications (2021) 80:6785–6809
https://doi.org/10.1007/s11042-020-09803-8

Engaging end-user driven recommender systems:
personalization through web augmentation

Martin Wischenbart1 · Sergio Firmenich2,3 ·Gustavo Rossi2,3 ·
Gabriela Bosetti2 · Elisabeth Kapsammer4

Received: 30 November 2019 / Revised: 21 August 2020 / Accepted: 2 September 2020 /

© The Author(s) 2020

Abstract
In the past decades recommender systems have become a powerful tool to improve person-
alization on the Web. Yet, many popular websites lack such functionality, its implementation
usually requires certain technical skills, and, above all, its introduction is beyond the scope
and control of end-users. To alleviate these problems, this paper presents a novel tool
to empower end-users without programming skills, without any involvement of website
providers, to embed personalized recommendations of items into arbitrary websites on
client-side. For this we have developed a generic meta-model to capture recommender
system configuration parameters in general as well as in a web augmentation context.
Thereupon, we have implemented a wizard in the form of an easy-to-use browser plug-
in, allowing the generation of so-called user scripts, which are executed in the browser
to engage collaborative filtering functionality from a provided external REST service. We
discuss functionality and limitations of the approach, and in a study with end-users we
assess the usability and show its suitability for combining recommender systems with
web augmentation techniques, aiming to empower end-users to implement controllable
recommender applications for a more personalized browsing experience.

Keywords Web augmentation · Visual programming · Client-side personalization ·
End-user programming · End-user development · Controllability of recommender
systems · Browser-side trans-coding

1 Introduction

Nowadays recommender systems are a popular means for personalizing user experience
and services on the Web. They have a long-standing history in various domains and they
are employed by a multitude of websites in areas such as e-commerce, movie databases,

� Martin Wischenbart
k0255857@students.jku.at

Extended author information available on the last page of the article.

Published online: 22 October 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-09803-8&domain=pdf
http://orcid.org/0000-0002-0838-2993
http://orcid.org/0000-0001-9502-2189
http://orcid.org/0000-0002-3348-2144
http://orcid.org/0000-0002-3968-6738
http://orcid.org/0000-0002-4778-8435
mailto: k0255857@students.jku.at

Multimedia Tools and Applications (2021) 80:6785–6809

Fig. 1 Adapted cocktailscout.de website with the random recipe shown by default (left menu bar, head-
ing “Zufallsrezept”) and the additionally augmented personalized recipe recommendations (right menu bar,
heading “Recommendations”). The augmented content blends in with the site’s style and the remainder of
the right menu bar’s content is just shifted further below [38]

food recipes, or music streaming. In spite of their potential, however, beyond well-known
or commercial websites oftentimes recommendation services are not implemented by site
providers, perhaps for missing financial incentives. As an example, cocktailscout.de, once
one of the largest German language websites for cocktail recipes,1 although it has a rat-
ing mechanism that is used for ranking of recipes, the site used to only provide a random
recipe link on each page instead of giving personalized drink recommendations. Sharing of
recipes was only possible explicitly, e.g., via email or different social platforms. Yet, con-
taining more than 1500 recipe items the site would be a perfect target for implementing a
collaborative filtering recommender system directly within the site. Based on the tastes of
similar users, individually personalized drink recommendations could be included in one of
the sidebars, as shown in Fig. 1. Traditionally adding such functionality would require mod-
ifications to be made on the site’s server and, therefore, its implementation fully hinges on
the website provider.

In order to reduce such dependencies on site providers, in recent years web augmen-
tation (WA) techniques, i.e., the addition of external content or behavior to web pages
on client-side, have become a popular means for end-users to adapt pages according to
their own requirements. Using these techniques, we have demonstrated the feasibility for
realizing Personalized Recommendations in Web Augmentation Applications (“PAA”), by

1Highest global Alexa rank in a comparison of 13 German language cocktail websites (http://www.alexa.
com/, made in 2015). After a recent redesign functionality was reduced and the site’s popularity dropped.

6786

cocktailscout.de
cocktailscout.de
http://www.alexa.com/
http://www.alexa.com/

Multimedia Tools and Applications (2021) 80:6785–6809

implementing an external service for collecting user’s item ratings and offering collabora-
tive filtering functionality via a REST ful API, as well as corresponding manually-written
web augmentation user scripts,2 executed in the browser. This work, including the Cock-
tailScout example shown in Fig. 1, was presented at a past workshop [38]. Nevertheless, the
manual implementation of such user scripts without a doubt requires a certain level of pro-
gramming skills and basic knowledge about recommender systems and, therefore, they can
only be programmed by more advanced users and most certainly not by typical end-users.

To tackle this problem, based on our previously proposed architecture [38], as well as
studying existing systems and literature, we abstracted the process for building recom-
mender systems to create a generic meta-model for their configuration and control. This
model was thereon applied to the provision of recommendations with a collaborative fil-
tering service by means of web augmentation, to determine the configuration parameters
required for the manipulation of web pages. In this paper we show how these parameters
can be acquired through a graphical wizard by end-users within the browser, consequently
enabling recommender system user scripts to be generated semi-automatically. In this
manner, this “RecSys-Creator” browser plug-in enables end-users to develop collaborative
filtering applications for almost arbitrary websites, without the requirement of program-
ming skills, executed on client-side, and with reduced dependencies on site providers. We
conducted a user study centered on its usability, involving users with different technical
backgrounds and varying levels of programming skills, and we hereby present and discuss
the results.

The remainder of this paper is structured as follows: In the upcoming Section 2 we dis-
cuss related work. Next, Section 3 shortly summarizes our previously proposed architecture
for recommender system user scripts. After that, Section 4 presents a generic meta-model
for configuration of recommender systems, and, after that, an end-user development (EUD)
approach to create recommender user scripts without programming skills or knowledge
about the operation of recommender systems. Finally, an end-user evaluation study and its
results are discussed in Section 5 along with shortcomings and limitations in comparison
to other approaches, before Section 6 presents our conclusions and outlines potential future
work.

All our source code including documentation, details on the evaluation survey as well as
further material is available online at http://paa.cis.jku.at/.

2 Related work

This section discusses related research from several fields, including recommender systems
in general, client-side personalization, web augmentation, and recommender system con-
trollability. Since the beginnings of the Web, the web personalization research community
has been expanding steadily, and in order to satisfy the increasing number of end-users,
various approaches for user profiling, profile data integration and personalizing content or
services have emerged.

Regarding the latter, a comprehensive survey [6] on recommender systems presents a
classification of such systems and discusses different kinds of cold start problems (see
also [35]) among other topics. Regarding the recommendation of content and people in

2“User scripts” or simply “scripts” are typically written by advanced users with knowledge of JavaScript, so-
called “scripters”. They are executed within the browser on client-side to modify web pages—using dedicated
extensions such as Greasemonkey (http://www.greasespot.net).

6787

http://paa.cis.jku.at/
http://www.greasespot.net

Multimedia Tools and Applications (2021) 80:6785–6809

social media, so-called social recommender systems were studied [33]. In this context it was
also shown that through consideration of relationships from social networks recommenda-
tion accuracy can be improved [40]. Different ways for ratings have been investigated [36]
and classifications of user feedback have been surveyed [25], including their correlation to
ratings. While most of these recommenders work on server-side, recommender engines can
also be implemented in JavaScript [32], running on client-side and relying only on a model
to be rebuilt periodically by the server.

To adapt existing third-party web content externally, intermediaries [5] may intercept
and modify content on a proxy server. Going further, several approaches for client-side
personalization have been developed (e. g., [3, 23]). In such scenarios modifications and
recommendations may cover different sites, since different applications can share a single
user profile, for instance, managed on client-side using an appropriate browser extension.
Entirely client-based, browser extensions which monitor user navigation can be used to
populate user profiles (with navigation history, bookmarks, keywords, etc.) and thereupon
recommend relevant web pages to users [16, 18]. Concerning comprehensive personal
user profiles, an important issue to be considered is privacy, as it was also studied in lit-
erature [28]. In this context, it was proposed to enhance privacy and increase trust by
storing user profiles on client-side and by providing users with explanations for recom-
mendations [29]. A comprehensive overview of client-side approaches (peer-to-peer or with
aggregation server), also focusing on anonymity and privacy, can be found in a PhD the-
sis [4]. In that spirit, using a middleware to exchange information between end-users allows
to build privacy-aware recommender systems based on interest groups [15]. Beyond that,
employing a federated learning architecture, it was also proposed to compute personalized
recommendations on clients based on subsets of a global database, which are propagated to
others using a publish/subscribe mechanism [31], however, without a deeper discussion of
user interface and presentation issues.

To perform web personalization as a service [21], nowadays there is a multitude of
companies offering rating and recommendation as web services (e.g., through widgets for
rating3 or more advanced systems for personalizing user experience and advertising),4

however, requiring changes in the original website.
Less dependent on site providers, another means to achieve personalization is the appli-

cation of web augmentation techniques, which allow users to customize website user
interfaces (UIs) in terms of content and functionality, according to their own require-
ments [17]. Most web augmentation projects are developed as browser extensions, and once
installed by the user, they modify loaded web pages, thus altering what the user perceives.
In order to include more end-users into the development task and to satisfy their specific and
personal requirements, end-user programming (EUP) tools have emerged that allow them to
use web pages as an editable canvas. EUP was successfully applied in the context of web
mash-ups: with NaturalMash [2] end-users without programming skills can create their own
applications, and WebMakeUp [13] enables such end-users to rearrange HTML contents. In
these tools the artifacts are specified in terms of an underlying meta-model, and using a spe-
cialized engine these specifications can be interpreted and executed when target web pages
are loaded.

3Rating Widget, Testimonial Robot: rating-widget.com, testimonialrobot.com
4Yusp, Plista, Amazon Personalize, Strands: yusp.com, plista.com, aws.amazon.com/personalize, retail.
strands.com

6788

rating-widget.com
testimonialrobot.com
yusp.com
plista.com
aws.amazon.com/personalize
retail.strands.com
retail.strands.com

Multimedia Tools and Applications (2021) 80:6785–6809

An alternative approach is to generate code based on a given set of input parameters [17].
In this manner, it is also possible to generate JavaScript code in the form of user scripts,2

the most common artifact in the web augmentation communities. In these communities
user scripts are often publicly shared, and a number of repositories provide a variety of
scripts5 for all kinds of web pages and modification tasks. Examples range from layout
modification and tweaks on youtube.com6 (e.g., regarding video player size, video & audio
customizations, etc.), managing comments on geocaching.com,7 to improving navigation
on dropbox.com by rendering a Tree View panel.8

Despite the variety of available user scripts, however, according to our own experience
and as pointed out by a survey [12], current technologies for adapting the web browsing
experience still do not sufficiently support individual personalization, as it is provided by
applications incorporating recommender system functionality. In particular, with a single
web augmentation artifact (i. e., user script) individual end-users usually experience the
same effects. Recent research in this area mainly aims to provide tools (frameworks or
languages) to achieve domain-specific adaptations (i. e., support recurrent tasks, automate
tasks, improve accessibility, etc.) or raise the abstraction level in order to allow more users
(without advanced programming skills) to specify how they want to augment their preferred
websites. For instance, CSWR [19] aims to improve web accessibility (e. g., for people with
disabilities), and the aforementioned WebMakeUp [13] allows end-users to specify custom
website modifications and augmentations via a graphical interface (working with XPath
expressions [34] in the background). Thus, whereas all the web augmentation approaches
propose a way to customize the Web, most of them work without individual underlying user
profiles. However, recommender systems and in particular collaborative filtering base on
modeling both, user profiles and items. In this way, to provide an EUP approach for PAA, it
is required to extract or generate this information from web content. For such functionality
it was proposed to utilize semantic annotations [26], and in another approach the extraction
is carried out through a visual process [11]. In the context of EUP for our own approach,
semantic annotation is more suitable, since it enables users to define recommendable items
through selecting specific parts from web pages as input for the recommender engine.

Finally, controllability has been studied in the context of applications that were designed
with a recommendation service in mind. Knijnenburg et al. [27] show that giving the users,
who have significant domain knowledge, explicit control over the weights of items and
friends in collaborative filtering increases quality of recommendations as well as user satis-
faction. Hijikata et al. [24] observed that some factors, such as the time and effort required
by the user for his intervention, play an essential role in the user satisfaction. Harper et al.
[22] noted a preference from users for recommendations received after they had a certain
level of control. Ekstrand et al. [14] observed that a substantial fraction of users chooses to
switch among recommendation algorithms until they find the one which satisfies them the
most.

In this regard, a fundamental problem is that when site providers implement a recom-
mender system, they traditionally display a predefined and limited range of items only, i.e.,
from within a single domain (e. g., only movies, only books) or from a single source (items

5For instance, GreasyFork (http://greasyfork.org) has more than six thousand scripts, some of which are
installed more than fifty thousand times. OpenUserJS (http://openuserjs.org): more that 8.000 scripts;
UserScripts-Mirror (http://userscripts-mirror.org): more than 100.000 scripts.
6http://greasyfork.org/en/scripts/943-youtube-center
7http://userscripts-mirror.org/scripts/show/75959
8http://greasyfork.org/en/scripts/4955-dropbox-plus

6789

youtube.com
geocaching.com
dropbox.com
http://greasyfork.org
http://openuserjs.org
http://userscripts-mirror.org
http://greasyfork.org/en/scripts/943-youtube-center
http://userscripts-mirror.org/scripts/show/75959
http://greasyfork.org/en/scripts/4955-dropbox-plus

Multimedia Tools and Applications (2021) 80:6785–6809

from a certain website). However, cross-domain recommendations are possible and can be
beneficial for the user [9], and there are situations in which resources of interest are spread
over multiple sites on the Web.

Motivated by this need for controllability and customization, for our approach we
have chosen to semi-automatically generate user scripts for augmentation of collaborative
filtering functionality, as we will elaborate in the upcoming sections.

3 Recommender systems through web augmentation

In this section we briefly discuss our previously proposed PAA approach, with the required
steps for user script creation, covering different ways to modify web pages with a
collaborative filtering service using manually written scripts.

3.1 PAA architecture overview

In our previous work [38], we presented a PAA client-side library to simplify the develop-
ment of collaborative filtering user scripts. Working on top of well-known augmentation
engines (such as Greasemonkey, Tampermonkey, Violentmonkey), this library aids the col-
lection of required user ratings, i.e., weighted relations between users and items. The
client-side components communicate with the storage system and the recommender engine
on a dedicated PAA server through a RESTful API.

Individual clients retrieve item rating predictions (which may be exploited for link order-
ing, link hiding, or link annotation), or item recommendations (which can be used for link
generation, as classified by [8]). Utilizing the cocktail recipe example from the introduc-
tion, the overall architecture of the approach is depicted in Fig. 2, including the three main
steps, which are outlined in more detail in the following.

Going beyond the scope of this paper, relying on a central server the individual clients
do not have access to other users’ preferences, but to avoid potential attacks, appropriate
authentication mechanisms and security protocols must be in place.

Data collection and sending to server For modeling the user’s preferences, we rely on
events relating users with items (both identified with unique IDs) and including the numeric
score for ratings. Therefore, scripts may extract scores from an existing rating mechanism,
introduce such a mechanism for collection of explicit ratings, or implicitly compute a score.
For presentation purposes (i.e., link generation; see), we also require a human readable
item name, to be inserted as link text later on. Additional information about an item may be
added as meta info, such as an image URL. In the cocktail example we use the drink’s URL

(item ID), the user login name (user ID), the numeric rating extracted from the page, as well
as the drink’s name, and the optional picture (image URL). Afterwards the collected data is
being sent to the server.

Processing on server On the server, events are stored and if applicable a numeric rat-
ing value is computed (e.g., when explicit ratings or implicitly collected events should be
accumulated to compute a score on server side).

Retrieval from server and augmentation in page After that, different data can be
retrieved from the server: firstly, previously stored ratings including additional informa-
tion, such as average ratings and their distributions; secondly, predictions for ratings of

6790

Multimedia Tools and Applications (2021) 80:6785–6809

Fig. 2 Architecture of our previously proposed PAA approach with client- and server-side including an
overview of steps from collection of ratings (1) to augmentation of modifications in the page (3)

(previously unrated) items; and finally, recommendations for items (with predictions and
recommendations being computed on-the-fly using the recommender system library on the
server). Such queries may be triggered from the same or a different script automatically, or
on demand (i. e., manual ‘pull recommendations’).

Finally, the retrieved information can be augmented in the page in different manners:
ratings and their distributions may be added (link annotation, e.g., as pop-ups for all links
referring to drinks). Rating predictions may be employed for re-ordering item links or for
hiding them (e.g., if predicted score is below a threshold). Finally, recommendations can
be used to generate personalized links on the page, referring to items the user might be
interested in, such as in a list of drink recipe recommendations.

4 An approach based on end-user development

Taking our previously proposed architecture to a more generic level, in this section we
propose a model for configuration and control of recommender systems in general as well as
for web augmentation. Furthermore, to reach a wider audience, we present an EUD approach
to enable end-users without programming skills to create recommender user scripts.

A meta-model for configuration and control of recommender systems To capture the
parameters of recommender systems on a generic level, taking into consideration our pre-
viously proposed architecture, and studying existing systems as well as literature, we have
developed a conceptual meta-model for configuration and control of recommender systems,
as presented in Fig. 3. The root class at the bottom comprises six main areas:

6791

Multimedia Tools and Applications (2021) 80:6785–6809

de
fin

es
D
is
pl
ay

O
f

PropertyDisplayConfig

de
fin

es
E
xt
ra
ct
io
nO

f

OperationDomainSpec

ArchitectureConfig

involves

involves

PropertyEnvironmentConfig

RecommenderSystemConfigAndControl

1

1

1..*

1

1..*

1

1

InputProperty OutputProperty

Property

ItemDomain UserDomain

1

0..1

1

0..1

PropertyDomain
1

1..2

10..*

10..1
PropertyName

PropertyValue

PropertyRange
1

0..1

TimingSpec

CatalystInstrumentSpec

UserConfig

1

employsemploys

TransformationSpec

AlgorithmConfig PropertyExtractionConfig

1

OperationConfig

1

1..*

RuntimeControl

1

PositionSpec involves

0..* 1..* 1..* 0..*

involves

Fig. 3 Proposed meta-model in UML for configuration and control of recommender systems in general as
well as for web augmentation. All the model classes in the context of Property can be associated directly
with web page DOM elements (grey fill, top)

1. ArchitectureConfig: defines architecture as graph, i. e., clients, servers, intermediaries
as nodes, including their responsibilities, as well as communication directives as edges;

2. AlgorithmConfig: defines the type of recommender engine (collaborative filtering,
content-based, etc.) and algorithms (scoring, prediction, fallback mechanisms, similar-
ity computation, feature extraction and combination, etc.);

3. PropertyExtractionConfig configures the extraction of InputPropertys for the recom-
mender engine;

4. PropertyDisplayConfig: configures the display of OutputPropertys from the recom-
mender engine;

5. OperationConfig: defines the domains for operation of the system, i. e., the class of items
to be recommended, and the class of users to recommended to (optional: distinction
between source and target domain for items, assigning levels of rights for users/groups);

6. RuntimeControl: Control and reporting of the system at runtime;

Extraction and display of content rely on Propertys (with name, range, value)
describing items and/or users (i.e., the domain of a property). Further it must be
specified where (PositionSpec), when (TimingSpec), and how (TransformationSpec)
properties are extracted/displayed, as well as whether some additional instrument
(CatalystInstrumentSpec) is employed to facilitate extraction/display.

Basing on this meta-model, we propose an EUD approach to enable users to instantiate
the comprised meta-classes for arbitrary websites. Thereby, in principle, all parameters can
be configured by end-users. However, instantiating this meta-model for recommender sys-
tems based on web augmentation, and employing an architecture such as the one presented

6792

Multimedia Tools and Applications (2021) 80:6785–6809

in the previous section, we refrain from allowing users to customize ArchitectureConfig and
AlgorithmConfig. Instead we focus on configuring the user interface and interactions at run-
time. We present a study about an interaction mode, in an end-user development setup, to
let end-users define the configuration aspects without requiring any programming skills.
This, as we will show, involves interactions to define extraction templates for items, visual
DOM manipulation to arrange layout and some configuration through user-friendly forms.
The development process is supported by examples, giving end-users a final view of their
artifacts while they are being defined.

Web augmentation with recommendation features entails the modification of target
pages’ DOMs, and the implementations of several classes from the meta-model are tied
to DOM elements (see Fig. 3), because they represent perceivable aspects of the recom-
mender system (from the end-user’s perspective), and, therefore, they must be managed at
the augmentation layer.

Focusing on link generation based on numeric ratings given by the users, we have instan-
tiated that meta-model for recommender systems based on web augmentation, basically
by capturing those elements related to user interaction. Most commonly, what a user per-
ceives of recommender applications is items, their ratings (maybe a widget to rate), and,
finally, recommendations (also possible through a widget). Thus, the required parameters
are, firstly, the positions of information to be extracted from an item’s web page DOM: user,
rated item, rating value (PropertyExtractionConfig). Secondly, it must be defined how to
present recommendations to the user. For embedding links in the page, we need a position
in the DOM to render and place items (PropertyDisplayConfig). Thirdly, it must be speci-
fied on which sites and for which users to run the script in the first place (OperationConfig).
Finally, the creators of augmentation artifacts may customize control options for the final
script users (RuntimeControl).

Acquiring recommender specifications from users In the following we discuss how these
parameters can be acquired from end-users. Thereby, the various positions of elements for
gathering inputs and positioning output widgets are selected and specified using visual
selection of DOM element positions. In parallel we present our corresponding RecSys-
Creator wizard implementation, which is deployed as a browser side-bar plug-in. In our
implementation we base on XPath expressions for positions, which we obtain using exam-
ple item pages (assuming that web pages representing items adhere to a static structure).
In the example we create a user script for recommending articles on Wikipedia (applica-
ble directly to any wiki site using MediaWiki as front end). In general we tried to support
alternative kinds of uses, depending on the available features of the target web site.

1. PropertyExtractionConfig—user properties For user identification, a unique name or
ID is required, such as an email address (globally unique) or a site login name (site- or
script-specific). Web sites with login functionality, including Wikipedia, typically show a
user ID on the page, which can be extracted from the matching DOM element. After pressing
the corresponding button in the side-bar of our wizard, the login name can be selected with
the mouse pointer. Thereupon, its XPath expression is saved as one of the parameters in the
wizard and the HTML element is being highlighted (as shown in Fig. 4).

Alternatively, authentication may be performed directly against the PAA server through
a JavaScript widget, when sites do not have a login mechanism, when unique user IDs are
not rendered within pages, to relieve script end-users from having to register at the target

6793

Multimedia Tools and Applications (2021) 80:6785–6809

Fig. 4 RecSys-Creator plug-in wizard after definition of user ID (highlighted user name “Bob” at the very
top of the page), item name (page title “True Detective”), and URL (from the browser’s address bar) for a
Wikipedia article recommender user script

website, or to increase security. In this manner, third party identity providers may be used,
such as OpenID9 (supported by Google accounts) or Facebook Login.10

2. PropertyExtractionConfig—Item Properties Next, for the items (articles) to be rec-
ommended, again unique IDs as well as some additional properties for item display are
required. Under the assumption that in the context of the Web every item to be considered by
the recommender system can be identified with a URL, we propose to represent every item
with its page (URL, e. g., taken from browser’s address bar or extracted from page DOM).
For this our wizard allows to remove URL query string parameters which may be shown
in the browser but are not actually part of the ID (e.g., ?source=ttep ep1, specifying
from where the link was clicked), either completely or keeping selected ones in case they
are actually required.

To allow reasonable augmentation of recommendation links on the site, the approach
further requires a human readable name for each item, which could be extracted from the
page title, or from within the page DOM (e. g., a heading). Optionally a URL for an item
image can be extracted in the same manner.

3. PropertyExtractionConfig—ratings from explicit and implicit data When sites have a
rating mechanism and user ratings are shown within the item page, explicit ratings can be

9OpenID: http://openid.net/
10‘Facebook Login’ (or ‘Facebook Connect’): https://facebook.com/help/?page=730

6794

http://openid.net/
https://facebook.com/help/?page=730

Multimedia Tools and Applications (2021) 80:6785–6809

extracted directly (and the user script can send them to the server immediately after page
load).

In the case of Wikipedia no rating mechanism to measure the user’s interest is present. A
straightforward solution is to implement one, for instance, in form of a standardized ratings-
widget. Our wizard allows to augment such a widget into pages, positioned relative to (i.e.,
before or after) another element in the page DOM. The position can again be specified via
graphical selection of an element to obtain an XPath expression, as shown in Fig. 5. The
widget then collects ratings (numerical, from 1

2 to 5 stars) and sends them to the PAA server
whenever a rating is given by a user. Alternative rating scales could be, e.g., unary (like),
binary (like vs. dislike), or a 100-point slider (see [36]). Finally, instead of asking the user
for explicit ratings, the user’s interest can also be estimated from implicitly recorded inputs
or signals (e.g., page visit count and duration monitored in the browser, or number of dis-
cussion posts and reported plays from a gaming community site) including context (e.g.,
current location, time, brightness). Such additional information could further be employed
for filtering or re-ordering of recommended items. For textual comments or posts, analyzing
whether they are positive or negative through natural language processing could also yield
further insights. Other examples would be querying the user’s current geographic location
or local time for recommender systems with location or temporal awareness. Using aug-
mentation engines and extensions in the browser, monitoring user behaviour a wide range
of parameters can be collected, and, if necessary, on the server they can be aggregated to
derive rating values (i. e., the server has a memory of past parameter recordings, also avoid-
ing any storage requirements on clients). However, whereas it would be possible to build
comprehensive user profiles from such recorded inputs, a discussion of which parameters to
use or, thereupon, the configuration of a recommender engine would go beyond the scope
of this paper.

4. PropertyDisplayConfig—recommendations In principle recommended items could be
provided to the user in any kind of separate UI element, however, an obvious solution
is to augment item links directly into all shown item pages (also allowing customization

Fig. 5 RecSys-Creator plug-in wizard after placing the widgets for rating (center/top; stars below page title
“True Detective”) and for recommendations (page’s left menu; with orientation “vertical” and number of
recommended items “5”)

6795

Multimedia Tools and Applications (2021) 80:6785–6809

of number and layout of shown recommendations). In our wizard, like with the ratings-
widget above, the user has to configure the relative position and parameters for this
recommendations-widget, which retrieves recommendations from the PAA server (in JSON

format) and shows them according to its configuration.

5. OperationConfig—script execution parameters Beyond extraction and display of
properties, a URL pattern defines on which pages the recommender script should be exe-
cuted (i.e., the item domain). Additionally, script name and namespace (e.g., the creator’s
email address) define a unique operation domain for the recommender engine. This means
that, multiple user scripts can share items and ratings between each other, enabling the ver-
sioning of scripts, and, additionally, by specifying the same operation domain for scripts
running on different web sites, simple cross-domain recommender systems can be realized
in a straightforward manner.

6. RuntimeControl—system control at runtime As discussed in the related works section,
controllability is an important aspect to achieve user satisfaction. Therefore, it is fun-
damental to inform the end-user about the system’s actions, as it is currently possible
through monitoring customizable information messages in the browser console. To increase
user control, implicit or explicit feedback on recommendations could be collected through
the recommendations-widget, i.e., implicitly tracking item clicks, or explicitly providing
options for “don’t show this again” or “more like this”. To take this further, widgets or
dedicated UIs (e.g., on the PAA server) could also provide options to select and customize
algorithms and architectures. For this, however, the script creator would have to specify
alternate options in all the corresponding configuration classes.

Wizard implementation details From a technical point of view, our RecSys-Creator plug-
in implementation is a browser extension developed as a bootstrapped Firefox extension
(executable on Firefox up to version 56). That is to say, we provide a special script with
four functions (install, uninstall, start up, shut down) that the browser can call, and these
are in charge of loading/unloading special behaviour and UI elements into the browser. We
used the high-level API of the Firefox add-on SDK, which allowed us to interact with the
browser tabs, sidebar and add a toolbar toggle button, to make CORS requests (cross-origin
resource sharing), to use L10n content localization and to attach new behaviour and style to
the visited web pages.

A web extension of this kind has components at two levels: browser level and page
level. Those at the browser’s side have a higher level of permissions regarding requests,
file storage, and browser UI modification, but those components cannot directly manipulate
the DOM of a page. For this it was required to load some components at page-side and
implement data exchange between page, browser, and sidebar. There, in the sidebar, our
wizard can be loaded for any page the user wants to work with. We used page workers to
load JQuery (for pages that do not have it) and our own JavaScript- and page-side artifacts
that make it possible for our extension to interact with the page content, for instance, to
enable users to pick a DOM element and retrieve its XPath for further processing.

The sidebar (built using SDK UI components) creates a new context for any web content
to be loaded independently from the current web page. This means that we did not tarnish
the current page style, behaviour or content to implement our wizard. In this manner, the
browser-level components constitute a bridge between page components and sidebar com-
ponents, and they are responsible for retrieving external content as well as for saving the
recommender user script specification. Employing a set of hard-coded JavaScript blocks

6796

Multimedia Tools and Applications (2021) 80:6785–6809

and libraries, this specification allows to generate a user script and offer it for download
and installation. After the installation in an augmentation engine (e.g., Greasemonkey), the
user script automatically modifies loaded pages and augments recommendations as it was
shown in Fig. 1. The Appendix provides further examples of running scripts.

Not least, it is important to mention that for practical reasons, in this paper, we use our
previous client-server architecture for adding recommendations through web augmentation.
However, the (EUD) approach presented in this section is at a different level of abstraction,
focusing on an EUD environment that generates a user script using a particular code gener-
ator strategy. In this regard the concepts and techniques are reusable even when it would be
required to generate augmentation artifacts for another architecture, such as, for instance,
for generating peer-to-peer augmentation artifacts [20].

5 Evaluation, results & discussion

The overall goal of the evaluation were, firstly, to find out whether end-users understand
the general idea of the approach and if they are able to follow the wizard’s instructions, also
assessing the usefulness of the provided documentation with tutorial videos. Secondly, we
investigate if they are successful in creating working recommender user scripts. Thirdly, we
question participants to acquire their opinion on the RecSys-Creator’s usability and versa-
tility for different people, websites and situations. Concluding we discuss threats to validity
and limitations of the approach along with some potential remedies.

5.1 Evaluation task and survey results

The participants’ task was to use the plug-in wizard for a website of choice to create a
recommender system user script, to run that script (giving ratings and receiving recommen-
dations, but not necessarily sharing the script with other users), and, finally, to fill in an
online survey with predefined options as well as free-text form fields.

Participants & skills The survey had 30 participants,11 who all stated that they use browsers
daily. More than half also use browser plug-ins at least almost daily. In contrast, only 4 par-
ticipants employ user scripts on a regular basis.12 Further, 6 users have already developed
browser extensions or scripts.13 The participants mostly have some sort of technical back-
ground and during self-assessment 20 stated to have professional or advanced programming
skills,14 however, surprisingly, only 3 have such knowledge of recommender systems.

Goal 1: understanding and documentation Our provided documentation (information on
the website, instructions in the sidebar plug-in, tutorial videos) for using the RecSys-Creator
was perceived to be mostly useful.15 For 83% of participants using the RecSys-Creator was

1112 of them were engaged in the context of a practical course within the computer science master curriculum
at Johannes Kepler University Linz, Austria, whereas the remaining 18 were voluntary participants from
Austria, Argentina, France, and Spain. The participants were from 19 to 40 years of age.
12Chose between ‘some times per month’ and ‘daily’.
13User scripts shared with friends or an online community: 5 participants;
Browser plug-ins: 2 participants.
14Only 7 have professional or advanced skills in JavaScript.
15For website, sidebar, and videos: 26, 29, and 25 out of 30 participants chose ‘mostly’ or ‘very much’ useful.
6 participants would have wished for more documentation.

6797

Multimedia Tools and Applications (2021) 80:6785–6809

Fig. 6 RecSys-Creator evaluation survey responses regarding experienced difficulties throughout the various
steps of the given tasks

easy16 and, as shown in the diagram in Fig. 6, for the individual practical tasks they largely
knew what to do in each step. In particular, those steps that were guided by the wizard
caused only a few problems.

In this context, we did also observe tendencies that skillful programmers as well as
participants with better knowledge of recommender systems had fewer problems.17

In spite of these positive responses, difficulties arose regarding installation and handling
of browser plug-ins and created user scripts, as well as during the selection of suitable
websites. In this context, through the free-text response questions we learned that several
participants in fact did not comprehend the concept of collaborative filtering (in particular
the fact that ratings by (multiple) other users are required to retrieve meaningful recom-
mendations). However, since dealing with plug-ins and scripts is inevitable in the world of
web augmentation, better instructions and integration in the RecSys-Creator may improve
user experience in these regards. As for the selection of sites and pages, users who vol-
untarily augment personalized recommendations should have chosen a suitable target site
before even starting the RecSys-Creator. Nevertheless, additional guidance or a verification
mechanism would be favorable, especially to explicate the requirements for user ratings,
and script usage statistics could be reported to script creators as well as users.

Goal 2: functionality of scripts Each of the participants created at least one user script, with
a variety of target websites and items.18 47% of participants managed to create a script that

16Chose ‘easy’ or ‘mostly easy’.
1787% of participants think that technical or programming skills are ‘not at all’ or ‘hardly’ necessary to use
the RecSys-Creator.
18Ranging from books, food recipes, beers, movies, computer games, comics, shopping portals, wikis, blogs,
news, to university courses.

6798

Multimedia Tools and Applications (2021) 80:6785–6809

works ‘very much’ as they had expected.19 10% could ‘not at all’ create such a script.20 The
remaining majority of scripts did in fact work fine in terms of functionality, but problems
arose during the positioning of widgets, as we explain in the following.

Goal 3: usability and versatility As mentioned earlier, augmented widgets for rating and
recommendation are positioned relative to existing elements in the page DOM tree, which in
turn are picked by clicking with the cursor. Whereas several survey participants particularly
liked this way of interacting with the page, it was irritating to some users that it has to be
done in a trial-and-error procedure (click and retry if not satisfied). Neglecting the given
instructions, several participants did not do this.21

To alleviate such problems, the wizard should provide better explanations and a more
interactive guidance. Additionally, further options for widget positioning and style could be
implemented (e.g., positioning as sub-elements or absolute positioning, or applying custom
CSS styles), and the augmentation could be verified as a separate step during script cre-
ation (e.g., by forcing users to interact with the positioned widgets). Finally, when errors
occur at script execution time, for instance when a site’s individual pages do not adhere
to a coherent structure or due to modifications made by the provider, appropriate reports
should be provided to the user or script creator.22 Finally, in this context, Fig. 7 exhibits
some survey responses regarding the plug-in wizard’s versatility according to the survey
participants.

Further observations Measuring the time it took the users to create their first script, for
the vast majority it took between 5 and 18 min to finish (from starting the RecSys-Creator
wizard to creating the .user.js user script file).23

5.2 Threats to validity

The prime target audience for using the RecSys-Creator comprises end-users who are members
of some community or website users who want to introduce a recommender system for
personalization on their own initiative. In contrast, our sample of 30 survey participants were
asked to select some site on their own. This does not perfectly resemble the actual target
audience of end-users, and the survey results have to be interpreted considering this aspect.

Regarding the necessity for programming skills, only 5 of 30 participants stated to have

19Scale ranging from ‘1 (not at all)’ to ‘4 (yes very much)’; 27% answered ‘3’.
20One of them simply misunderstood the concept of individual items and pages. Several others failed due to
(now fixed) bugs in our prototypical implementations. Two scripts did not work because users positioned the
rating and recommendation widgets relative to each other.
21Resulting in widgets being augmented such that they are difficult to be seen, e.g., overlapping with other
content or positioned at the very end of the page.
22Instead of logging to the browser console only.
23For a few outliers it took below 3 or beyond 20 min. Interestingly, there also is a gap from 10 to 13 min.
Thus, in fact there seem to be two groups (5–9 and 14–18 min), possibly due to some users having watched
the tutorial videos beforehand or not at all, while others may have watched them from within the wizard.

6799

Multimedia Tools and Applications (2021) 80:6785–6809

Fig. 7 RecSys-Creator evaluation survey responses regarding versatility

basic or no programming skills. Nevertheless, 3 of these 5 managed to create a user script
that functions perfectly according to our judgement (all parameters defined and widgets
positioned properly). Thus, we conclude that programming skills are indeed not a require-
ment for using our RecSys-Creator, but there is definitely a necessity for some technical and
browser skills.

5.3 Limitations of the approach

In addition to the issues that were identified through the evaluation, there are some limita-
tions of our approach. In the following, also comparing our approach with others, we discuss
these issues along with potential remedies.

Item removal So far our approach does not foresee the removal of items, and, thus,
invalidated items may still be recommended by the PAA server. The RecSys-Creator doc-
umentation therefore discourages its use for items or pages with a limited lifetime, such
as online auctions. Other approaches do not have this problem: oftentimes recommender
systems (be it traditional or distributed ones) do not separate data collection from model
creation; and systems for personalization as a service are usually well integrated with the
site’s database of items (instead of collecting data on-the-fly during web browsing). Poten-
tial remedies could be setting a generic time-to-live to remove items after they have not
been rated for a certain time. Another possibility would be checking for page availability
or specific contents of pages (e.g., “bidding has ended”), either regularly from the server
or when pages are loaded on a client. Finally, items could be removed manually (e. g.,
through a widget button), either globally for all users (optionally using a voting mecha-
nism), or for individual users only (LensKit supports setting such filtering restrictions; cf.
Recommendation Query Language [1]).

Uniqueness of item IDs Currently the approach bases on web addresses as they are used
for browsing the web, i.e., URLs, to identify items. However, these are per definition only

6800

Multimedia Tools and Applications (2021) 80:6785–6809

locators of resources, consequently they are not necessarily unique (i.e., multiple URLs may
represent the same item). This is a challenge faced by many approaches which crawl sites
on the Web to retrieve unique items or pages. For our generic approach aiming to work
with arbitrary websites, however, this is rather difficult to automate. To alleviate this situ-
ation, besides removing query string parameters from URLs and unifying protocol prefixes
(https vs. http), a straightforward solution could be to create unique IDs from URLs,
item names, specific sections in the page DOM, or combinations of the former.

Recommendation quality Our server bases on an extensible open-source recommender
system framework, providing a variety of configuration and customization options24 to deal
with the issue of quality of recommendations, as this would have clearly gone beyond the
scope of our paper. During development and as long as there are not enough collected rat-
ings, random item recommendations are given. Nevertheless, with only a few users sharing
a specific recommender script, the cold start problem may be particularly grave in compar-
ison to other solutions. As a remedy, publicly available ratings and items could be used to
populate the server database beforehand (e. g., using a separate wizard). Furthermore, feed-
back on recommendations may be exploited to improve recommendations or to tackle the
cold start problem, as previously proposed by Xie et al. [39], who further incorporate tag
information for that purpose.

Websitemodifications As it is the case for any web augmentation user script, the presented
approach is rather sensitive to website layout and structure modifications. Traditional rec-
ommender systems, in contrast, usually have direct access to the underlying model, and are
therefore invariant to view changes. Consequently, error handling and reporting from scripts
is crucial and, to facilitate script maintenance, the RecSys-Creator should provide functions
for versioning and for notification of creators upon site changes, as well as for propagating
changes to script end-users (e. g., using the functionality for automatic updates in Grease-
monkey). Not least, if page styles are modified, and the content can still be matched, new
XPath expressions may be acquired and user scripts be updated automatically.

Communication and execution times Regarding script execution and traffic between
client and PAA server, there are several issues that we did not investigate in detail, including
performance and scalability of server components. Since scripts are not aware whether items
were rated already (by any user), currently all item information is being extracted and sent
to the server redundantly with every rating, and, in addition, ratings are sent every time the
page is loaded in the user’s browser. This causes a significant overhead on the server, there-
fore, optimizations would be required for real applications. On one hand, in this manner
page load times are not affected in the browser, but on the other hand the asynchronous DOM

modifications can cause visible delays in page assembly. Unfortunately, there is no obvious
solution to this problem specific to our approach, since only after page load from the web
server (1. view generation), augmentation data can be requested from the PAA server (2.
query recommender service) to later modify, once again, the shown page (3. view modifica-
tion). To alleviate this problem, a possible optimization in terms of performance would be
to pre-build recommender models and to cache models as well as item catalogs on clients.

24http://lenskit.org/documentation/basics/configuration/

6801

http://lenskit.org/documentation/basics/configuration/

Multimedia Tools and Applications (2021) 80:6785–6809

6 Conclusions and outlook

In this paper we have presented an approach to combine web augmentation techniques with
recommender systems, allowing end-users without programming skills to embed collab-
orative filtering functionality into almost arbitrary websites. For this we have established
a list of required configuration parameters to automatically create collaborative filtering
JavaScript user scripts, basing on our previously proposed PAA architecture [38]. There-
upon, we have developed an EUD environment to capture these parameters based on a
generic meta-model for configuration and control of recommender systems, independent
of the system’s architecture. It was then implemented as a RecSys-Creator browser plug-in
wizard employing a simple-to-use graphical interface as well as code generation compo-
nents. The resulting scripts are executed on client-side through complementary browser
extensions, such as the popular Greasemonkey. Many of these augmentation engines also
exist for mobile browsers, making the artifacts generated in our EUD environment also
executable on mobile devices. Recommender system functionality is consumed from a third-
party server, to augment rating functionality and recommended items into web pages. In
an evaluation survey with 30 end-users with varying technical backgrounds the idea of the
approach was well received. Whereas widget positioning should be improved technically
as well as with respect to the user interface, the approach has proven to work and the cre-
ated scripts function correctly for a variety of different websites, without requiring any
programming.

Potential extensions and future work For extending the presented approach several ideas
come to mind. To begin with, due to changes in browser APIs and the rise of a standard for
web extensions,25 we are currently planning to migrate our wizard to use the new stable
WebExtensions API. This way, it will not be limited to Firefox, but it should run on all
current browsers implementing this future standard (currently also Chrome, Edge, Opera).

The asynchronous workflow of web augmentation recommender scripts (1. view gen-
eration, 2. querying recommender service, 3. view modification) offers certain distinctive
possibilities. For instance, it could be investigated how the user model can be enriched
with other information that can be extracted from the page, including recommendations or
personalization artifacts provided by the site (i. e., learning about the user through items
recommended to him on sites that already provide personalization). Regarding recom-
mendation quality, whereas it has been suggested that it is difficult to measure the user’s
perceived quality with traditional metrics [10], the resulting systems could be evaluated
performing a direct comparison between original and additionally augmented recommen-
dations (e. g., performing a systematic user study). Related to this, besides reordering or
replacing, original and additionally computed recommendations could also be mixed using
different strategies.

Also, as the sheer amount of available user scripts on the Web indicates, plentiful of
options exist to adapt web pages and applications, which implies that there also could be
many more options for extracting user profiles and injecting recommendations within the
browsing process.

Concerning the operation domain of created recommenders we could differentiate
between the configuration of a view for creating user profiles (i.e., calculating user
similarities) and the range of items for giving recommendations (i. e., calculating item

25https://browserext.github.io/browserext/

6802

https://browserext.github.io/browserext/

Multimedia Tools and Applications (2021) 80:6785–6809

recommendations). Thereupon, tracking of user behaviour across multiple websites may
yield comprehensive profile information for improving recommendations on individual sites
(cf. [30]). For instance, a user reading about a historic topic on an encyclopedia site could
be provided with recommendations for related board games on a gaming site, further giv-
ing options to obtain matching games in libraries and shops near his/her current location.
However, for sharing such comprehensive profiles an appropriate control mechanism for
script creators as well as users is essential to maintain the user’s trust in the system. In this
context, providing provenance information to explain given recommendations to interested
users might also be beneficial.

Regarding algorithm configuration, the variety of setting options of the employed Lenskit
framework24 could be exploited to offer further customization options to the script creator
(potentially set from clients via an API using Lenskit’s Groovy-based DSL). In this manner
users could specify preferences regarding recommender persistence, serendipity, or privacy
(however, potentially impacting accuracy). In a related matter, an interesting outlook is
that the used recommender algorithms, based on collaborative filtering, could be improved,
changed or combined with others independently of the EUD approach proposed in this
paper. In this work we focus on the end-user programming techniques required to enable
end-users to define the recommender system’s aspects they perceive, i.e., mostly related to
how user interface components are defined and woven in relation to a particular web site’s
DOM. Other works have analyzed the problem of how end-users control recommender algo-
rithms [14]. In this regard, we believe that our approach can easily be extended with new
features. For instance, in other works we have also proposed an end-user mobile web aug-
mentation approach [7], that enables end-users to define context-aware augmentations from
their mobile web browsers. This approach could be easily integrated with the approach pre-
sented in this paper by defining an extension of the proposed meta-model according to these
new features.

Beyond the configuration of recommender algorithms, extensions could allow to cre-
ate completely different architectures of recommender systems, allowing the script creator
to choose, for instance, a peer-to-peer architecture with models and recommendations
computed entirely on client-side, and adding specified noise before data exchange with
neighbors to increase privacy. Further, to broaden its applicability, it could be investigated
how the proposed meta-model can be extended from recommender systems to specify con-
figuration and control to cover all kinds of personalization and profiling architectures, for
instance, for decentralized learning of models [37].

On top of that, a generic DSL, maybe a “recommender systems description language
(RSDL)”, could be developed to configure all kinds of recommender system architectures,
based on a refined version of our meta-model, and using established reference models from
literature as extensions (e.g., for modeling users and items). Means for serialization of sys-
tem configurations could then also aid the versioning and modification of created scripts. In
this context, required server components (depending on the system architecture) could be
hosted by a generic platform-as-a-service provider of cloud computing services, possibly
also offering to utilize Lenskit. Apart from parallelization this could also alleviate potential
scalability issues that arise from communication overhead in large-scale application sce-
narios with our current implementation. Such an RSDL could then serve as a standardized
reference model for providers of mobile and web applications to describe their integrated
recommender and personalization systems, to further give users an opportunity to explic-
itly configure their personalization artifacts based on their privacy preferences (similar to
the “Do Not Track” function of modern browsers). Ultimately, the rise of such architectures

6803

Multimedia Tools and Applications (2021) 80:6785–6809

may be only a small step for application providers, but one giant leap for the empowerment
of the crowds longing for customization on the Web.

Funding Open access funding provided by Johannes Kepler University Linz.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

Appendix : Running RecSys-Creator recommender scripts

This appendix provides several screen-shots for running user scripts, utilizing the alternative
capabilities of our RecSys-Creator wizard, as explained in Section 4.

Fig. 8 Example: adapted CocktailScout website (cocktailscout.de) with augmented recipe recommendations
(right menu bar; box “Recommendations”). In contrast to Fig. 1 in the introduction, where the augmentation
user script was implemented manually, for this example it was created with the RecSys-Creator wizard in
just a few minutes

6804

http://creativecommonshorg/licenses/by/4.0/
cocktailscout.de

Multimedia Tools and Applications (2021) 80:6785–6809

Fig. 9 Example: adapted MediaWiki wiki site (www.c64-wiki.de), running a user script created according
to the demonstration from Section 4. The script augments a rating widget (below the title heading) as well as
recommendations (in the left menu)

6805

www.c64-wiki.de

Multimedia Tools and Applications (2021) 80:6785–6809

Fig. 10 Example: adapted bookstore page of the Argentinian retailer Cúspide (cuspide.com) with an aug-
mented rating widget (center/top, directly below the book title “Notas de Viaje”) as well as augmented
recommendations (further below, heading “Recommendations”). The bottom of the figure shows the login
form to authenticate against the PAA server directly, which is displayed instead of item recommendations as
long as the user is not logged in

6806

cuspide.com

Multimedia Tools and Applications (2021) 80:6785–6809

References

1. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the
state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749

2. Aghaee S, Pautasso C (2014) End-user development of mashups with naturalmash. Vis Lang Comput
25(4):414–432

3. Ankolekar A, Vrandecic D (2008) Kalpana—enabling client-side web personalization. In: Duval E (ed)
Proceedings of hypertext 2008. HT ’08, ACM, Pittsburgh

4. Barbosa ADM (2014) Privacy-enabled scalable recommender systems. Ph.D. thesis, University of Nice
Sophia Antipolis, France. https://tel.archives-ouvertes.fr/tel-01135312

5. Barrett R, Maglio PP (1998) Intermediaries: new places for producing and manipulating web content.
Comput Netw ISDN Syst 30(1):509–518

6. Bobadilla J, Ortega F, Hernando A, Gutiérrez A (2013) Recommender systems survey. Knowl-Based
Syst 46:109–132

7. Bosetti G, Firmenich S, Gordillo SE, Rossi G, Winckler M (2017) An end user development approach for
mobile web augmentation. Mob Inf Syst 2525367:1–2525367:28. https://doi.org/10.1155/2017/2525367

8. Brusilovsky P (2007) Adaptive navigation support. In: Brusilovsky P, Kobsa A, Nejdl W (eds) The
adaptive web, LNCS, vol 4321. Springer, Berlin, pp 263–290

9. Cantador I, Fernández-Tobı́as I, Berkovsky S, Cremonesi P (2015) Cross-domain recommender systems.
Springer US, Boston, pp 919–959. https://doi.org/10.1007/978-1-4899-7637-6 27

10. Cremonesi P, Garzotto F, Negro S, Papadopoulos A, Turrin R (2011) Comparative evaluation of recom-
mender system quality. In: CHI ’11 extended abstracts on human factors in computing systems. ACM,
New York, pp 1927–1932

11. Della Penna G, Magazzeni D, Orefice S (2010) Visual extraction of information from web pages. Vis
Lang Comput 21(1):23–32

12. Dı́az O, Arellano C (2015) The augmented web: rationales, opportunities, and challenges on browser-
side transcoding. ACM Trans Web 9(2):8:1–8:30

13. Dı́az O, Arellano C, Aldalur I, Medina H, Firmenich S (2014) Towards the personal web: empowering
people to customize web content. In: Web information systems engineering (WISE) 2014, Lecture Notes
in Computer Science, vol 8786. Springer International Publishing

14. Ekstrand MD, Kluver D, Harper FM, Konstan JA (2015) Letting users choose recommender
algorithms: an experimental study. In: Proceedings of the 9th ACM conference on recom-
mender systems. RecSys ’15. Association for Computing Machinery, New York, pp 11–18.
https://doi.org/10.1145/2792838.2800195

15. Elmisery AM, Rho S, Sertovic M, Boudaoud K, Seo S (2017) Privacy aware group based recommender
system in multimedia services. Multimed Tools Appl 76:26103

16. Eynard D (2008) Using semantics and user participation to customize personalization. Tech. rep., HP
Labs. http://www.hpl.hp.com/techreports/2008/HPL-2008-197.html

17. Firmenich D, Firmenich S, Rivero J, Antonelli L (2014) A platform for web augmentation requirements
specification. In: Web engineering, lecture notes in computer science, vol 8541. Springer International
Publishing, pp 1–20

18. Fu X, Budzik J, Hammond KJ (2000) Mining navigation history for recommendation. In: Proceedings
of the 5th international conference on intelligent user interfaces. IUI ’00. ACM, New York, pp 106–112

19. Garrido A, Firmenich S, Rossi G, Grigera J, Medina-Medina N, Harari I (2013) Personalized web
accessibility using client-side refactoring. Internet Computing, IEEE 17(4):58–66

20. Gonzalez R, Firmenich S, Fernández A, Rossi G, Velez D (2020) An approach to build P2P web exten-
sions. In: Bieliková M, Mikkonen T, Pautasso C (eds) Web Engineering—20th international conference,
ICWE 2020, Helsinki, Finland, June 9–12, 2020, Proceedings. Lecture Notes in Computer Science, vol
12128. Springer, pp 467–474. https://doi.org/10.1007/978-3-030-50578-3 31

21. Guo H, Chen J, Wu W, Wang W (2009) Personalization as a service: the architecture and a case study.
In: Proceedings of the first international workshop on cloud data management. CloudDB ’09. ACM,
New York, pp 1–8

22. Harper FM, Xu F, Kaur H, Condiff K, Chang S, Terveen L (2015) Putting users in control of their
recommendations. In: Proceedings of the 9th ACM conference on recommender systems. RecSys ’15.
Association for Computing Machinery, New York, pp 3–10. https://doi.org/10.1145/2792838.2800179

23. Hendry, Pramadharma H, Chen RC (2015) Building browser extension to develop website per-
sonalization based on adaptive hypermedia system. In: Current approaches in applied artificial

6807

https://tel.archives-ouvertes.fr/tel-01135312
https://doi.org/10.1155/2017/2525367
https://doi.org/10.1007/978-1-4899-7637-6_27
https://doi.org/10.1145/2792838.2800195
http://www.hpl.hp.com/techreports/2008/HPL-2008-197.html
https://doi.org/10.1007/978-3-030-50578-3_31
https://doi.org/10.1145/2792838.2800179

Multimedia Tools and Applications (2021) 80:6785–6809

intelligence. Lecture Notes in Computer Science, vol 9101. Springer International Publishing,
pp 316–325

24. Hijikata Y, Kai Y, Nishida S (2014) A study of user intervention and user satisfaction in recommender
systems. J Inf Process 22(4):669–678

25. Jawaheer G, Weller P, Kostkova P (2014) Modeling user preferences in recommender systems: a clas-
sification framework for explicit and implicit user feedback. ACM Trans Interact Intell Syst 4(2):8:1–
8:26

26. Kleek MV, Smith DA, Shadbolt NR, Schraefel M (2012) A decentralized architecture for consolidating
personal information ecosystems: The webbox. In: Personal information management workshop, ACM
conference on computer supported cooperative work

27. Knijnenburg B, Bostandjiev S, O’Donovan J, Kobsa A (2012) Inspectability and control in social
recommenders. In: Proceedings of the 6th ACM conference on recommender systems

28. Kobsa A, Knijnenburg BP, Livshits B (2014) Let’s do it at my place instead? Attitudinal and behavioral
study of privacy in client-side personalization. In: SIGCHI conference on human factors in computing
systems. CHI ’14, pp 81–90, Toronto, Canada

29. Kolias C, Kolias V, Kambourakis G, Kayafas E (2013) A client-side privacy framework for web
personalization. Springer, Berlin, pp 297–316

30. Kotkov D, Wang S, Veijalainen J (2017) Improving serendipity and accuracy in cross-domain rec-
ommender systems. In: Monfort V, Krempels KH, Majchrzak TA, Traverso P (eds) Web information
systems and technologies. Springer International Publishing, Cham, pp 105–119

31. Malle B, Giuliani N, Kieseberg P, Holzinger A (2017) The more the merrier—federated learning from
local sphere recommendations. In: Holzinger A, Kieseberg P, Tjoa AM, Weippl E (eds) Machine learning
and knowledge extraction. Springer International Publishing, Cham, pp 367–373

32. Newell C, Miller L (2013) Design and evaluation of a client-side recommender system. In: Proceedings
of ACM conference on recommender systems. ACM, New York, pp 473–474

33. Ricci F, Rokach L, Shapira B (eds) (2015) Social recommender systems. Springer US, Boston
34. Simpson JE (2002) XPath and XPointer—locating content in XML documents. O’Reilly Media ISBN:

978-0-596-00291-6
35. Son LH (2016) Dealing with the new user cold-start problem in recommender systems: a comparative

review. Inf Syst 58:87–104
36. Sparling EI, Sen S (2011) Rating: how difficult is it? In: Proceedings of the fifth ACM conference on

recommender systems. RecSys ’11. ACM, New York, pp 149–156
37. Vanhaesebrouck P, Bellet A, Tommasi M (2017) Decentralized collaborative learning of personalized

models over networks. In: International conference on artificial intelligence and statistics (AISTATS).
Fort Lauderdale. https://hal.inria.fr/hal-01533182

38. Wischenbart M, Firmenich S, Rossi G, Wimmer M (2015) Recommender systems for the people—
enhancing personalization in web augmentation. In: Proceedings of the IntRS workshop, ACM
conference on recommender systems, Vienna, Austria, September 19, 2015, pp 53–60

39. Xie Q, Xiong F, Han T, Liu Y, Li L, Bao Z (2018) Interactive resource recommendation algorithm based
on tag information. World Wide Web

40. Zheng X, Luo Y, Sun L, Ding X, Zhang J (2017) A novel social network hybrid recommender system
based on hypergraph topologic structure. World Wide Web

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

6808

https://hal.inria.fr/hal-01533182

Multimedia Tools and Applications (2021) 80:6785–6809

Affiliations

Martin Wischenbart1 · Sergio Firmenich2,3 ·Gustavo Rossi2,3 ·
Gabriela Bosetti2 · Elisabeth Kapsammer4

Sergio Firmenich
sergio.firmenich@lifia.info.unlp.edu.ar

Gustavo Rossi
gustavo.rossi@lifia.info.unlp.edu.ar

Gabriela Bosetti
gabriela.bosetti@lifia.info.unlp.edu.ar

Elisabeth Kapsammer
elisabeth.kapsammer@jku.at

1 Johannes Kepler University Linz, Linz, Austria
2 Laboratorio de Investigación y Formación en Informática Avanzada (LIFIA), Universidad Nacional de

La Plata, La Plata, Argentina
3 CONICET, La Plata, Argentina
4 Department of Cooperative Information Systems (CIS), Johannes Kepler University Linz, Linz, Austria

6809

http://orcid.org/0000-0002-0838-2993
http://orcid.org/0000-0001-9502-2189
http://orcid.org/0000-0002-3348-2144
http://orcid.org/0000-0002-3968-6738
http://orcid.org/0000-0002-4778-8435
mailto: sergio.firmenich@lifia.info.unlp.edu.ar
mailto: gustavo.rossi@lifia.info.unlp.edu.ar
mailto: gabriela.bosetti@lifia.info.unlp.edu.ar
mailto: elisabeth.kapsammer@jku.at

	Engaging end-user driven recommender systems: personalization through web augmentation
	Abstract
	Introduction
	Related work
	Recommender systems through web augmentation
	PAA architecture overview
	Data collection and sending to server s11042-020-09803-8flba.eps
	Processing on server s11042-020-09803-8flbc.eps
	Retrieval from server and augmentation in page s11042-020-09803-8flbd.eps

	An approach based on end-user development
	A meta-model for configuration and control of recommender systems
	Acquiring recommender specifications from users
	1. PropertyExtractionConfig—user properties
	2. PropertyExtractionConfig—Item Properties
	3. PropertyExtractionConfig—ratings from explicit and implicit data
	4. PropertyDisplayConfig—recommendations
	5. OperationConfig—script execution parameters
	6. RuntimeControl—system control at runtime
	Wizard implementation details

	Evaluation, results & discussion
	Evaluation task and survey results
	Participants & skills
	Goal 1: understanding and documentation
	Goal 2: functionality of scripts
	Goal 3: usability and versatility
	Further observations

	Threats to validity
	Limitations of the approach
	Item removal
	Uniqueness of item IDs
	Recommendation quality
	Website modifications
	Communication and execution times

	Conclusions and outlook
	Potential extensions and future work

	Appendix A : Running RecSys-Creator recommender scripts
	References
	Affiliations

