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Abstract The objective of this article is to derive a macroscopic Darcy’s law for a fluid-
saturated moving porous medium whose matrix is composed of two solid phases which are
not in direct contact with each other (weakly coupled solid phases). An example of this
composite medium is the case of a solid matrix, unfrozen water, and an ice matrix within the
pore space. The macroscopic equations for this type of saturated porous material are obtained
using two-space homogenization techniques from microscopic periodic structures. The pore
size is assumed to be small compared to the macroscopic scale under consideration. At the
microscopic scale the two weakly coupled solids are described by the linear elastic equations,
and the fluid by the linearized Navier–Stokes equations with appropriate boundary conditions
at the solid–fluid interfaces. The derived Darcy’s law contains three permeability tensors
whose properties are analyzed. Also, a formal relation with a previous macroscopic fluid
flow equation obtained using a phenomenological approach is given. Moreover, a constructive
proof of the existence of the three permeability tensors allows for their explicit computation
employing finite elements or analogous numerical procedures.
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350 J. E. Santos, D. Sheen

Nomenclature
script f The fluid phase
script s j The solid phase j , j = 1, 2
� j The solid phase s j for j = s1, s2 or the fluid phase for j = f in �

Y j The solid phase s j for j = s1, s2 or the fluid phase for j = f in Y
� j f The interface in one period Y between the fluid phase and the solid phase

s j for j = s1, s2

ν j f The unit outward normal to the solid phase j at the interface between the
fluid and the solid phase, j = s1, s2

ν jk The unit outer normal at the interface � jk for j, k = s1, s2, f, j �= k
ek The standard basis in R

3

χ� j f (x, y) The characteristic function of � j f

x The macroscopic spatial variable
y The microscopic spatial variable; y = x

ε

η, κ The fluid viscocities
ρ f , ρs1 , ρs2 The fluid density and mass densities of solids s1 and s2

e The linear strain tensor
as1 , as2 Fourth-order positive-definite elastic tensors associated with the solid

phases
ω The angular frequency
σ j = σ j (ω) The time Fourier transform of the stress tensor in the phase j, j=s1, s2, f

at the angular frequency ω

u j = u j (ω) The time Fourier transform of the displacement vector in the phase j,
j = s1, s2, f at the angular frequency ω

p f = p f (ω) The time Fourier transform of the pressure in the fluid at the angular
frequency ω

g j,k The k-component of iωu(0)
j on � j f

ε The ratio between the microscopic and macroscopic spatial variables
v j = iωu j for j = s1, s2, f
γ k

j (x, y) = χ� j f (x, y)ek, j = s1, s2, k = 1, 2, 3
(·, ·)S The complex L2(S) inner product of functions in S
〈·, ·〉γ The complex L2(γ ) inner product of functions in γ

L2(S) The space of square-integrable functions in S
[H1(S)]3 The complex vector valued Sobolev space of square-integrable functions

with its first-order derivatives are also square-integrable in S

H1(div 0; Y f ) =
{
ϕ ∈ [

H1(Y f )
]3 : ∇y · ϕ = 0, ϕ is Y -periodic

}

W =
{

q ∈ H1(Y f ) :
∫

Y f

q dy = 0, q is Y -periodic

}

WY j =
{
ϕ ∈ [H1(Y j )]3:ϕ is Y -periodic,

∫

Y j

ϕ dy = 0,

∫

Y j

∇ × ϕ dy = 0

}
,

j = s1, s2.

V2
Y f

=
{
ϕ ∈ [

H2(Y f )
]3 : ∇y · ϕ = 0 in Y f , ϕ = 0 on �s f , ϕ is Y -periodic

}

Vk = (V k
l )1≤l≤3 ∈ V1

Y f
the solution of Problem (2.21)
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v(0),B
f , p(1),B

f The Y -periodic solutions of Problem (2.19)
Z j,k,(m) The solution of Problem (3.6)
Z j,k = (Z j,k

l )1≤l≤3 the solution of (2.27) with g replaced by γ k
j , j = s1, s2,

k = 1, 2, 3

K j,(m) = (
K j,(m)

)
kl =Z j,l,(m)

k� K � Macroscopic tensors averaged over the period Y ; see (2.33)
� Ks j � Macroscopic tensors averaged over the period Y for j = 1, 2; see (2.33)

1 Introduction

The study of fluid flow in porous saturated media is a subject of interest in many fields such
as geophysics, rock physics, and materials science.

The fundamental concepts about the stress–strain relations and the dynamics of deformable
porous single-phase solids fully saturated by a fluid were established in the works of Biot
(1956a,b, 1962). This formulation assumes that the quantities measured at the macroscopic
scale can be described using the concepts of continuum mechanics.

When the porous matrix is composed of two (or more) different solid phases, more com-
plicated models are required. Based on Biot’s theory, Leclaire et al. (1994) developed a
phenomenological model to describe wave propagation in a porous solid matrix, where the
pore space is filled with ice and water, assuming no contact between the solid and ice par-
ticles. This assumption is valid for example in finely dispersed frozen media, for which there
exists a layer of unfrozen water around the solid particles isolating them from the ice, as
explained in Leclaire et al. (1994).

This model, valid for uniform porosity, predicts the existence of three compressional and
two shear waves; these additional (slow) waves were first observed in laboratory experiments
by Leclaire et al. (1995). Later, Leclaire’s model was generalized by Carcione and Tinivella
(2000) to include the static and viscodynamic interaction between the solid and ice particles
and grain cementation with decreasing temperature, used as a parameter to determine the
bulk water content. Also, under the assumption that sand and clay are non-welded and form
a continuous and inter-penetrating porous composite skeleton, Carcione et al. (2000) applied
this theory to study the acoustic properties of shaley sandstones.

The Leclaire et al. (1994) and Carcione and Tinivella (2000) models were later generalized
and analyzed to the case of variable porosity (Santos et al. 2004; Rubino et al. 2006a), and
applied in Rubino et al. (2006b) for the analysis of wave propagation in gas hydrate-bearing
sediments. Gas hydrates are crystalline molecular complexes composed of water and gas,
mainly methane, which form under certain conditions of low temperature, high pressure, and
gas concentration. They are ice-like structures within the pore space which are present in
permafrost and seafloor along continental margins and are a potential energy resource.

Partially frozen porous media, gas hydrate-bearing sediments, and shaley sandstones
are examples of porous materials where the two solid phases are weakly coupled or non-
welded, i.e., both solids form a continuous and interacting composite structure, interchanging
mechanical energy. Similar weakly coupled formulations have previously been proposed. For
instance, McCoy (1991) has proposed a mixture theory appropriate for the combination of
two acoustic phases.

As a consequence of the models in Leclaire et al. (1994) and Santos et al. (2004) a
generalized Darcy’s law for this type of materials is obtained. The macroscopic description
of porous media can also be obtained by means of the homogenization method, which consists
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of passing from the microscopic description at the pore and grain scales to the macroscopic
scale. Important contributions to the solution of this problem were given by Sanchez-Palencia
(1980) and Bensoussan et al. (1978), who developed the so-called two-space homogenization
technique. This method provides a systematic procedure for deriving macroscopic dynamical
equations starting from the governing equations for the medium valid at the microscale. It
was successfully applied by different authors to obtain theoretical justifications of Darcy’s
law and Biot’s equations for single-phase porous media (Auriault et al. 1985; Burridge and
Keller 1981; Levy 1979; Sanchez-Palencia 1987). The procedure was recently applied to
derive the equations of motion for saturated composite porous media for the special case
when only one of the solid phases is in contact with the fluid phase (Santos et al. 2005).

Following these ideas, the aim of this paper is to apply the homogenization procedure to
obtain a description of the macroscopic fluid flow within a fluid-saturated porous medium
where the porous matrix is composed of two weakly coupled solid phases as assumed in
Leclaire et al. (1994).

The analysis is restricted to the range of small deformations and for Newtonian fluids under
the assumption of spatial periodicity. As a result, a generalized Darcy’s law for the composite
material is obtained, in which the macroscopic fluid flow represents the contributions from
the moving boundaries of the two solid phases as well as the gradient of the fluid pressure.
The argument employs the concept of very weak solutions of the local Stokes problems to
obtain explicit forms of the permeability tensors in terms of the non-homogeneous boundary
data. The derived Darcy’s law is formally in agreement with those derived in Leclaire et al.
(1994) and Santos et al. (2004) using phenomenological arguments.

The organization of the paper is as follows. In Sect. 2 we state the local equations and apply
the homogenization procedure to obtain our form of Darcy’s law containing three permeability
tensors whose properties are analyzed in Sect. 3. Also Sect. 3 contains a formal relation of
our Darcy’s law with previously derived forms using phenomenological arguments. In Sect.
4 we give a set of conclusions. Finally, in Appendix A we prove existence and uniqueness
results for the local Stokes problems with non-homogeneous boundary data using the concept
of very weak solutions.

2 The Homogenization Procedure and Darcy’s Law

2.1 The Local Description and Formal Expansion

Let us consider a composite porous medium consisting of a porous solid matrix, an ice matrix,
and unfrozen water, i.e., two solid phases and one single-phase fluid. It will be assumed that
there is no contact between the solid matrix and the ice, or equivalently there exists a layer of
unfrozen water around the solid particles isolating them from the ice. The solid matrix and
the ice will be referred to by the subscripts or superscripts s1 and s2, while the fluid phase will
be indicated by the subscript or superscript f . The porous medium will be considered to be
periodic and composed of a large number of periods with l and L denoting the length of the
period and the macroscopic length, respectively, so that ε = l

L � 1. The microscopic and
macroscopic behaviors will be described by the two dependent spatial variables x and y = x

ε
.

Let � denote a periodic porous medium consisting of the solid and the ice matrices, �s1

and �s2 , and the fluid phase � f . Also let Y denote one period in � so that

Y = Ys1 ∪ Ys2 ∪ Y f , Y j = Y ∩ � j , j = s1, s2, f.
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Also, let
� j f = ∂Y j ∩ ∂Y f , � je = ∂Y j ∩ ∂Y, j = s1, s2,

�s f = �s1 f ∪ �s2 f , � f e = ∂Y f ∩ ∂Y,

so that
∂Y f = �s1 f ∪ �s2 f ∪ � f e, ∂Ys1 = �s1 f ∪ �s1e, ∂Ys2 = �s2 f ∪ �s2e.

Figure 1 displays a 2D realization of this type of periodic structure.
We assume that all phases are connected and that at the local level the two solid phases

are linear elastic and the fluid is viscous Newtonian. We further assume that the transient
Reynolds number is O(1) at the local level so that the fluid viscosities η and κ are scaled by
ε2. Let u j = u j (ω) and σ j = σ j (ω), j = s1, s2, f denote the time Fourier transforms at
the angular frequency ω of the displacement vectors and stress tensors of the three phases,
respectively, let p f = p f (ω) be the fluid pressure and set v j = iωu j . The local variables
are defined in their domain of definition and taken to be zero elsewhere. In what follows, to
avoid cumbersome notation the explicit dependence on the frequency ω of the field variables
will be omitted except when it is desired to emphasize this dependence. The local equations
are given by

solid 1: ∇ · σ s1 = −ω2ρs1 us1 , Ys1 , (2.1a)

σ s1 = as1 : e(us1), Ys1 , (2.1b)

solid 2: ∇ · σ s2 = −ω2ρs2 us2 , Ys2 , (2.1c)

σ s2 = as2 : e(us2), Ys2 , (2.1d)

fluid: ∇ · σ f = iωρ f v f , Y f , (2.1e)

σ f = −p f I + τ f , Y f , (2.1f)

τ f = 2ηε2e(v f ) + ε2
(

κ − 2

3
η

)
∇ · v f , Y f , (2.1g)

iωp f = B f ∇ · v f , Y f . (2.1h)

Here ρ f , ρs1 , ρs2 , as1 , and as2 are, respectively, the fluid density, mass densities, and
fourth-order positive-definite elastic tensors associated with the two solid phases, depending
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on the space variable and Y -periodic. Also, e denotes the linear strain tensor, i.e.,

elm(v f ) = 1

2

(
∂v f,l

∂xm
+ ∂v f,m

∂xl

)
.

Here, and in what follows, if a and b are, respectively, fourth- and second-order tensors,
then a : b denotes the index contraction operation aklst bst with the usual Einstein’s convention
of summing on repeated indices.

Also, with ν jk, j, k = s1, s2, f, j �= k, denoting the unit outer normal at the interface
� jk , the boundary conditions among the different solid and fluid phases are

νs1 f · σ s1 = νs1 f · σ f , �s1 f , (2.2a)

νs2 f · σ s2 = νs2 f · σ f , �s2 f , (2.2b)

vs1 = v f , �s1 f , (2.2c)

vs2 = v f , �s2 f . (2.2d)

Next, following Sanchez-Palencia (1980, 1987) and Auriault et al. (1985), we expand the
unknowns us1 , us2 , u f in the form

uε
j = u j (x, y) = u(0)

j (x, y) + εu(1)
j (x, y) + ε2u(2)

j (x, y) + · · · , j = s1, s2, f, (2.3)

where the functions u(n)
j (x, y), n = 0, 1, . . . , are Y -periodic. Then we substitute the expan-

sions (2.3) into Eqs. (2.1)–(2.2) describing the local behavior recalling that for the spatial
derivatives we have that d

dx
becomes

∂

∂x
+ ε−1 ∂

∂y
.

Similarly,

e = ex + ε−1ey, ∇ = ∇x + ε−1∇y, etc.

2.2 Solution of the Local Equations for the Solid Phases

Let us consider the local equations for the solid phases at the lowest order. First, from (2.1b)
and (2.1d),

σ j = a j : (ex + ε−1ey)(u
(0)
j + εu(1)

j + · · · )
= ε−1a j : ey(u

(0)
j ) + a j :

(
ex (u

(0)
j ) + ey(u

(1)
j )

)
+ ε a j :

(
ex (u

(1)
j ) + ey(u

(2)
j )

)
+ · · ·

= ε−1σ
(−1)
j + σ

(0)
j + ε σ

(1)
j + · · · , Y j , j = s1, s2. (2.4)

Next, from (2.1a) and (2.4)

ε−2∇y · σ (−1)
j + ε−1

(
∇x · σ (−1)

j + ∇y · σ (0)
j

)
+ ε0

(
∇x · σ (0)

j + ∇y · σ (1)
j

)
+ · · ·

= −ρ jω
2

(
u(0)

j + εu(1)
j + · · ·

)
, Y j , j = s1, s2. (2.5)

Also, from (2.1f)–(2.1g),

σ
(0)
f + εσ

(1)
f + · · · = −p(0)

f I + ε
(
−p(1)

f I + 2ηe(v(0)
f )

)
+ · · ·

= −p(0)
f I + ε

(
−p(1)

f I + τ
(1)
f

)
+ · · · , Y f . (2.6)

123



Darcy’s Law for Composite Porous Medium 355

Next we use (2.2a)–(2.2d) to obtain the boundary conditions for the local problems. First,
from (2.2a), (2.2b), and (2.6),

ν j f ·
(
ε−1σ

(−1)
j + σ

(0)
j + εσ

(1)
j + · · ·

)

= ν j f ·
(
−p(0)

f I + ε
(
−p(1)

f I + 2ηe(v(0)
f )

)
+ · · ·

)
, � j f , j = s1, s2. (2.7)

From (2.5) at ε−2 and (2.4) and (2.7) at ε−1 we obtain the following elliptic system for
u(0)

s1 :

∇y · σ (−1)
s1

= 0, Ys1 , (2.8a)

σ (−1)
s1

= as1 : ey(u(0)
s1

), Ys1 , (2.8b)

νs1 f · σ (−1)
s1

= 0, �s1 f , (2.8c)

u(0)
s1

is Y -periodic. (2.8d)

For an open set S ⊂ R
3 and a two-dimensional manifold γ , let L2(S) and L2(γ ) be the

space of square-integrable functions with the complex inner-products (·, ·)S and 〈·, ·〉γ , res-
pectively. Denote by [H1(S)]3 the complex vector valued Sobolev space of square-integrable
functions with its first-order derivatives are also square-integrable in S; the norm in [H1(S)]3

will be denoted by ‖ · ‖1,S .
Let us formulate (2.8) in variational form. Set

WY j =
{
ϕ ∈ [H1(Y j )]3 : ϕ is Y -periodic,

∫

Y j

ϕ dy =0,

∫

Y j

∇ × ϕ dy =0

}
, j = s1, s2.

Then a weak form of (2.8) is given to find u(0)
s1 ∈ WYs1

such that

(
as1 : ey(u(0)

s1
), ey(ϕ)

)
Ys1

= 0, ϕ ∈ WYs1 . (2.9)

Note that thanks to Korn’s second inequality (Duvaut and Lions 1976; Nitsche 1981) and
the fact that as1 is positive-definite the sesquilinear form

(
as1 : ey(u), ey(v)

)
Ys1

defines an

inner product in the Hilbert space WYs1
equivalent to the H1-inner product (Brenner and Sung

1992). Thus the Lax–Milgram lemma implies that u(0)
s1 = 0 ∈ WYs1

is the unique solution of
(2.9), or equivalently, the solution of (2.8a)–(2.8c) is independent of the y-variable, so that

u(0)
s1

(x, y) = u(0)
s1

(x), Ys1 , (2.10a)

σ (−1)
s1

= 0, Ys1 , (2.10b)

where (2.10b) follows from (2.8b). With an identical argument, for the solid phase 2 we get

u(0)
s2

(x, y) = u(0)
s2

(x), Ys2 , (2.11a)

σ (−1)
s2

= 0, Ys2 . (2.11b)
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2.3 Solution of the Local Equations for the Fluid Phase: A Generalized Darcy’s Law

We now consider the local equations for the fluid at the lowest order. First, from the fluid
equations (2.1e)–(2.1h) it follows that

ηε2
(
�x + ε−1 (∇x · ∇y + ∇y · ∇x

) + ε−2�y

) (
v(0)

f + εv(1)
f + ε2v(2)

f + · · ·
)

+ε2
(

κ − 1

2
η

) [∇x∇x + ε−1 (∇x∇y + ∇y∇x
) + ε−2∇y∇y

]

·
(

v(0)
f + εv(1)

f + ε2v(2)
f + · · ·

)
= (∇x + ε−1∇y

) (
p(0)

f + εp(1)
f

+ε2 p(2)
f + · · ·

)
+ iωρ f

(
v(0)

f + εv(1)
f + · · ·

)
, (2.12)

and

iω
(

p(0)
f + εp(1)

f + · · ·
)

= B f
(∇x + ε−1∇y

) ·
(

v(0)
f + εv(1)

f + ε2v(2)
f +

)
. (2.13)

Thus from (2.12) at ε−1 we get

p(0)
f (x, y) = p(0)

f (x), (2.14)

and then it follows from (2.13) at ε−1 that

∇y · v(0)
f = 0, Y f . (2.15)

Hence, from (2.15) and (2.12) at ε0 we get

η�yv(0)
f = ∇y · τ (1)

f (v(0)
f ) = ∇y p(1)

f + ∇x p(0)
f + iωρ f v(0)

f , Y f . (2.16)

Also, it follows from (2.2c)–(2.2d) that

v(0)
f = iωu(0)

s1
(x), �s1 f , (2.17a)

v(0)
f = iωu(0)

s2
(x), �s2 f . (2.17b)

Let us split Problem (2.15), (2.16), and (2.17a)–(2.17b) into two subproblems as follows.
First, let v(0),I

f and p(1),I
f be Y -periodic such that

iωρ f v(0),I
f − η�yv(0),I

f + ∇y p(1),I
f = −∇x p(0)

f , Y f , (2.18a)

∇y · v(0),I
f = 0, Y f , (2.18b)

v(0),I
f = 0, �s f . (2.18c)

Second, let v(0),B
f and p(1),B

f be the Y -periodic solutions of

iωρ f v(0),B
f − η�yv(0),B

f + ∇y p(1),B
f = 0, Y f , (2.19a)

∇y · v(0),B
f = 0, Y f , (2.19b)

v(0),B
f = iωu(0)

s1
(x), �s1 f , (2.19c)

v(0),B
f = iωu(0)

s2
(x), �s2 f . (2.19d)
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Let us solve the cell problem (2.18)–(2.18c) for v(0),I
f . Let

V1
Y f

=
{
ϕ ∈ [

H1(Y f )
]3 : ∇y · ϕ = 0 in Y f , ϕ = 0 on �s f , ϕ is Y -periodic

}
,

provided with the natural (complex) inner product in
[
H1(Y f )

]3
. Then a variational formu-

lation of (2.18), (2.18c) can be stated as follows: Find v(0),I
f ∈ V1

Y f
such that

iω
(
ρ f v(0),I

f ,ϕ
)

Y f
+

(
η∇yv(0),I

f ,∇yϕ
)

Y f
= −∇x p(0)

f (x) ·
∫

Y f

ϕdy, ϕ ∈ V1
Y f

. (2.20)

It is known that (2.20) has a unique solution, which can be found as usual by solving the
following set of problems (Sanchez-Palencia 1980). For k = 1, 2, 3 let Vk = (V k

l )1≤l≤3 ∈
V1

Y f
be the solution of

iω
(
ρ f Vk,ϕ

)
Y f

+
(
η∇yVk,∇yϕ

)
Y f

= ek ·
∫

Y f

ϕdy, ϕ ∈ V1
Y f

, (2.21)

where ek denotes the standard basis in R
3 and set

K(x, y, ω) = (K(x, y, ω))tk = V k
t (x, y, ω). (2.22)

Then,

v(0),I
f (x, y, ω) = −K(x, y, ω)∇ p(0)

f (x, ω). (2.23)

We turn to analyze the second subproblem (2.19a)–(2.19d). First, notice that it follows
from (2.10a) and (2.11a) that

0 =
∫

Y j

∇y · u(0)
j (x)dy = u(0)

j (x) ·
∫

∂Y j

ν j dy

= u(0)
j (x) ·

∫

� j f

ν j dy + u(0)
j (x) ·

∫

� je

ν j dy = u(0)
j (x) ·

∫

� j f

ν j dy, j = s1, s2 ,(2.24)

since
∫

� je

ν j dy = 0 due to the periodicity of the boundary � je. Thus the boundary data

function defined by

g(x, y, ω) =
⎧⎨
⎩

iωu(0)
s1 (x, ω), �s1 f ,

iωu(0)
s2 (x, ω), �s2 f ,

periodic in � f e,

(2.25)

satisfies the consistency condition
∫

∂Y f

g · ν f dy = 0. (2.26)

Remark 2.1 Notice that our boundary data take constant values on each boundary component
of Y f , which implies that the solution of Problem (2.19) is smooth. Therefore a classical
abstract theory of existence of solutions of Stokes problems (e.g., Temam 1984) can be
applied to our case. However, it is our intention to derive a form of the permeability tensor
depending explicitly on the boundary data, and consequently we analyze the problem in the
very weak sense (Conca 1987; Marusic-Paloka 2000).
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Set

V2
Y f

=
{
ϕ ∈ [

H2(Y f )
]3 : ∇y · ϕ = 0 in Y f , ϕ = 0 on �s f , ϕ is Y -periodic

}
,

W =
{

q ∈ H1(Y f ) :
∫

Y f

q dy = 0, q is Y -periodic

}
.

Now we state the existence and uniqueness results on the solution of Problem (2.19).

Theorem 2.1 There exists a unique Y -periodic very weak solution v(0),B
f ∈ [

L2(Y f )
]3

and

v(0),B
f |�s f ∈ [

L2(�s f )
]3

of Problem (2.19) in the following sense:

iω
(
ρ f v(0),B

f ,ϕ
)

Y f
−

(
ηv(0),B

f ,�yϕ
)

Y f
= −

〈
ηg,

∂ϕ

∂ν

〉

�s f

, ϕ ∈ V2
Y f

, (2.27a)

(
v(0),B

f ,∇q
)

Y f
= 〈g · ν, q〉�s f

, q ∈ W. (2.27b)

The proof of Theorem 2.1 is given in Appendix A.
Set

γ k
j (x, y) = χ� j f (x, y)ek, j = s1, s2, k = 1, 2, 3, (2.28)

where χ� j f (x, y) denotes the characteristic function of � j f . Also on �s f write the boundary
data vector g in (2.25) in the form

g =
∑

k

(
gs1,kγ

k
s1

+ gs2,kγ
k
s2

)
, y ∈ �s f , (2.29)

where g j,k denotes the k-component of iωu(0)
j on � j f . Let Z j,k = (Z j,k

l )1≤l≤3 be the solution

of (2.27) with g replaced by γ k
j , j = s1, s2, k = 1, 2, 3.

K j (x, y, ω) =
(

K j (x, y, ω)
)

lk
= Z j,k

l (x, y, ω), j = s1, s2. (2.30)

Then, by linearity the solution of (2.27) is given by

v(0),B
f (x, y, ω) = Ks1(x, y, ω)

[
iωu(0)

s1
(x, ω)

]
+ Ks2(x, y, ω)

[
iωu(0)

s2
(x, ω)

]
. (2.31)

Combining (2.23) and (2.31), we conclude that

v(0)
f (x, y, ω) = v(0),I

f (x, y, ω) + v(0),B
f (x, y, ω)

= −K(x, y, ω)∇ p(0)
f (x, ω) + Ks1(x, y, ω)

[
iωu(0)

s1
(x, ω)

]

+Ks2(x, y, ω)
[
iωu(0)

s2
(x, ω)

]
. (2.32)

Let

� θ � = 1

|Y |
∫

Y
θ(y)dy,
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denote the average of θ(y) over Y , where θ is defined to be zero outside its domain of
definition. Then, averaging (2.32) over Y yields

� v(0)
f � (x, ω) = − � K � (x, ω)∇x p(0)

f (x, ω)

+ � Ks1 � (x, ω)
[
iωu(0)

s1
(x, ω)

]

+ � Ks2 � (x, ω)
[
iωu(0)

s2
(x, ω)

]
. (2.33)

which is a generalized Darcy’s law for our composite system.

Remark 2.2 The derived Darcy’s law (2.33) contains three frequency-dependent permeability
tensors: the tensor � K � associated with the gradient of pressure as in the classical Darcy’s
law and two additional tensors � Ks1 � and � Ks2 � which carry over to the macroscale
information from the two solid phases’ microscopic surface geometry.

Remark 2.3 In Subsect. 3.3 the coefficients in (2.33) are identified with those appearing
in (3.17), which is a form of Darcy’s law derived by Leclaire et al. (1994) for this type of
composite materials using a phenomenological approach. To relate the permeability tensors in
(2.33) with the coefficients appearing in (3.17), further research is needed to obtain numerical
solutions of the local problems (2.20) and (2.27) for specific geometry configurations.

3 Properties of the Permeability Tensors

In this section we analyze some properties of the permeability tensors � K �, � Ks1 �,
and � Ks2 � which appear in the Darcy’s law (2.33).

3.1 Properties of � K �

Note that defining on V1
Y f

the sesquilinear form

B(u, v) = iω
(
ρ f u, v

)
Y f

+ (η∇u,∇v)Y f
, u, v ∈ V1

Y f
, (3.1)

and the continuous linear functional

L f (ϕ) = f ·
∫

Yf

ϕdy, (3.2)

with f = f(x, ω) = −∇ p(0)
f (x, ω), Problem (2.20) can be stated in the form: find u ∈ V1

Y f

such that

B(u, v) = L f (v), v ∈ V1
Y f

. (3.3)

Note that B(u, v) is continuous and coercive in V1
Y f

since

|B(u, u)| ≥ 1

2

(
|Re(B(u, u))| + |Im(B(u, u))|

)

= 1

2

[
(η∇u,∇u) + ω

(
ρ f u, u

)] ≥ C(ω)‖u‖2
1. (3.4)

Thus, by Lax–Milgram Lemma, Problem (3.3) has a unique solution, which implies that
the solution operator

f → u = Tf
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where u solves (3.3) is injective. Thus if {ek : k = 1, 2, 3} denotes the standard basis in
R

3, {Vk = T −1
f (ek), k = 1, 2, 3} forms a linearly independent set in V1

Y f
. Thus the tensor

K is invertible. Set Vk = Re(Vk) + i Im(Vk) = Vk
R + iVk

I and recall that � Re (K)kl �
= 1

|Y |
(
ek, Vl

R

)
Y f

.

Assuming ϕ to be real, take the real and imaginary parts in (2.21) to obtain

− ω
(
ρ f Vk

I ,ϕ
)

Y f
+

(
η∇yVk

R,∇yϕ
)

Y f
= ek ·

∫

Y f

ϕdy, ϕ ∈ V1
Y f

, (3.5a)

ω
(
ρ f Vk

R,ϕ
)

Y f
+

(
η∇yVk

I ,∇yϕ
)

Y f
= 0, ϕ ∈ V1

Y f
, k = 1, 2, 3. (3.5b)

Choose ϕ = Vl
R in (3.5a) and ϕ = Vk

I in (3.5b) with k replaced by l and add the resulting
equations to get

� Re (K)kl � = 1

|Y |
[(

η ∇yVk
R,∇yVl

R

)
Y f

+
(
η∇yVl

I ,∇yVk
I

)
Y f

]
,

which shows that � Re (K) � is symmetric. Observe that for any ξ ∈ R
3,

ξ T � Re (K) � ξ = 1

|Y |
[
‖η 1

2 ∇yVk
Rξk‖2

0,Y f
+ ‖η 1

2 ∇yVk
I ξk‖2

0,Y f

]
≥ 0,

where the equality holds if and only if ∇yVk
Rξk = 0 and ∇yVk

I ξk = 0. Since Vk = 0 on �s f ,
by Poincaré inequality, Vk

Rξk = Vk
I ξk = 0, and therefore, � Re (K) � is positive-definite.

Next, recalling that � Im (K)kl � = 1
|Y |

(
ek, Vl

I

)
Y f

we analyze the properties of

� Im (K) � . For this, we choose ϕ = Vl
I in (3.5a) and ϕ = Vk

R in (3.5b) with k
replaced by l. Then

� Im (K)kl � = − ω

|Y |

[(
ρ

1
2
f Vl

R, Vk
R

)

Y f

+
(

ρ
1
2
f Vk

I , Vl
I

)

Y f

]
,

which implies that � Im (K) � is symmetric and negative-definite. This in turn implies that
both the real and imaginary parts of (� K �)−1 are symmetric and positive-definite.

3.2 Properties of � Ks1 � and � Ks2 �

Let us turn to analyze the � K j �-tensors, j = s1, s2, having the contribution from the
boundaries � j f , j = s1, s2. For this purpose, it is convenient to analyze the properties of
the solution Z j,k,(m) of (A.5) in Sect. Proof of Theorem 2.1, with right-hand side g = ek ,
k = 1, 2, 3. Thus, set

H1(div 0; Y f ) =
{
ϕ ∈ [

H1(Y f )
]3 : ∇y · ϕ = 0, ϕ is Y -periodic

}

and let Z j,k,(m) ∈ H1(div 0; Y f ) be the solution of

iω
(
ρ f Z j,k,(m),ϕ

)
Y f

+
(
η∇yZ j,k,(m),∇yϕ

)
Y f

+ m
〈
Z j,k,(m),ϕ

〉
� j f

= m
〈
ek,ϕ

〉
� j f

,ϕ ∈ H1(div 0; Y f ), j = s1, s2. (3.6)
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Set Z j,k,(m) = Re
(
Z j,k,(m)

) + i Im
(
Z j,k,(m)

) = Z j,k,(m)
R + iZ j,k,(m)

I . Assuming ϕ to be
real, take the real and imaginary parts in (3.6) to obtain

−ω
(
ρ f Z j,k,(m)

I ,ϕ
)

Y f
+

(
η∇yZ j,k,(m)

R ,∇yϕ
)

Y f
+ m

〈
Z j,k,(m)

R ,ϕ
〉
� j f

= m
〈
ek,ϕ

〉
� j f

, (3.7a)

ω
(
ρ f Z j,k,(m)

R ,ϕ
)

Y f
+

(
η∇yZ j,k,(m)

I ,∇yϕ
)

Y f
+ m

〈
Z j,k,(m)

I ,ϕ
〉
� j f

= 0,

ϕ ∈ H1(div0 : Y f ). (3.7b)

Next, with the choice ϕ = Z j,l,(m)
I in (3.7a) and ϕ = Z j,k,(m)

R in (3.7b) with k replaced
by l, take the difference in the resulting equations to obtain

− ω

[(
ρ f Z j,l,(m)

R , Z j,k,(m)
R

)
Y f

+
(
ρ f Z j,k,(m)

I , Z j,l,(m)
I

)
Y f

]
= m

〈
ek, Z j,l,(m)

I

〉
� j f

. (3.8)

Also, add (3.7a) with the choice ϕ = Z j,l,(m)
R with (3.7b) with the choice ϕ = Z j,k,(m)

I
with k replaced by l to get

(
η∇Z j,k,(m)

R ,∇Z j,l,(m)
R

)
Y f

+
(
η∇Z j,l,(m)

I ,∇Z j,k,(m)
I

)
Y f

+m

[〈
Z j,k,(m)

R , Z j,l,(m)
R

〉
� j f

+
〈
Z j,l,(m)

I , Z j,k,(m)
I

〉
� j f

]
= m

〈
ek, Z j,l,(m)

R

〉
� j f

. (3.9)

Similarly, take ϕ = el in (3.7a) and ϕ = ek in (3.7b) with k replaced by l to have

− ω
(
ρ f Z j,k,(m)

I,l , 1
)

Y f
+ m

〈
Z j,k,(m)

R,l , 1
〉
� j f

= mδkl
∣∣� j f

∣∣ , (3.10a)

ω
(
ρ f Z j,l,(m)

R,k , 1
)

Y f
+ m

〈
Z j,l,(m)

I,k , 1
〉
� j f

= 0. (3.10b)

Using (3.10b) in (3.8) and (3.10a) (interchanging k and l) in (3.9) we have
(

Z j,l,(m)
R,k , 1

)
Y f

=
(

Z j,l,(m)
R , Z j,k,(m)

R

)
Y f

+
(

Z j,k,(m)
I , Z j,l,(m)

I

)
Y f

(3.11)

and

ωρ f

(
Z j,l,(m)

I,k , 1
)

Y f
= η

[(
∇Z j,k,(m)

R ,∇Z j,l,(m)
R

)
Y f

+
(
∇Z j,l,(m)

I ,∇Z j,k,(m)
I

)
Y f

]

+m

[〈
Z j,k,(m)

R , Z j,l,(m)
R

〉
� j f

+
〈
Z j,l,(m)

I , Z j,k,(m)
I

〉
�s f

− δkl
∣∣� j f

∣∣
]

.

(3.12)

Let

K j,(m) =
(

K j,(m)
)

kl
= Z j,l,(m)

k ,

so that

� Re(K j,(m))kl � = 1

|Y |
(

Z j,l,(m)
R,k , 1

)
Y f

, � Im(K j,(m))kl � = 1

|Y |
(

Z j,t,(m)
I,k , 1

)
Y f

.

It follows from (3.11) and (3.12) that, for each m, � Re(K j,(m)) � is symmetric positive-
definite and � Im(K j,(m)) � is symmetric. Due to the weak convergence of Z j,l,(m) to Z j,l
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in [L2(Y f )]3, we have (c.f. (A.18)),

lim
m→∞

(
Z j,l,(m)

R,k , 1
)

Y f
=

(
Z j,l

R,k, 1
)

Y f
,

lim
m→∞

(
Z j,l,(m)

I,k , 1
)

Y f
=

(
Z j,l

I,k, 1
)

Y f
, j = s1, s2. (3.13)

Consequently, � Re
(
K j

) � is symmetric, positive semi-definite and � Im
(
K j

) � is
symmetric. Also, thanks to (3.13) the first term in the left-hand side in (3.10b) is bounded.
Thus taking the limit in (3.8) as m tends to ∞, it follows that

〈
Z j,l

I,k, 1
〉
� j f

= 0. (3.14)

Next note that from (3.10a)

〈
Z j,k,(m)

R,l , 1
〉
� j f

− δkl
∣∣� j f

∣∣ = 1

m
ωρ f

(
Z j,k,(m)

I,l , 1
)

Y f
.

In the above equation, the first term in left-hand side converges due to the weak convergence
of Z j,k,(m) to Z j,k in [L2(�s f ]3, and the right-hand side tends to zero as m goes to infinity
thanks to (3.13). Thus,

〈
Z j,k

R,l , 1
〉
� j f

= δkl
∣∣� j f

∣∣ . (3.15)

3.3 A Formal Relation of Darcy’s Law (2.33) with a Previous Phenomenological Derivation

Consider Eq. (13) in Leclaire et al. (1994) for the fluid part in the steady-state case (i.e., the
velocities are time-independent). In terms of our notation it can be stated as follows:

− φw∇ p(0)
f (x, t) = b12

[
v(0)

f (x, t) − v(0)
s1

(x, t)
]

+ b23

[
v(0)

f (x, t) − v(0)
s2

(x, t)
]
, (3.16)

where φw, b12, and b23 are positive coefficients independent of time as defined in Leclaire
et al. (1994). For the sake of convenience, the above equation is written in the form:

v(0)
f (x, t) = − φw

b12 + b23
∇ p(0)

f (x, t) + b12

b12 + b23
v(0)

s1
(x, t) + b23

b12 + b23
v(0)

s2
(x, t). (3.17)

Next, note that the inverse Fourier transform of the solutions Vk and Zk of the local Stokes
problems (2.21) and (2.27) vanishes for negative times (i.e. they are causal functions of time t).
Consequently, the inverse Fourier transforms of the permeability tensors � K �,� K j �,

j = s1, s2 are causal, and Darcy’s Law (2.33) can be restated in the space–time domain using
convolutions as follows. Let
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� S � (x, ω) = � K � (x, ω)

iω
,

� S j � (x, ω) = � K j � (x, ω)

iω
, j = s1, s2, (3.18)

and for any function f (ω) let f̂ (t) denote its inverse Fourier transform. Then, (2.33) in the
space–time domain becomes

� v(0)
f � (x, t) = −

∫ t

0
�̂ S �(x, t − τ)

∂

∂τ
∇x

̂
p(0)

f (x, τ )dτ

−
∑

j=s1,s2

∫ t

0

̂� S j �(x, t − τ)
∂

∂τ
v̂(0)

j (x, τ )dτ

= −�̂ S �(x, 0+)∇x
̂
p(0)

f (x, t) +
∫ t

0
�̂ K �(x, t − τ)∇x

̂
p(0)

f (x, τ )dτ

−
∑

j=s1,s2

[
̂� S j �(x, 0+)v̂(0)

j (x, t)+
∫ t

0

̂� K j �(x, t−τ)v̂(0)
j (x, τ )dτ

]
.

(3.19)

Thus in the isotropic case we can identify the coefficients in (3.17) with the �̂ S �(x, 0+)

and ̂� S j �(x, 0+) terms in (3.19).

4 Conclusions

The homogenization procedure was applied to derive the generalized macroscopic Darcy’s
(2.33) for a porous medium composed of two weakly coupled solid phases saturated by a
single-phase fluid. The derived Darcy’s contains three frequency-dependent permeability
tensors: the tensor � K � (x, ω) associated with the gradient of pressure and the tensors
� Ks1 � (x, ω) and � Ks2 � (x, ω) related to the surface geometries of the moving
boundaries of the solid phases.

It was shown that the real and imaginary parts of the permeability tensor � K � (x, ω)

are positive-definite and negative-definite, respectively, and both parts are symmetric as it
happens in the classical Darcy’s law. It was also demonstrated that � Re(K j ) � (x, ω),

j = s1, s2 are symmetric, positive semi-definite and � Im(K j ) � (x, ω), j = s1, s2 are
symmetric.

A formal relation with a macroscopic frequency independent Darcy’s law previously
derived by Leclaire et al. (1994) for the isotropic case using a phenomenological approach
is also given.

In Appendix A a constructive proof of the existence of the three permeability tensor
components was given applying the concept of very weak solutions. Therefore these tensors
are explicitly computable from given microscopic configurations employing finite elements
or similar numerical procedures. Future research includes the numerical calculation of the
three permeability tensors for some specific geometry configurations, to relate them to the
coefficients appearing in the phenomenological formulation in Leclaire et al. (1994).
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R14-2003-019-01000-0, KRF 2006-070-C00014, and Seoul R&BD Program.
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Appendix

A Proof of Theorem 2.1

In this section we give a proof of Theorem 2.1. To avoid cumbersome notations we restate
Problem (2.19) in the following form: find Y -periodic functions v and p such that

iωρ f v − η�yv + ∇y p = 0, Y f , (A.1a)

∇y · v = 0, Y f , (A.1b)

v = g, �s f , (A.1c)

where g ∈ [
L2(�s f )

]3
is Y -periodic and satisfies the consistency condition

∫

�s f

g · ν f dy = 0. (A.2)

For the proof of Theorem 2.1, we prove first three auxiliary lemmas and then employ a
compactness argument to show the existence and uniqueness of Problem (A.1).

As in Marusic-Paloka (2000), for m ∈ Z+, consider the sequence of penalized problems:
find Y -periodic functions vm and pm such that

iωρ f vm − η�yvm + ∇y pm = 0, Y f , (A.3a)

∇y · vm = 0, Y f , (A.3b)

vm + 1

m

(
η

∂vm

∂ν f
− pmν f

)
= g, �s f . (A.3c)

Define the sesquilinear form Aω,m : H1(div 0; Y f ) × H1(div 0; Y f ) → C by the rule

Aω,m(v,ϕ) = iω
(
ρ f v,ϕ

)
Y f

+ (
η∇yv,∇yϕ

)
Y f

+ m 〈v,ϕ〉�s f
,

v,ϕ ∈ H1(div 0; Y f ). (A.4)

Then, testing (A.3a) against ϕ ∈ H1(div 0; Y f ), we obtain the following variational
formulation of Problem (A.3): find vm ∈ H1(div 0; Y f ) such that

Aω,m(vm,ϕ) = m 〈g,ϕ〉�s f
, ϕ ∈ H1(div 0; Y f ). (A.5)

Lemma A.1 For each positive integer m there exists a unique solution vm ∈ H1(div 0; Y f )

of (A.5) such that

‖vm‖L2(�s f )
≤ ‖g‖L2(�s f )

. (A.6)

Proof First note that

|Aω,m(vm, vm)| ≥ 1

2

((
ωρ f vm, vm)

Y f
+ (

η∇yvm,∇yvm)
Y f

+ m
〈
vm, vm 〉

�s f

)

≥ C(ω)‖vm‖2
1,Y f

+ m

2
‖vm‖2

L2(�s f )
, v ∈ H1(div 0; Y f ),

where C(ω) = 1
2 min(ρ f ω, η). Thus the Lax–Milgram lemma implies the existence and

uniqueness of the solution of (A.5). Next, taking the real part in the equation

Aω,m(vm, vm) = m
〈
g, vm 〉

�s f
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leads to

η‖∇yvm‖2
1,Y f

+ m‖vm‖2
L2(�s f )

≤ |Aω,m(vm, vm)| = m
∣∣∣〈g, vm 〉

�s f

∣∣∣
≤ m‖g‖L2(�s f )

‖vm‖L2(�s f )
.

Thus, (A.6) follows.This completes the proof. �

Next we proceed to get an estimate for ‖vm‖L2(Y f )
. First we prove an auxiliary result

which is an extension of a regularity estimate given in Galdi (1994).

Lemma A.2 Let f ∈ [
L2(Y f )

]3
be Y -periodic. Then there exists a Y -periodic unique solu-

tion (u, π) ∈ H2(Y f ) × H1(Y f ) such that

iωρ f u − η�yu + ∇yπ = f, Y f , (A.7a)

∇y · u = 0, Y f , (A.7b)

u = 0, �s f , (A.7c)

satisfying

‖u‖H2(Y f )
+ ‖π‖H1(Y f )

≤ C2‖f‖L2(Y f )
, (A.8)

where C2 is independent of ω.

Proof Let F ∈ [
L2(Y f )

]3
be Y -periodic and (U, P) be the Y -periodic solution of

− η�yU + ∇y P = F, Y f , (A.9a)

∇y · U = 0, Y f , (A.9b)

U = 0, �s f . (A.9c)

According to Galdi (1994) (Theorem 6.1, pp. 225), the following regularity estimate holds:

‖U‖H2(Y f )
+ ‖P‖H1(Y f )

≤ C̃1‖F‖L2(Y f )
. (A.10)

Consequently, applying (A.10) in (A.7) we get

‖u‖H2(Y f )
+ ‖π‖H1(Y f )

≤ C̃1

(
‖f‖L2(Y f )

+ ω‖u‖L2(Y f )

)
. (A.11)

By testing (A.7a) against u and taking the imaginary part in the resulting equation, it
follows that

ω‖u‖L2(Y f )
≤ 1

ρ f
‖f‖L2(Y f )

, (A.12)

which combined with (A.11) proves the validity of (A.8).
Using the result in Lemma A.2, we now obtain an estimate for ‖vm‖L2(Y f )

. �

Lemma A.3 The solution vm of (A.5) satisfies the estimate

‖vm‖L2(Y f )
≤ C3‖g‖L2(�s f )

, (A.13)

where C3 > 0 is a constant independent of m and ω.
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Proof Consider the auxiliary Y -periodic problem to find u and π satisfying

− iωρ f u − η�yu + ∇yπ = vm, Y f , (A.14a)

∇y · u = 0, Y f , (A.14b)

u = 0, �s f . (A.14c)

Take ϕ = u in (A.5), use integration by parts in the η-term, and apply (A.14) in the
resulting equation. After integrating by parts the term (vm,∇π), owing to the fact that vm is
divergence free, we obtain

(
vm, vm)

Y f
+

〈
vm,

(
η

∂u
∂ν

− νπ

)〉

�s f

= 0. (A.15)

Next, recall the continuity of the trace operators

H2(Y f ) −→ L2(�s f )

u �−→ ∂u
∂ν

and
H1(Y f ) −→ L2(�s f )

u �−→ u|�s f

. (A.16)

Then from (A.6) and (A.8) it follows that
∣∣∣∣∣
〈
vm,

(
η

∂u
∂ν

− νπ

)〉

�s f

∣∣∣∣∣ ≤ ‖vm‖L2(�s f
)

∥∥∥∥
(

η
∂u
∂ν

− νπ

)∥∥∥∥
L2(�s f )

≤ C‖g‖L2(�s f )

(
‖u‖H2(Y f )

+ ‖π‖H1(Y f )

)

≤ C3‖g‖L2(�s f )
‖vm‖L2(Y f )

. (A.17)

Next, using (A.17) in (A.15) we get

‖vm‖2
L2(Y f )

≤ C3‖g‖L2(�s f )
‖vm‖L2(Y f )

,

which shows the validity of (A.13). This completes the proof. �

Now we proceed to derive the desired existence and uniqueness result on the solution
of Problem (A.1). Note that the bounds in Lemmas A.1 and A.3 imply that there exists a
subsequence of vm , that we denote again vm , such that

vm ⇀ v0 weakly in
[
L2(Y f )

]3
, (A.18a)

vm ⇀ z0 weakly in
[
L2(�s f )

]3
. (A.18b)

We wish to show that z0 = g on �s f . First, since ∇ · vm = 0 in Y f , we notice that∫

�s f

z0 · νdS = 0. Then, take a Y -periodic function ϕ ∈ [
C2(Y f )

]3
with ∇ · ϕ = 0 as

a test function in (A.5) and use (A.6) and (A.13) to obtain

∣∣∣m 〈
vm − g,ϕ

〉
�s f

∣∣∣ =
∣∣∣∣∣iω

(
ρ f vm,ϕ

) − (
ηvm,�ϕ

) +
〈
ηvm,

∂ϕ

∂ν

〉

�s f

∣∣∣∣∣

≤ C

(
ω‖vm‖L2(Y f )

‖ϕ‖L2(Y f )
+ ‖vm‖L2(Y f )

‖�ϕ‖L2(Y f )

+‖vm‖L2(�s f )

∥∥∥∥
∂ϕ

∂ν

∥∥∥∥
L2(�s f )

)

≤ C(ϕ) max{1, ω}‖g‖L2(�s f )
(A.19)

123



Darcy’s Law for Composite Porous Medium 367

Taking limit as m → ∞ in (A.19), we get that
〈
z0 − g,ϕ

〉
�s f

= 0,

for all such test functions ϕ. Since the traces of functions ϕ ∈ [
C2(Y f )

]3
are dense in

L2(�s f ), we conclude that

z0 = g, a.e. on �s f .

Again, take ϕ ∈ V2
Y f

in (A.5) and use integration by parts in the η-term to obtain

iω
(
ρ f vm,ϕ

)
Y f

− (
ηvm,�yϕ

)
Y f

+
〈
ηvm,

∂ϕ

∂ν

〉

�s f

= 0. (A.20)

Next, using (A.18), take limit when m → ∞ in (A.20) to obtain

iω
(
ρ f v0,ϕ

)
Y f

− (
ηv0,�yϕ

)
Y f

= −
〈
ηg,

∂ϕ

∂ν

〉

�s f

, ϕ ∈ V2
Y f

.

Also, note that for ψ ∈ W , since ∇ · vm = 0,
(
vm,∇ψ)

Y f
= 〈

vm · ν,ψ 〉
�s f

. (A.21)

Due to ∇ψ ∈ [
L2(Y f )

]3
and (A.18a), by taking limit in (A.21) as m → ∞, we get

(
v0,∇ψ)

Y f
= 〈g · ν,ψ〉�s f

, ψ ∈ W.

Thus v0 is a very weak solution of (A.1) in the sense defined in (2.27). This completes the
proof of Theorem 2.1.
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