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The elastic and radiative p+p scattering are studied in the framework of an effec-
tive Lagrangian model for the D++ resonance and its interactions. The finite width
effects of this spin-3/2 resonance are introduced in the scattering amplitudes
through a complex mass scheme to respect electromagnetic gauge invariance. The
resonant pole (D++) and background contributions (r0, s, D, and neutron states)
are separated according to the principles of the analytic S-matrix theory. The mass
and width parameters of the D++ obtained from a fit to experimental data on the
total cross section are in agreement with the results of a model-independent analy-
sis based on the analytic S-matrix approach. The magnetic dipole moment deter-
mined from the radiative p+p scattering is mD++=(6.14 ± 0.51) nuclear magnetons.

1. INTRODUCTION

Elementary particles with spin larger than 1 have not been discovered yet.
However, composite higher spin particles have been observed in nature as
bound states of quarks. (1) On the other hand, the formulation of a fully
consistent quantum field theory for these particles is far from being
complete. Thus, the description of the dynamics of such hadronic particles
is usually done in terms of an effective Lagrangian model. Such relativistic
models of classical fields are built using as a guide the relevant symmetries
underlying the dynamics of the specific higher spin particles. Their use for



phenomenological purposes remains consistent as long as we restrict to a
tree-level description of the amplitudes for physical processes.

Here, we consider the case where spin-3/2 particles are unstable. To
be more specific, we are interested in the case of the D(1232) baryon reso-
nance and in the way we introduce its finite width effects in their associated
physical observables without destroying the symmetries of the effective
Lagrangian (particularly, the electromagnetic gauge invariance and the
invariance under contact transformations). Our goal is to provide a
framework where the intrinsic properties of this particle, such as the mass,
width, and magnetic dipole moment can be determined from experimental
data in a consistent and well defined way. By this we mean that those
properties share good physical requirements such as model independence
(whenever it becomes possible), unitarity, independence upon ad hoc form
factors, and invariance under the relevant symmetries of the interactions.

The D++ resonance has spin J=3/2 and isospin I=3/2. In some of
the most popular Lagrangian formulations, its dynamics can be described
in terms of a Rarita–Schwinger field k m(x). The dynamics of its interac-
tions with pions, nucleons and the electromagnetic field is governed by an
effective non-renormalizable Lagrangian. (2) Most of the problems related
to the quantization of the free and the interacting theory of spin-3/2 par-
ticles (3) (see the invited talk of Prof. Sudarshan at this meeting) are absent
when we use the Feynman rules to compute amplitudes only at the tree-
level, as it will be the case in the present work. For the purposes of this
work, such an effective Lagrangian must be able to describe the production
and decay of the D++ resonance in the elastic and radiative p+p scattering.
As in any effective theory of the strong and electromagnetic interactions,
the physical (S-matrix) amplitudes derived from our Lagrangian must be
invariant under strong isospin and electromagnetic gauge transformations.
Furthermore, this model must be invariant also under the so-called contact
transformations. (4) The contact transformations are necessary to eliminate
the unphysical components from the on-shell spin-3/2 fields. This does
not prevent that the propagation of a virtual spin-3/2 resonance carries
spin-1/2 components that contribute to the physical amplitude. (5) An
important ingredient of our model is to use a recipe (2) to incorporate the
finite width effects of the D++ resonance into the amplitude without spoil-
ing the invariance under the above symmetries that is respected in the case
of stable spin-3/2 particles.

A few more remarks are in order. The determination of the mass,
width, and magnetic dipole moment (MDM) of the D++ resonance have
been considered by many authors in the past (see the Particle Listings in
Ref. 1). Concerning the determination of the mass and width parameters,
the definitions used by authors falls into two categories: the conventional
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and the pole parameters. (6) In the conventional approach, these resonance
parameters are determined by applying the method of partial-wave analy-
ses that use generalized Breit–Wigner formulae to fit the experimental data.
This definition of mass and width have a strong model dependence as
far as each group has its own prescription for the treatment of analiticity,
the choice of background and the particular parametrization of the Breit–
Wigner formula. (6) Furthermore, an unambiguous separation of resonance
and background contributions in this case is hard to accomplish. In con-
tradistinction, in the pole of the S-matrix approach the pole position is
a physical property (a process- and model-independent property) of the
S-matrix amplitude. Thus, the mass and width parameters of a resonance
can be defined from this pole position in a more satisfactory way. It is
worth to mention that the numerical values of the mass and width of the
D++ defined from the pole position are significantly smaller (7) (1.7 and 15%,
respectively for the mass and width) than their counterparts in the conven-
tional approach.

On another hand, the determination of the magnetic dipole moment
of a resonance is necessarily model-dependent since one is forced to specify
the photon couplings to other particles. Different prescriptions to enforce
gauge invariance, to incorporate the resonance character of the D++, and
to introduce other structure-dependent effects (for example, some ad hoc
form factors) usually lead to different results for the MDM even using the
same experimental data. (1) Given this diversity of theoretical methods and
approximations, the PDG (1) prefers to quote an estimate for the magnetic
dipole moment in the (rather wide) range 3.5 [ mD++ [ 7.5 (in units of
nuclear magnetons).

The issue of gauge invariance for processes involving unstable particles
has received great attention in the last years and deserves a separate
comment. This was motivated by the necessity to have a consistent defini-
tion of mass and width for the Z0 (and W) gauge boson in view of the very
precise measurements carried out at LEP. More precisely, R. Stuart has
pointed out in the early nineties that the definition of the mass of the Z0

gauge boson in the on-shell scheme was not gauge-invariant. (8) He has
proposed to carry out a Laurent expansion of the full (calculated pertur-
batively) amplitude of e+e−

Q ff̄ around the pole position and separate
the amplitude into resonant and background term. (8) The pole and back-
ground terms in the amplitude resulting from this expansion are separately
gauge-invariant, and can provide a gauge-invariant definition for the mass
and width of the Z0 boson. This pole + background structure of the
amplitude is the same as the one imposed by general arguments of the
analiticity of the S-matrix that involves the production and decay of reso-
nances. (9) Later, using the Pinch Technique, Pilaftsis and Papavassiliou (10)
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were able to obtain an unstable propagator which provided a definition of
mass and width parameters of a gauge-boson resonance satisfying good
physical properties and, in particular, gauge invariance.

In two recent papers (11) we have extended these ideas to the sector
of the baryonic D++ resonance. Using an effective Lagrangian model to
describe the D++ and its interactions with the p+, p, and the photon fields,
we have been able to incorporate the finite width effects of this resonance
without spoiling the symmetries of the model that are satisfied in the case
of the zeroth-width approximation. In addition, the background contribu-
tions that originate from the exchange of intermediate states other than the
D++ (namely, the r0, s, D0, and the neutron states) are also incorporated
in our effective Lagrangian model. The full amplitude obtained in our
approach has the pole plus background structure dictated by the analytic
S-matrix theory. (9) Each one of these terms in the amplitudes are separately
gauge-invariant and the insertion of ad hoc form factors to restore gauge
invariance is not necessary in our case.

In this talk we summarize the main aspects of our analysis. We
emphasize from our results the model-independent aspects of the mass,
width and magnetic dipole moment parameters that follows from our sep-
aration of pole and background contributions. In a first step, we fix the
mass, the width and the strong coupling of the D++ from the elastic p+p
scattering. Then we obtain the D++ MDM from the radiative p+p scattering
observables. It is interesting to note that the elastic scattering requires the
contribution of the scalar s meson in the t-channel to get an improved fit
of the data. The details of the different calculations and input data can be
found in Ref. 11.

2. THE EFFECTIVE LAGRANGIAN

In this section we provide the pieces of the Lagrangian for the Rarita–
Schwinger field k m(x) that are relevant to describe the D++ contributions to
the elastic (p+p Q p+p) and radiative (p+p Q p+pc) processes of our inter-
est. The interaction Lagrangians for r0, s mesons and the neutron inter-
mediate states that contribute to the background amplitude are well known
and can be found for example in Ref. 11.

The Lagrangian that describes the D++ and its interactions with the
pion (f), proton (k), and photon (Am) fields is given by:

LD=L0+LDpp+LDDc+LDppc. (1)

722 Castro and Mariano



The different pieces in this Lagrangian have explicitly forms:

L0=k̄ mLma(A) GabLbn(A) k n, (2)

LDpp=1fDNp

mp

2 k̄ mLmn(A) k“
np+h.c., (3)

LDDc=−2ek̄n LnnŒ(A) CnŒmŒaLmŒm(A) kn Aa, (4)

LDppc=1efDNp

mp

2 k̄ mLmn(A) kpAn+h.c. (5)

The rank two tensors introduced in the above Lagrangians are defined as
follows:

Gab — gab(i“/ − M)+
i
3

(c a
“/c b − c a

“
b − “

ac b)+
1
3

Mc ac b, (6)

Lmn — gmn+
1
2

(1+3A) cm cn. (7)

We have defined the electromagnetic vertex of the D++ following Ref. 2:

Cabr=1cr −
ioD

2M
srs ks2 gab −

1
3

(cr ca cb+ca gbr − cb gar), (8)

where the D++ MDM is given by

mD++=2(1+oD)
e

2M
, (9)

and oD is the anomalous part of the magnetic dipole moment. In the above
equations, mp and M denote the pion and D++ masses while fDNp is the
(strong) coupling constant of the DNp vertex. The isospin-invariant version
of the above Lagrangian can be found in Ref. 11. The Feynman rules
associated to these Lagrangian can be found in Ref. 2.

The arbitrary parameters A that appears in the tensor Lmn(A) is asso-
ciated to the contact transformations acting upon the Rarita–Schwinger
field (a ] −1/4):

k m
Q k m+ac mcak a, A Q AŒ=

A − 2a
1+4a

. (10)

One can easily prove that the above (free and interacting) Lagrangian
remains invariant under these contact transformations. As is was proven
explicitly for the case of elastic and radiative p+p scattering, (2) the S-matrix
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amplitudes for these processes are independent of the arbitrary parameter
A as it should be. Furthermore, the following Ward identity between the
propagator P mn(p) (see Ref. 2) and the electromagnetic vertex of the D++

(see Eq. (8))

P ma(PŒ) Cabr k rP bn(P)=Pmn(P) − P mn(PŒ), (11)

assures that the S-matrix amplitude of the radiative p+p process is also
gauge-invariant.

In summary, the model for the D++ and its interactions with other
particles described in this section give rise to S-matrix amplitudes which are
gauge-invariant and satisfy invariance under contact transformations. This
conclusion holds as far as we consider the D as an stable particle. Intro-
ducing the decay width naively in the denominator of the propagator
destroys gauge invariance. In the following section we discuss a mechanism
to introduce consistently the finite width effects.

3. RECIPE FOR UNSTABLE PARTICLES

Consider a radiative processes that is dominated by the production
of a resonance in the s-channel. Using a propagator of an unstable as it
is obtained from Dyson summation of bubble graphs and the on-shell
renormalization scheme leads to an amplitude that is not invariant under
electromagnetic gauge transformations. The radiative amplitude can be
rendered gauge invariant if we replace m2

0 Q m2 − imC in all the Feynman
rules of the model, where m0 is the bare mass of the particle and m (C)
is its physical mass (width). This complex mass recipe was proposed as a
solution to recover electromagnetic gauge invariance of the amplitude of
resonant processes in Ref. 12.

To illustrate the origin of this recipe, let us consider a resonant scalar
particle as a simple example. As is well known, the self-interactions of this
particle during his propagation transforms its bare propagator

D0(q2)=
i

q2 − m2
0

into the renormalized propagator

D(q2)=
i

q2 − m2 − iZ Im P(q2)
, (12)

if we use the renormalization conditions m2
0=m2 − Re P(m2), Z−1=

1 − Re PŒ(m2). In this definition, m becomes the renormalized mass.
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The unitarity condition of the S-matrix amplitude allows to identify
Z Im P(q2)=−`q2 C(q2), where C(q2) is the decay width of the scalar
particle with (virtual) mass q2.

Let us consider now this renormalized propagator in a physical
process. One of the simplest radiative process is the scattering reaction
p+(p) g(q) Q p+(pŒ) g(qŒ) c(k, E) which we assume to be dominated by the
production of the charged scalar resonance a+

0 in the s-channel (letters
within parenthesis denote the four-momenta and E the photon polarization
vector). There are three resonant contributions corresponding to the
photon emitted from the external pion lines and from the internal a+

0

propagator line. The transition amplitude is given by

M=eg2 3−
p.E
p.k

D(QŒ)+
pŒ.E
pŒ.k

D(Q) − iD(Q) D(QŒ)(Q+QŒ).E4 . (13)

We have introduced the variables Q=p+q, QŒ=pŒ+qŒ (Q=QŒ+k) which
denote the four-momenta of the intermediate a+

0 resonance, and D(Qi)
denote its resonant propagator as given in Eq. (12). The factor g denotes
the coupling constant for the a0gp vertex.

We can easily check that the above amplitude is not gauge-invariant,
namely that M does not vanish when E is replaced by k. Gauge invariance
is not satisfied due to the presence of the (energy-dependent) imaginary
part of the propagator. Gauge invariance can be restored in different
forms, introducing in this way an ambiguity in the amplitude. One can for
instance include form factors in the strong vertices or additional contribu-
tions to the amplitude in an ad hoc way. A second possibility is to include
the one loop corrections to the electromagnetic vertex of the a+

0 meson in
order to satisfy a Ward identity at the one-loop level. A third option con-
sists in using a complex mass scheme as proposed in Ref. 12.

We consider here the complex mass scheme since it provides the
simplest solution. For the illustrative example under consideration, let us
consider only the absorptive corrections to the propagator. If we assume a
renormalized mass for the a0 from the beginning, we can write the absorp-
tive part of the self-energy correction as follows:

−Im P(s)=`s Ca0
(s)=

g2

16ps
{(s − (m+mŒ)2)(s − (m − mŒ)2}1/2, (14)

where m (mŒ) denotes the mass of the g (p+) meson running in the loop
correction. In the limit of massless particles in the loop we can check that:

−Im P(s) Q
g2

16p
=MC, (15)
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where C is the decay width of the a+
0 meson and M its mass. Thus, the

resonant propagator becomes:

Da0
(s) Q D̄a0

(s)=
i

s − M2+iMC
. (16)

This propagator can be obtained from the bare propagator if we simply
replace the bare mass by the pole position M2 − iMC, namely if we adopt
the complex mass scheme. Owing to the identity:

D̄a0
(QŒ) D̄a0

(Q)=
i

(Q+QŒ).k
{D̄a0

(QŒ) − D̄a0
(Q)}, (17)

we can check that using the resonant propagator (16) in the limit of
massless loop corrections, the amplitude Eq. (13) becomes gauge invariant.

This simple example illustrates that the complex mass scheme and the
absorptive one loop corrections to the electromagnetic vertex and the pro-
pagator (in the limit of massless particles running in loop corrections (13))
are equivalent methods to restore gauge invariance. Although this approx-
imation (massless particles in loop corrections) can hardly be justified in
the case of the D++ resonant propagator (because the proton in the loop is
not massless in the chiral limit), the complex mass scheme provides the
simplest solution to the gauge invariance problem for resonant amplitudes
and it will be adopted here for our calculations.

4. FITTING EXPERIMENTAL DATA

Just to clarify our procedure, we repeat here the main steps of our
analysis. First, we use the experimental data on the total cross section of
p+p elastic scattering to fix some relevant free parameters (mass, decay
width and strong coupling of the D) of the model. Then, we use the data on
radiative p+p scattering to fix the MDM of the D++ which remains as the
only free parameter in this reaction. The details of the fit procedure and
further additional tests of the model can be found in Ref. 11. Here we focus
on the discussion of the relevant features of the model and the results of
the fit.

4.1. Elastic p+p Scattering

The model contributions to the p+p Q p+p scattering includes the D++

resonance (s-channel), the r and s mesons (t-channel) and the D0 and
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neutron states (crossed-channel) contributions. There are five Feynman
diagrams corresponding to these contributions which can be found in
Ref. 11. The experimental data for the total cross section is chosen to lie in
the resonance region, which corresponds to pion kinetic energies Tlab=
75 ’ 300 in the lab system. (14) In this kinematical region, the elastic scatter-
ing is dominated by the production of the D++ resonance and all other
terms can be considered as small background contributions. This is indeed
the case, as it can be checked from Fig. 1.

The parameters entering the background contributions (except the D0

mass and the couplings of the scalar meson) are taken from other low
energy processes (see Ref. 11). Their precise values are not of critical
importance as far as they contribute as a small term to the amplitude.
Therefore, the only free parameters of the model are the mass (MD), width
(CD), and DNp (fDNp) coupling of the D and the effective coupling of the
scalar meson (gs=gspp gsNN).

In order to assess the influence of the different background terms, we
have performed several fits to the total cross section by adding successively
the different background contributions. For the mass of the scalar s meson
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Fig. 1. Total cross section of elastic p+p scattering: comparison of model and exper-
imental data.
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Table I. Fit Results to the Total Cross Section of p+p Elastic Scattering

Intermediate state f2
DNp/4p mD (MeV) CD (MeV) gs/4p q2/dof

D++, 0 0.281 ± 0.001 1201.7 ± 0.2 69.8 ± 0.2 – 121.1
D++, 0, N 0.331 ± 0.003 1208.6 ± 0.2 87.5 ± 0.3 – 17.6

D++, 0, N, r 0.327 ± 0.001 1207.4 ± 0.2 85.6 ± 0.3 – 15.6
D++, 0, N, r, s 0.317 ± 0.003 1211.2 ± 0.4 88.2 ± 0.4 1.50 ± 0.12 10.5

Unitarity 0.317 1211.7 92.2 1.50 9.8

Pole position 1212.2 ± 0.3 97.1 ± 0.4

we have chosen ms=650 MeV. We have allowed a wide variation of this
mass, namely Dms=± 200 MeV, and have found that it is correlated
mainly with the value of gs, while the other parameters are not affected in
an important way. The results of the fit are shown in Table I and in Fig. 1.

A few comments are in order:

(i) The q2/dof drops from 121 to 10 in going from the top to the
bottom of Table I, which indicates the necessity of including in
the fit some degrees of freedom other than the D resonance. The
large contributions to the q2/dof come from the data points for
the highest pion energies considered in the fit (see Fig. 1). In
Fig. 1 we can observe the best results obtained for each case
indicated in Table I. Although the q2/dof is not indicative of a
very good fit, we can expect that such a fit can be improved by
considering effects of rescattering and other background terms
excluded from the simple pole approximation implicit in our
model.

(ii) Since only the amplitude involving the D++ resonance has an
imaginary part, it can be easily checked that the complete
amplitude does not satisfy unitarity. We can force our result to
satisfy unitarity by adding a softly energy-dependent term to the
amplitude. The presence of additional terms in the amplitude can
be justified on the basis that we have kept only the pole term in
our amplitude for the D++ contribution. (11) The result obtained
from the fit when we impose unitarity is shown in the fifth row
of Table I. Namely, unitary only shifts the value of the decay
width in the right direction to match the model-independent
result (7) shown in the last row of Table I.

(iii) The row denoted as ‘‘pole position’’ in Table I contains the
results of the fit obtained in a model-independent analysis of the
same data for the cross section. (7) The close agreement observed
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in Table I between our model-dependent results and the model-
independent analysis of Ref. 7 indicates that our model describes
very well not only the resonant but also the background contri-
butions in the amplitude.

(iv) Once the relevant parameters of the model are fixed from the
total cross section, we can predict the differential cross section
ds/dW for pions emitted at an angle h with respect to the inci-
dent pion beam. Our model is able to reproduce two sets of data
corresponding to kinetic energies of incident pions at Tlab=263
and 291 MeV. (11) The test of the model at these energies is
important because the data used to extract the magnetic dipole
moment of the D++ correspond to kinetic energies close to those
values (see next section).

These important remarks indicates that our model is well suited to
describe the dynamics of the p+p reactions in the D++ resonance region and
provides good confidence to apply it in the description of other reactions.
In the next section, we use it to extract the MDM of this resonance from
the data on radiative p+p scattering.

4.2. Radiative p+p Scattering

Once we have fixed the mass and width of the D and other relevant
couplings of the model, it remains only one parameter to describe the
radiative p+p scattering: the magnetic dipole moment of D++, namely mD++

or oD. In this section, we fit this parameter from experimental data on
p+p Q p+pc. From the 35 Feynman diagrams (see Ref. 11) that contribute
to this process in our model, seven correspond to photons emitted from
process involving the D++ intermediate states and 28 are associated with the
r0, s, and D0, n intermediate states.

The physical observable of our interest is the five-fold differential cross
section ds/dwc dWc dWp of the radiative p+p scattering. In this observable,
wc is the photon energy, dWc is the element of solid angle where photons
are emitted with respect to final pions, and dWp is the solid angle for final
state pions measured with respect to the direction of incident pions. We
use the data corresponding to incident pions of energies Tlab=269 and
298 MeV. (15) As we have pointed out in the previous section, our model is
still good to describe the data at those energies. The kinematical range of
photon energies is 0 [ wc [ 100 MeV, where we can expect, in a conserva-
tive way, that the soft-photon approximation is valid and that other struc-
ture dependent terms or higher electromagnetic multipoles contributions are
small. In addition, we consider a few set of photon angular configurations
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Table II. Anomalous D++ Magnetic Dipole Moment Extracted from Radiative p+p Scattering

Tlab (MeV) Geometry hc fc oD q2/dof

269 G7 120° 0° 3.27 ± 0.76 1.99
G4 140° 0° 3.01 ± 0.67 2.48
G1 160° 0° 2.74 ± 0.87 1.73

298 G7 120° 0° 3.10 ± 0.87 2.68
G4 140° 0° 2.90 ± 0.75 4.75
G1 160° 0° 2.61 ± 1.00 1.47

where the differential cross section is more sensitive to the effect of the D++

MDM (see Ref. 11).
The results of the fits for the most sensitive observables are shown in

Table II (the definition of the ‘‘anomalous’’ part oD of the MDM was given
in Eq. (9)).

Again, a few remarks are worth to be mentioned:

(i) In Fig. 2 we show the best fits for a few samples of the differ-
ential cross section as a function of the photon energies for
Tlab=269 MeV. Just to show the sensitivity of the chosen con-
figurations (G1, G4, and G7) to the effect of the magnetic dipole
moment, in Fig. 2 we compare the best fits of Table II (solid
lines) with the curves corresponding to a reference value oD=1
(dashed curves).

(ii) Other (less sensitive to oD) measured angular configurations were
also considered in the analysis. The description of data is very
good as it can be checked in Ref. 11.

(iii) The set of values determined for oD (see Table II) is remarkable
consistent. This allows to quote a meaningful weighted average
from the six values of oD shown in Table II. We obtain:

mD++=2(1+oD)
e

2mD

=(6.14 ± 0.51)
e

2mp
. (18)

Note that the last numerical value is given in units of nuclear
magnetons.

5. REMARKS AND CONCLUSIONS

The contributions of the D++ resonance to the elastic and radiative p+p
scattering is revisited in the light of a consistent effective Lagrangian model
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Fig. 2. Differential cross section of radiative p+p scattering
and best fits results for Tlab=269 MeV and three angular con-
figurations of photon energies.
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for the spin-3/2 unstable particle and its interactions. Our proposal respects
two very important symmetries of a theory of the spin-3/2 particles: the
invariance under contact and electromagnetic gauge transformations. We
have shown that introducing the finite width effects of the resonance
through a complex mass scheme, namely replacing M2

Q M2 − iMC in all
the Feynman rules that involve the spin-3/2 particle, do not spoil these
symmetries of the effective theory. Such a recipe is well motivated by recent
studies concerning the search a proper (gauge-invariant) definition of the
mass of an unstable gauge-boson in the framework of perturbative gauge
theories.

We have performed a phenomenological analysis of this effective
Lagrangian to test its viability as an acceptable model for the low energy
p+p scattering processes. Our approach is closely related to the one of the
analytic S-matrix; namely, we try to give a physical meaning to the mass
and width of the resonance from an explicit separation of resonant and
background contributions in the S-matrix amplitude for the elastic scatter-
ing. By introducing the complex mass scheme in the propagator of the
resonance we are able to isolate the pole contributions in a simple and
clean way. The background contributions are given in our model by the
exchange of the r0, s, D0, and neutron intermediate states. In the case of
elastic p+p scattering, we have found that the mass and width of the D++

resonance are in excellent agreement (within the approximations inherent
to our model) with the values obtained in the framework of the model-
independent analytic S-matrix approach (see Table I). The description of
the elastic scattering data for the total cross section is very good in a wide
region considered around the resonance peak. The differential cross section
of elastic scattering is predicted to be in good agreement with a set of data
for pion kinetic energies to the right side of the resonance peak.

We have considered also the radiative p+p scattering in view of
extracting a value of the D++ magnetic dipole moment from the experimen-
tal data. Electromagnetic gauge invariance is fulfilled for the resonance
contributions to the amplitude owing to a simple Ward identity that is
satisfied between the propagators and the electromagnetic vertex of the D++

in the complex mass scheme. Our model provides a very simple solution to
the gauge invariance problem for the resonance contributions to the radia-
tive amplitude in the presence of finite width effects. Within our approach
we do not need to introduce ad hoc form factors or additional contribu-
tions to obtain a gauge-invariant amplitude.

Using the most sensitive set of data for the five-fold differential cross
section of the radiative p+p scattering we are able to give a good fit with
only one free parameter: the D++ magnetic dipole moment. The results for
the D++ MDM are described in Sec. 4.2 and can be found in Table II and
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Eq. (18). Our determination of the MDM are in good agreement with
recent theoretical calculations that incorporate the QCD corrections in a
chiral bag model (16) and with the predictions of a phenomenological quark
model (17) that includes the non-static effects of pion exchange and orbital
excitation. Our determination of the MDM is, however, a bit larger that
some calculations based on the SU(6) spin-flavor symmetry. (18)

In summary, we have shown that the data on the elastic and radiative
p+p scattering near the D++ resonance region can be well described in the
framework of an effective Lagrangian model for this spin-3/2 particle. This
model is free from the very well known inconsistencies present in the
quantum field theory formulations of spin-3/2 particles as far as we use the
model only at the tree-level. The calculations of the scattering amplitudes
fully exploit the model-independent separation of the amplitude into the
resonant and background contributions advocated by the analytic S-matrix
theory. This allows us to give a physical meaning to the mass and width
values extracted for the D++ resonance and, by extension, to its the magne-
tic dipole moment parameter.
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13. M. Beuthe, R. González Felipe, G. López Castro, and J. Pestieau, Nucl. Phys. B 498, 55
(1998). G. López Castro and G. Toledo Sánchez, Phys. Rev. D 61, 033007 (2000).

14. E. Pedroni et al., Nucl. Phys. A 300, 321 (1978).
15. B. M. K. Nefkens et al., Phys. Rev. D 18, 3911 (1978).
16. M. I. Krivoruchenko, Sov. J. Nucl. Phys. 45, 109 (1987).
17. J. Franklin, Phys. Rev. D 66, 033010 (2002).
18. M. A. B. Bég, B. W. Lee, and A. Pais, Phys. Rev. Lett. 13, 514 (1964). M. A. B. Bég and

A. Pais, Phys. Rev. B 137, 1514 (1965). G. E. Brown, M. Rho, and V. Vento, Phys.
Lett. B 97, 423 (1980).

734 Castro and Mariano


	
	
	
	
	
	

