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Summary. We consider the approximation of the vibration modes of an
elastic plate in contact with a compressible fluid. The plate is modelled by
Reissner-Mindlin equations while the fluid is described in terms of displace-
ment variables. This formulation leads to a symmetric eigenvalue problem.
Reissner-Mindlin equations are discretizedby amixedmethod, the equations
for the fluid with Raviart-Thomas elements and a non conforming coupling
is used on the interface. In order to prove that the method is locking free we
consider a family of problems, one for each thickness t > 0, and introduce
appropriate scalings for the physical parameters so that these problems at-
tain a limit when t → 0. We prove that spurious eigenvalues do not arise
with this discretization and we obtain optimal order error estimates for the
eigenvalues and eigenvectors valid uniformly on the thickness parameter t.
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Finally we present numerical results confirming the good performance of
the method.

Mathematics Subject Classification (1991): 65N30, 65N25

1. Introduction

The approximation of the vibration modes of an elastic solid interacting
with a fluid is an important problem which occurs in many engineering
applications. During the last years a large amount of work has been devoted
to this subject. A general overview can be found in the monographs by
Morand and Ohayon[19] and Conca et al.[9], where numerical methods and
further references are also given.

This paper deals with a particular fluid-solid interaction problem: the
approximation of the small amplitude vibration modes of an elastic plate in
contact with an ideal compressible fluid.

The vibration of a fluid alone is usually treated by choosing the pres-
sure as primary variable. However, for coupled systems, such choice leads
to non-symmetric eigenvalue problems (see for instance [24]). To avoid
this drawback the fluid has been alternatively described by different vari-
ables: velocity potential, yielding a quadratic eigenvalue problem ([13]);
both, pressure and displacement potentials, whose discretization leads to a
symmetric but non-banded problem ([18]); etc.

On the other hand, the use of displacement variables to describe the fluid
gives rise to symmetric banded eigenvalue problems. However, in this case,
λ = 0 turns out to be an eigenvalue with an infinite dimensional eigenspace.
Because of this, standard discretizations of this formulation suffer from
the presence of non-zero frequency spurious modes with no physical entity
([15]).

An alternative discretization of this formulation has been introduced
in [6]. It consists of using Raviart-Thomas elements for the fluid ade-
quately coupled with piecewise linear elements for the structure. For two-
dimensional problems non-existence of spurious modes and optimal error
estimates have been proved in [4] and [21] by extending the spectral theory
for non compact operators in [10] to non conformingmethods. These results
have been extended to 3D in [5].

The aim of this paper is to carry out a similar analysis for the interaction
between a fluid and a particular thin structure: a plate, modelled byReissner-
Mindlin equations in order to allow for small as well as moderately large
thickness.

Even for the plate alone, standard finite element discretizations of these
equations lead towrong results because of the so called lockingphenomenon.
In order to avoid this drawback, reduced integration or mixed methods are
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usually applied (see for instance [7]).A locking freemethod, the lowest order
MITC one, has been recently analyzed in [11] in the context of vibration
problems. Optimal order error estimates independent of the thickness have
been established therein.

We consider a discretization of the coupled problem involving these
elements for the bending of the plate and lowest order Raviart-Thomas
elements for the fluid, coupled in a non conforming way.

To prove that this method is locking free, a family of problems (one
for each thickness t > 0) attaining a finite limit as t goes to zero should be
considered and approximation results valid uniformly on t should be sought.
To perform such asymptotic analysis the physical constants of the plate and
the fluid have to be adequately scaled. We characterize the spectrum of
the continuous coupled problem for any t > 0 and introduce appropriate
scalings of both densitieswhich allowus to prove that this spectrumconverge
to that of a Kirchhoff plate in contact with a fluid, as the thickness becomes
small.

The arguments in [4,21] could be in principle applied for the theoretical
analysis of our finite element method; however they do not seem to pro-
vide optimal order error estimates for the approximation of the eigenvalues.
Instead, we consider the restriction of the problem to the orthogonal comple-
ment of the eigenspace corresponding to λ = 0. This leads to an equivalent
spectral problem for a compact operator. By proceeding in this way the
discretization presents another variational crime, but we are able to prove,
under mild assumptions, optimal order of convergence for the approximate
eigenfunctions and eigenvalues and that non-zero spurious modes do not
arise.

Finally, numerical experiments are presented confirming the theoretical
results and showing the good performance of the method.

2. Statement of the problem

We consider as a model problem that of determining the natural vibration
modes of a coupled system consisting of a compressible fluid contained in
a three-dimensional cavity whose walls are all rigid, except for one of them
which is an elastic plate.

Let Ω be a polyhedral convex three-dimensional domain which we as-
sume completely filled with an inviscid compressible fluid. Its boundary ∂Ω
is the union of the convex surfaces Γ0, Γ1, ... , ΓJ . We assume that Γ0 is
in contact with an elastic plate of thickness t. The remaining surfaces are
assumed to be perfectly rigid walls. We denote by n the outer unit normal
vector to ∂Ω.
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The bending of the plate in contact with the fluid is modelled bymeans of
Reissner-Mindlin equations.We denote byΓ itsmiddle surface and consider
coordinates such that the 3D reference domain for the plate is Γ × (− t

2 ,
t
2

)
.

Throughout this paper we make use of the standard notation for Sobolev
spaces Hk(Ω), H1

0 (Γ ), H(div, Ω), H0(rot, Γ ), etc. and their respective
norms (see for instance [14]). We also denote H := L2(Γ ) × L2(Γ )2 ×
L2(Ω)3, X := H1

0 (Γ )×H1
0 (Γ )

2 ×H(div, Ω) and ‖ · ‖ the product norm
of the latter.

Let (uP
1 , u

P
2 , u

P
3 ) denote the displacement of a point (x, y, z) of the plate.

In the Reissner-Mindlin model the transversal displacement uP
3 is assumed

to be independent of the z-coordinate:

uP
3 (x, y, z) = w(x, y),(2.1)

and the “in plane” displacements uP
1 and uP

2 are given by

uP
1 (x, y, z) = −zβ1(x, y), uP

2 (x, y, z) = −zβ2(x, y),(2.2)

with β := (β1, β2) being the rotations of the fibers normal to Γ . For the sake
of simplicity we assume that the plate is clamped by its whole boundary;
that is, β1 = β2 = w = 0 on ∂Γ .

Under the usual assumptions of this model the dynamic response of the
plate to a pressure load q exerted on one of its faces is given by displacements
of the form (2.1)-(2.2) with (w, β) ∈ H1

0 (Γ )×H1
0 (Γ )

2 being such that

t3a(β, η) + κt
∫

Γ
(∇w − β) · (∇v − η) + t

∫
Γ
ρPẅv(2.3)

+
t3

12

∫
Γ
ρP β̈ · η =

∫
Γ
qv ∀(v, η) ∈ H1

0 (Γ )×H1
0 (Γ )

2

(see for instance [16]). In the previous equation, the double dotmeans second
derivatives with respect to time, ρP is the density of the plate, κ := Ek

2(1+ν) ,
where E is the Young modulus, ν the Poisson ratio of the plate and k a
correction factor which is usually taken as 5/6 (see [1] for a justification of
the use of this coefficient); finally, a is the bilinear form defined onH1

0 (Γ )
2

by

a(β, η) :=
E

12(1− ν2)

∫
Γ


 2∑

i,j=1

(1− ν)εij(β)εij(η) + ν div β div η

 .

On the other hand, the governing equations for the free small amplitude
motions of an inviscid compressible fluid contained in Ω are given by

p = −ρFc
2 div u in Ω,(2.4)

ρF ü = −∇p in Ω,(2.5)
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where p is the pressure, u the displacement field, ρF the density and c the
acoustic speed of the fluid. Since the fluid is considered inviscid, only the
normal component of the displacement vanishes on the rigid part of the
cavity boundary ΓR := Γ1 ∪ · · · ∪ ΓJ :

u · n = 0 on ΓR .(2.6)

On the other hand, the normal displacement coincides with the transverse
displacement of the plate on Γ0. Since the latter do not depend on the z-
coordinate, it can be considered that the midsurface Γ (instead of Γ0) is one
of the components of ∂Ω and hence

u · n = w on Γ.(2.7)

Now, wemultiply equation (2.5) by a test displacement field φ satisfying
(2.6), we integrate by parts and use (2.4) to obtain∫

Ω
ρF ü · φ+

∫
Ω
ρFc

2 div u div φ = −
∫

Γ
p φ · n.(2.8)

In our coupled problem, the unique load q exerted on the plate is the pressure
p of the fluid. Therefore, by adding (2.8) to (2.3) and choosing test functions
(v, η, φ) in the space

V := {(v, η, φ) ∈ X : φ · n = 0 on ΓR and φ · n = v on Γ} ,
we have that

t3a(β, η) + κt
∫

Γ
(∇w − β) · (∇v − η) +

∫
Ω
ρFc

2 div u div φ(2.9)

= −t
∫

Γ
ρPẅv −

t3

12

∫
Γ
ρP β̈ · η −

∫
Ω
ρF ü · φ.

To obtain the free vibration modes of this coupled problem we seek
harmonic in time solutions of (2.9). By so doing we obtain the following
spectral problem (see for instance [19]):

Find λ ∈ IR and 0 �= (w, β, u) ∈ V such that

t3a(β, η) + κt
∫

Γ
(∇w − β) · (∇v − η) +

∫
Ω
ρFc

2 div u div φ(2.10)

= λ
(
t

∫
Γ
ρPwv +

t3

12

∫
Γ
ρPβ · η +

∫
Ω
ρFu · φ

)
∀(v, η, φ) ∈ V,

where λ is the square of the angular vibration frequency.
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As usual, when a displacement formulation is used for the fluid, λ = 0
turns out to be an eigenvalue of this problem; its associated eigenspace is in
this case

K :={(0, 0, φ) ∈ V : div φ = 0 in Ω and φ · n = 0 on ∂Ω}.(2.11)

Because of the symmetry of (2.10), the eigenfunctions corresponding
to non-zero eigenvalues belong to the orthogonal complement of K in V
with respect to the bilinear form in the right hand side of that equation. This
orthogonal complement can be readily seen to coincide with

G := {(v, η, φ) ∈ V : φ = ∇q for some q ∈ H1(Ω)}.(2.12)

Note that K and G are also orthogonal with respect to the bilinear form in
the left hand side. So, the eigenpairs corresponding to non-zero eigenvalues
are precisely the solutions of problem (2.10) restricted to G (i.e., with V
substituted by G) and this will be used below for the theoretical analysis.

We denote

‖(v, η, φ)‖• :=
(‖v‖21,Γ + ‖η‖21,Γ + ‖div φ‖20,Ω

)1/2(2.13)

which is a norm on G equivalent to ‖ · ‖. In fact, for (v, η, φ) ∈ G, φ = ∇q
with q being a solution of the compatible Neumann problem

∆q = div φ in Ω,
∂q

∂n
=

{
0 on ΓR ,
v on Γ,

and then, because of the standard a priori estimate, φ = ∇q ∈ H1(Ω)3 and

‖φ‖1,Ω ≤ C
(‖v‖1/2,Γ + ‖div φ‖0,Ω

)
.(2.14)

A fortiori, ‖φ‖0,Ω ≤ C (‖v‖1,Γ + ‖div φ‖0,Ω), which yields the claimed
equivalence.

Since we are interested in considering both, thin as well as moderately
thick plates, the method to be used should remain stable as the thickness
becomes small. To this goal, in static problems, the loads are typically as-
sumed to depend adequately on the thickness in order to obtain a family of
problemswith uniformly bounded solutions: volumetric forces are supposed
to be proportional to t3 and surface loads to t2 (see for instance [7]).

A simple way to do similar assumptions in our case is to consider densi-
ties for both, fluid and solid, depending on the thickness of the plate in the
following way:

ρF = ρ̂Ft
3, ρP = ρ̂Pt

2.

Under these assumptions, the non-zero eigenvalues in (2.10) and their asso-
ciated eigenfunctions are the solutions of the following rescaled problem:
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Find λ ∈ IR and 0 �= (w, β, u) ∈ G such that

st

(
(w, β, u), (v, η, φ)

)
(2.15)

= λ rt
(
(w, β, u), (v, η, φ)

)
∀(v, η, φ) ∈ G,

with

st

(
(w, β, u), (v, η, φ)

)
:= a(β, η) +

κ

t2

∫
Γ
(∇w − β) · (∇v − η)

+
∫

Ω
ρ̂Fc

2 div u div φ

and

rt

(
(w, β, u), (v, η, φ)

)
:=

∫
Γ
ρ̂Pwv +

t2

12

∫
Γ
ρ̂Pβ · η +

∫
Ω
ρ̂Fu · φ.

As it is well known, a(β, η)+ κ
t2

∫
Γ (∇w−β) · (∇v− η) is t-uniformly

coercive on H1
0 (Γ ) ×H1

0 (Γ )
2 (see for instance [7]). As a consequence of

this and the equivalence of ‖ · ‖ and ‖ · ‖• , st(·, ·) turns out to be coercive on
G with a coerciveness constant independent of t. So, if we endow H with
the weighted L2 norm | · |t induced by rt, the operator

Tt : H −→ G
(f, θ, g) �−→ (w, β, u)

with (w, β, u) ∈ G being the solution of

st

(
(w, β, u), (v, η, φ)

)
(2.16)

= rt
(
(f, θ, g), (v, η, φ)

)
∀(v, η, φ) ∈ G,

turns out to be uniformly bounded on t.
Because of (2.14), G is compactly included in H and, therefore, the

operator Tt : H −→ H is compact. Since st and rt are symmetric and
semipositive definite, the spectrum of Tt, apart from µ = 0, consists of
a sequence of positive finite multiplicity eigenvalues converging to zero.
Clearly these eigenvalues are given by µ = 1

λ , for λ any eigenvalue of
(2.15), with the same multiplicities and eigenfunctions.
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3. A priori estimates and the limit problem

The purpose of this section is two-fold: on one hand, we will show that the
operators Tt converge to a limit T0 in norm and, on the other, we will prove
that Tt are regularizing operators (even for t = 0).

By introducing the shear strain γ := κ
t2
(∇w−β) ∈ H0(rot, Γ ), for any

t > 0, problem (2.16) can be rewritten as:


a(β, η) +
∫

Γ
γ · (∇v − η) +

∫
Ω
ρ̂Fc

2 div u div φ

=
∫

Γ
ρ̂Pfv +

t2

12

∫
Γ
ρ̂Pθ · η +

∫
Ω
ρ̂Fg · φ ∀(v, η, φ) ∈ G,

γ =
κ

t2
(∇w − β).

(3.1)

In absence of the fluid, these are the standardReissner-Mindlin equations
whose solutions are known to converge to that of the mixed formulation of
Kirchhoff model (see [7]). In our case we will show below that the limit of
Tt is

T0 : H −→ G
(f, θ, g) �−→ (w0, β0, u0)

with (w0, β0, u0) ∈ G such that there exists γ0 ∈ H0(rot, Γ )′ satisfying


a(β0, η) + 〈γ0,∇v − η〉+
∫

Ω
ρ̂Fc

2 div u0 div φ

=
∫

Γ
ρ̂Pfv +

∫
Ω
ρ̂Fg · φ ∀(v, η, φ) ∈ G,

∇w0 − β0 = 0,

(3.2)

where 〈·, ·〉 stands for the duality pairing in H0(rot, Γ ). Notice that, since
β0 = ∇w0, by taking η = ∇v for v ∈ H2

0 (Γ ), we obtain the classical
variational formulation of Kirchhoff equations coupled with those of the
fluid, namely:∫

Γ

E

12(1− ν2)
∆w0∆v +

∫
Ω
ρ̂Fc

2 div u0 div φ =
∫

Γ
ρ̂Pfv +

∫
Ω
ρ̂Fg · φ,

for all (v, φ) ∈ H2
0 (Γ )×H(div, Ω) such that φ ·n = v on Γ and φ ·n = 0

on ΓR .
The arguments used for the plate alone (see [7]) can be easily extended

to show that problem (3.2) satisfies both classical Brezzi’s conditions. This
ensures the existence of a unique solution of this problem and its continuous
dependence on the data (f, g) ∈ L2(Γ ) × L2(Ω)3. Therefore T0 is a well
defined bounded linear operator.

Now we prove further regularity of the solutions of problems (3.1) and
(3.2):
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Theorem 3.1 Let (f, θ, g) ∈ H and (w, β, u) = Tt(f, θ, g). Let γ =
κ
t2
(∇w − β) for t > 0, or γ = γ0 (as defined in (3.2)) for t = 0. Then,

(w, β, u) ∈ H2(Γ )×H2(Γ )2 ×H1(div, Ω), γ ∈ L2(Γ ) and there holds

‖w‖2,Γ + ‖β‖2,Γ + ‖u‖H1(div,Ω) + ‖γ‖0,Γ ≤ C|(f, θ, g)|t,
with C > 0 independent of t ∈ [0, tmax].

Proof. We give the proof for t > 0, but the arguments extend trivially to
t = 0.

Since (w, β, u) ∈ G, from (2.14) we have that u ∈ H1(Ω)3 and

‖u‖1,Ω ≤ C (‖w‖1,Γ + ‖div u‖0,Ω) ≤ C|(f, θ, g)|t.(3.3)

(Here and throughout this section C stands for a positive constant, not nec-
essarily the same at each occurrence but always independent of t.)

By taking (0, 0,∇ξ) as a test function in (2.16), with ∇ξ being the
gradient part of a Helmholtz decomposition of any φ ∈ D(Ω)3, it is simple
to show that

−ρ̂Fc
2∇ div u = ρ̂F∇q in Ω,

where∇q is the gradient part of the analogous Helmholtz decomposition of
g. Hence div u ∈ H1(Ω) with

‖div u‖1,Ω ≤ C|(f, θ, g)|t.(3.4)

Now, given (v, η, φ) ∈ G, by integrating by parts in (2.16) we obtain

a(β, η) +
κ

t2

∫
Γ
(∇w − β) · (∇v − η) =

∫
Γ
(ρ̂Pf − ρ̂Fc

2 div u)v

+
t2

12

∫
Γ
ρ̂Pθ · η ∀(v, η) ∈ H1

0 (Γ )×H1
0 (Γ )

2.

This is the classical Reissner-Mindlin equation for which a priori estimates
are known (see for instance [2]):

‖w‖2,Γ + ‖β‖2,Γ + ‖γ‖0,Γ + t ‖γ‖1,Γ(3.5)
≤ C (‖ρ̂Pf − ρ̂Fc

2 div u‖0,Γ + t2‖ρ̂Pθ‖0,Γ

)
≤ C |(f, θ, g)|t.

This, together with (3.3) and (3.4), allow us to conclude the proof. ✷

Now we are able to make precise in what sense Tt converge to T0 as t
goes to zero.

Theorem 3.2 There exists a constant C, independent of t, such that, for all
(f, θ, g) ∈ H,

‖(Tt − T0)(f, θ, g)‖ ≤ Ct |(f, θ, g)|t.
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Proof. Let (w, β, u) := Tt(f, θ, g) and (w0, β0, u0) := T0(f, θ, g). Sub-
tracting (3.2) from (3.1) we have




a(β − β0, η) +
∫

Γ
(γ − γ0) · (∇v − η) +

∫
Ω
ρ̂Fc

2 div (u− u0) div φ

=
t2

12

∫
Γ
ρ̂Pθ · η ∀(v, η, φ) ∈ G,

γ =
κ

t2

[
∇(w − w0)− (β − β0)

]
.

(Notice that
∫
Γ (γ − γ0) · (∇v − η) makes sense, since (3.5) implies that

γ0 ∈ L2(Γ )2.) By taking v = w − w0, η = β − β0 and φ = u − u0 we
obtain

a(β − β0, β − β0) +
∫

Ω
ρ̂Fc

2[ div (u− u0)]2

=
t2

12

∫
Γ
ρ̂Pθ · (β − β0)− t

2

κ

∫
Γ
(γ − γ0) · γ.

Hence, from the coerciveness of a and the a priori estimate (3.5) for ‖γ‖0,Γ

and ‖γ0‖0,Γ , we have

‖β − β0‖21,Γ + ‖div (u− u0)‖20,Ω

≤ Ct2‖θ‖0,Γ ‖β − β0‖0,Γ + Ct2 (‖γ‖0,Γ + ‖γ0‖0,Γ ) ‖γ‖0,Γ

≤ Ct |(f, θ, g)|t ‖β − β0‖0,Γ + Ct2|(f, θ, g)|2t

and therefore

‖β − β0‖1,Γ + ‖div (u− u0)‖0,Ω ≤ Ct |(f, θ, g)|t.(3.6)

Finally observe that

∇(w − w0) = (β − β0) +
t2

κ
γ

and so, using again the a priori estimate (3.5) for ‖γ‖0,Γ , we obtain

‖w − w0‖1,Γ ≤ C
[
‖β − β0‖0,Γ + t2|(f, θ, g)|t

]
,

which, together with (3.6) and the equivalence between ‖ · ‖• and ‖ · ‖ on
G, allow us to conclude the proof. ✷
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4. Discretization

Let {Th} be a regular family of partitions of Ω in tetrahedra; h stands for
the maximum diameter of the elements. Each Th, induces a triangulation on
Γ :

T Γ
h := {T ⊂ Γ : T is a face of a tetrahedronK ∈ Th}.

To approximate the fluid displacements, we use lowest order Raviart-
Thomas elements (see [20]):

Rh := {φh ∈ H(div, Ω) : φh|K ∈ P3
0 ⊕ (x, y, z)P0 ∀K ∈ Th}.(4.1)

For the plate we consider a method analyzed in [12] and [8]. It is based
on different finite element spaces for the rotations, the transverse displace-
ment and the shear strain. For the former we take piecewise linear functions
augmented in such a way that they have quadratic tangential components
on the boundary of each element. Namely, for each T ∈ T Γ

h , let n be a unit
normal on ∂T and define

Q(T ) := {η ∈ P2(T )2 : η · n|� ∈ P1(.) for each edge . of T};
then, the finite element space for the rotations is defined by

Hh := {ηh ∈ H1
0 (Γ )

2 : ηh|T ∈ Q(T ) ∀T ∈ T Γ
h }.

For the transverse displacementswe take standard piecewise linear elements,
namely,

Wh := {vh ∈ H1
0 (Γ ) : vh|T ∈ P1(T ) ∀T ∈ T Γ

h }.
Finally, to discretize the shear strain we use the lowest order rotated Raviart-
Thomas space

Zh := {ψh ∈ H0(rot, Γ ) : ψh|T ∈ P2
0 ⊕ (−y, x)P0 ∀T ∈ T Γ

h }
and the reduction operator

Π : H1(Γ )2 ∩H0(rot, Γ ) −→ Zh,

locally defined for each ψ ∈ H1(Γ )2 by (see [7,20])∫
�
Πψ · τ =

∫
�
ψ · τ,(4.2)

for every edge . of the triangulation (τ being a unit tangent vector along .).
It can be shown that this operator satisfies ([7,20])

‖ψ −Πψ‖0,Γ ≤ Ch‖ψ‖1,Γ .(4.3)
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We impose weakly the interface condition (2.7); in fact, we take as dis-
crete space for the coupled problem

Vh := {(vh, ηh, φh) ∈Wh ×Hh ×Rh :

φh · n = 0 on ΓR and
∫

T
φh · n =

∫
T
vh ∀T ∈ T Γ

h }.

Note that, for elements in Vh, the equality φh · n = vh must hold only at
the baricenter of the triangles in T Γ

h . So Vh �⊂ V , giving rise to a variational
crime for our method. Let us remark that if the interface condition were
imposed strongly (namely, φh · n = vh on Γ ) it would imply vh ≡ 0.

The discrete eigenvalue problem reads:
Find λh ∈ IR and 0 �= (wh, βh, uh) ∈ Vh such that



a(βh, ηh) +
∫

Γ
γh · (∇vh −Πηh) +

∫
Ω
ρ̂Fc

2 div uh div φh

= λh

(∫
Γ
ρ̂Pwhvh +

t2

12

∫
Γ
ρ̂Pβh · ηh +

∫
Ω
ρ̂Fuh · φh

)
∀(vh, ηh, φh) ∈ Vh,

γh =
κ

t2
(∇wh −Πβh).

(4.4)

Note that the use of the reduction operator Π leads to a second variational
crime.

For this problem, λh = 0 turns out to be an eigenvalue with correspond-
ing eigenspace

Kh := {(0, 0, φh) ∈ Vh : div φh = 0 in Ω and φh · n = 0 on ∂Ω}.
As in the continuous case, for the theoretical analysis we may restrict the
discrete eigenvalue problem to the orthogonal complement ofKh in Vh with
respect to rt. We denote it Gh and write

Find λh ∈ IR and 0 �= (wh, βh, uh) ∈ Gh such that

sth

(
(wh, βh, uh), (vh, ηh, φh)

)
(4.5)

= λhrt

(
(wh, βh, uh), (vh, ηh, φh)

)
∀(vh, ηh, φh) ∈ Gh,

with

sth

(
(wh, βh, uh), (vh, ηh, φh)

)
:= a(βh, ηh)

+
κ

t2

∫
Γ
(∇wh −Πβh) · (∇vh −Πηh) +

∫
Ω
ρ̂Fc

2 div uh div φh.
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Let us remark that, although Vh �⊂ V ,Kh ⊂ K ⊂ V . In contrast, Gh �⊂ G; in
fact, for (vh, ηh, φh) ∈ Gh, φh is not necessarily a gradient and this yields
another variational crime.

The bilinear form sth turns out to be coercive on Gh with a coercive-
ness constant independent of t and h. In fact, it is known that a(βh, ηh) +
κ
t2

∫
Γ (∇wh − Πβh) · (∇vh − Πηh) is uniformly coercive on Hh × Wh

(see [12]), whereas ‖ · ‖• and ‖ · ‖ are equivalent on Gh (with constants
not depending on h), as follows from the lemma below which provides a
Helmholtz decomposition for the discrete fluid displacements.

Lemma 4.1 For any (vh, ηh, φh) ∈ Gh, φh can be written as

φh = ∇ξ + χ,
with ξ and χ satisfying (vh, ηh,∇ξ) ∈ G and divχ = 0. Moreover, there
exists a constant C, independent of h, such that

‖∇ξ‖1,Ω ≤ C
(
‖div φh‖0,Ω + ‖vh‖1,Γ

)
,(4.6)

‖χ‖0,Ω ≤ Ch
(
‖div φh‖0,Ω + ‖vh‖1,Γ

)
.(4.7)

Proof. We do not include it here since it is essentially identical to those of
decomposition (5.5) in [4] and its corresponding estimates, which are given
in the proofs of Theorem 5.4 and Lemma 5.5 of that reference. ✷

Since sth are uniformly coercive on Gh, if we define

Tth : H −→ Gh

(f, θ, g) �−→ (wh, βh, uh)

with (wh, βh, uh) ∈ Gh being the solution of

sth

(
(wh, βh, uh), (vh, ηh, φh)

)
(4.8)

= rt
(
(f, θ, g), (vh, ηh, φh)

)
∀(vh, ηh, φh) ∈ Gh,

operators Tth turn out to be uniformly bounded in t and h. Clearly, as in the
continuous case, the non-zero eigenvalues of Tth are exactly those of the
form µh = 1

λh
, for λh the eigenvalues of Problem (4.5).

5. Convergence of the discrete operators

The goal of this section is to show that ‖(Tt−Tth)(f, θ, g)‖ ≤ Ch |(f, θ, g)|t
(here and thereafter C denotes a strictly positive constant, not necessarily
the same at each occurrence, but always independent of t ∈ [0, tmax] and
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h). Such result will allow us to prove in the next section the convergence of
the eigenfunctions of the discrete problem to those of the continuous one.

Throughout this section, we consider (f, θ, g) ∈ H fixed and denote

(w, β, u) := Tt(f, θ, g), (wh, βh, uh) := Tth(f, θ, g),

γ :=
κ

t2
(∇w − β), γh :=

κ

t2
(∇wh −Πβh).

Asmentioned above, ourmethod involves twokindsof variational crimes:
sth �= st (because of the use of the reduction operator Π) and Gh �⊂ G (be-
cause of the weak imposition of the interface condition and the fact that, for
(vh, ηh, φh) ∈ Gh, φh is not necessarily a gradient). Therefore, two consis-
tency terms appear in the error equation; in fact, from (4.8) and the definition
of st we have

a(β − βh, ηh) +
∫

Γ
(γ − γh) · (∇vh −Πηh)(5.1)

+
∫

Ω
ρ̂Fc

2 div (u− uh) div φh =
∫

Γ
γ · (ηh −Πηh)

+Mh(vh, ηh, φh) ∀(vh, ηh, φh) ∈ Gh,

where

Mh(vh, ηh, φh) :=st
(
(w, β, u), (vh, ηh, φh)

)
−rt

(
(f, θ, g), (vh, ηh, φh)

)
.

The first consistency term
∫
Γ γ · (ηh −Πηh) will be easily bounded by

using (4.3). For the second one we have the following estimate:

Lemma 5.1 There holds

|Mh(vh, ηh, φh)| ≤ Ch ‖g‖0,Ω‖(vh, ηh, φh)‖• ∀(vh, ηh, φh) ∈ Gh.

Proof. Given (vh, ηh, φh) ∈ Gh, consider the Helmholtz decomposition in
Lemma 4.1:

φh = ∇ξ + χ,
with (vh, ηh,∇ξ) ∈ G and divχ = 0. HenceMh(vh, ηh,∇ξ) vanishes and

Mh(vh, ηh, φh) =Mh(0, 0, χ) = −
∫

Ω
ρ̂Fgχ.(5.2)

This, together with (4.7), allow us to conclude the proof. ✷

The following lemma shows that the spaces Gh provide suitable approx-
imations for (w, β, u):
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Lemma 5.2 There exists (ŵ, β̂, û) ∈ Gh such that

‖(ŵ, β̂, û)− (w, β, u)‖ ≤ Ch |(f, θ, g)|t.
Moreover, if γ̂ := κ

t2
(∇ŵ −Πβ̂), there also holds
t ‖γ̂ − γ‖0,Γ ≤ Ch |(f, θ, g)|t.

Proof. Let (ŵ, β̂) ∈ Wh × Hh be such that ‖β̂ − β‖1,Γ ≤ Ch ‖β‖2,Γ ,
‖ŵ − w‖1,Γ ≤ Ch ‖w‖2,Γ , and t ‖γ̂ − γ‖0,Γ ≤ Ch (t ‖γ‖1,Γ + ‖γ‖0,Γ )
(such (ŵ, β̂) has been proved to exist in example 4.1 of [12], with ŵ being
the Lagrange interpolant of w).

Arguing as in Theorem 5.2 of [4] we can find uI ∈ Rh such that
(ŵ, β̂, uI) ∈ Vh and ‖uI − u‖H(div,Ω) ≤ Ch

[‖w‖2,Γ + ‖u‖H1(div,Ω)
]
.

Now, let (0, 0, uKh
) be the rt projection of (ŵ, β̂, uI) onto Kh. Hence,

for û := uI − uKh
, (ŵ, β̂, û) ∈ Gh. Moreover, since uKh

and (û − u) are
orthogonal in H(div, Ω), we have

‖û− u‖H(div,Ω) ≤ ‖(û− u) + uKh
‖H(div,Ω) = ‖uI − u‖H(div,Ω).

Therefore, by applying the a priori estimate in Theorem 3.1 we conclude
the proof. ✷

In order to attain the goal of this section, we first prove convergence for
the discrete operators in ‖ · ‖• . As a by product we obtain convergence of
the shear strains, which will be used in the next section.

Lemma 5.3 There holds

‖w − wh‖1,Γ + ‖β − βh‖1,Γ + t ‖γ − γh‖0,Γ

+‖div (u− uh)‖0,Ω ≤ Ch |(f, θ, g)|t.
Proof. Let (ŵ, β̂, û) and γ̂ be as in Lemma 5.2. From the error equation
(5.1), by proceeding as in the proof of Lemma 3.1 of [12], we obtain

‖β̂ − βh‖21,Γ + t ‖γ̂ − γh‖20,Γ + ‖div (û− uh)‖20,Ω

≤ C
[
‖β̂ − β‖21,Γ + t ‖γ̂ − γ‖20,Γ + ‖div (û− u)‖20,Ω

+ ‖γ‖0,Γ ‖(β̂ − βh)−Π(β̂ − βh)‖0,Γ

+ |Mh(ŵ − wh, β̂ − βh, û− uh)|
]

≤ C
[
‖β̂ − β‖21,Γ + t ‖γ̂ − γ‖20,Γ + ‖div (û− u)‖20,Ω

]
+Ch

[
‖γ‖0,Γ ‖(β̂ − βh)‖1,Γ

+‖g‖0,Ω‖(ŵ − wh, β̂ − βh, û− uh)‖•

]
,
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where we have used (4.3) and Lemma 5.1 for the last inequality.
Now, using that∇(ŵ−wh) = t2

κ (γ̂−γh)−Π(β̂−βh) and (4.3), simple
algebra yields

‖β̂ − βh‖1,Γ + t ‖γ̂ − γh‖0,Γ + ‖div (û− uh)‖0,Ω

≤ C
[
‖β̂ − β‖1,Γ + t ‖γ̂ − γ‖0,Γ + ‖div (û− u)‖0,Ω

]
+Ch

(
‖γ‖0,Γ + ‖g‖0,Ω

)
.

So, triangle inequality leads to

‖β − βh‖1,Γ + t ‖γ − γh‖0,Γ + ‖div (u− uh)‖0,Ω(5.3)

≤ C
[
‖β̂ − β‖1,Γ + t ‖γ̂ − γ‖0,Γ + ‖div (û− u)‖0,Ω

]
+Ch

(
‖γ‖0,Γ + ‖g‖0,Ω

)
.

Furthermore, by using this and (4.3) in ∇(w − wh) = t2

κ (γ − γh)
+ (β −Πβ) +Π(β − βh), we obtain

‖w − wh‖1,Γ ≤ C
[
‖β̂ − β‖1,Γ + t ‖γ̂ − γ‖0,Γ(5.4)

+ ‖div (û− u)‖0,Ω

]
+ Ch

(
‖β‖1,Γ + ‖γ‖0,Γ + ‖g‖0,Ω

)
.

Finally (5.3), (5.4), Lemma 5.2 and Theorem 3.1 allow us to conclude the
proof. ✷

Now, it only remains to estimate the L2 norm of (u− uh):

Lemma 5.4 There holds

‖u− uh‖0,Ω ≤ Ch |(f, θ, g)|t.
Proof. Let q ∈ H1(Ω) such that u = ∇q and let uh = ∇ξ+χ as in Lemma
4.1. Then, u− uh = ∇(q − ξ)− χ, with ‖χ‖0,Ω ≤ Ch |(f, θ, g)|t because
of (4.7) and the uniform boundedness of Tth. On the other hand,

∆(q − ξ) = div (u− uh) in Ω,
∂

∂n
(q − ξ) =

{
0 on ΓR ,
w − wh on Γ.

So, we have ‖∇(q− ξ)‖0,Ω ≤ C
[
‖div (u− uh)‖0,Ω + ‖w−wh‖1/2,Γ

]
≤

Ch |(f, θ, g)|t, the latter inequality because of Lemma 5.3. ✷

Summing up, we may prove the claimed convergence:
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Theorem 5.1 There exists a constant C such that, for any (f, θ, g) ∈ H,
there holds

‖(Tt − Tth)(f, θ, g)‖ ≤ Ch |(f, θ, g)|t.(5.5)

Proof. The theorem is an immediate consequence of Lemmas 5.3 and
5.4. ✷

6. Spectral approximation

In this section we show that the eigenpairs of the discrete operators Tth

provide optimal order approximations for those of the continuous one Tt.
Undermild assumptions, the obtained estimates are shown to be independent
of the thickness of the plate.

For t > 0 fixed, as a consequence of Theorem 5.1, if µt is an eigenvalue
of Tt with multiplicitym, then exactlym eigenvalues µ(1)

th , . . . , µ
(m)
th of Tth

(repeated according to their respective multiplicities) converge to µt as h
goes to zero (see [17]). The spectral theory for compact operators in [3] can
be directly applied to obtain error estimates.

However, further considerations are needed to show that they do not
deteriorate as t becomes small. According to Theorem 3.2, T0 is the limit in
norm of the compact operators Tt. Hence we have the following result:

Theorem 6.1 Let µ0 > 0 be an eigenvalue of T0 of multiplicity m. Let D
be any disc in the complex plane centered at µ0 and containing no other
element of the spectrum of T0. Then, for t small enough,D contains exactly
m eigenvalues of Tt (repeated according to their respective multiplicities).
Consequently, each eigenvalue µ0 > 0 of T0 is a limit of eigenvalues µt of
Tt, as t goes to zero.

Proof. It is a consequence of standard properties of separation of isolated
parts of the spectra (see for instance [17]). ✷

For the sake of simplicity we state our results for eigenvalues of Tt con-
verging to a simple eigenvalue ofT0 (at the end of this sectionwewill discuss
this assumption). Firstly, we establish error estimates for the eigenfunctions:

Theorem 6.2 Let µt be an eigenvalue of Tt converging to a simple eigen-
value µ0 of T0 as t goes to zero. Let µth be the eigenvalue of Tth that
converges to µt as h goes to zero. Let (w, β, u) and (wh, βh, uh) be the
eigenfunctions corresponding to µt and µth, respectively, both normalized
in the same manner. Then, for t and h small enough, there holds

‖(w, β, u)− (wh, βh, uh)‖ ≤ Ch.(6.1)
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Proof. Because of Theorem 5.1, Tth|X converges to Tt|X in norm. Then
Tt|X is compact and (6.1) is a direct consequence of Theorem 7.1 in [3],
with a constant C depending on the constant in (5.5) (which is independent
of t) and on the inverse of the distance of µt to the rest of the spectrum of
Tt. Now, Theorem 6.1 implies that, for t small enough, this distance can be
bounded below in terms of the distance of µ0 to the rest of the spectrum of
T0, which obviously does not depend on t. ✷

Since st, sth and rt are symmetric, then Tt and Tth are self-adjoint with
respect to rt. Therefore, we may use Remark 7.5 in [3] to show a double
order of convergence for the approximation of the eigenvalues.

To this goal we will make use of suitable estimates for the expression
rt

(
(Tt−Tth)(f, θ, g), (f, θ, g)

)
, for (f, θ, g) ∈ G. Throughout the remain-

der of this section we consider (f, θ, g) ∈ G fixed and denote again

(w, β, u) := Tt(f, θ, g), (wh, βh, uh) := Tth(f, θ, g),

γ :=
κ

t2
(∇w − β), γh :=

κ

t2
(∇wh −Πβh).

We consider the Helmholtz decomposition of uh given by Lemma 4.1:

uh = ∇ξ + χ.
Then (w−wh, β − βh, u−∇ξ) belongs to G and hence it can be used as a
test function (v, η, φ) in (2.16); by so doing, simple algebra yields

a(β, β − βh) +
t2

κ

∫
Γ
γ · (γ − γh) +

∫
Ω
ρ̂Fc

2 div u div (u−∇ξ)

=
∫

Γ
ρ̂Pf(w − wh) +

t2

12

∫
Γ
ρ̂Pθ · (β − βh)

+
∫

Ω
ρ̂Fg · (u−∇ξ)−

∫
Γ
γ · (βh −Πβh).

Now, subtracting from this the error equation (5.1) with (vh, ηh, φh) =
(wh, βh, uh), and using (5.2) forMh, by simple calculations we obtain

rt

(
(Tt − Tth)(f, θ, g), (f, θ, g)

)
= a(β − βh, β − βh)(6.2)

+
t2

κ

∫
Γ
|γ − γh|2 +

∫
Ω
ρ̂Fc

2( div u− div uh)2

+2
∫

Ω
ρ̂Fg · χ− 2

∫
Γ
γ · (βh −Πβh).

So, it only remains to estimate the two last terms in the right hand side
of (6.2). The latter has been recently analyzed in [11] in order to establish
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optimal L2 error estimates for the finite element method we are using for
the bending of the plate:

Lemma 6.1 There holds∣∣∣∣
∫

Γ
γ · (βh −Πβh)

∣∣∣∣ ≤ Ch2|(f, θ, g)|2t .

Proof. The proofs in Lemmas 3.3 and 3.4 of [11] can be easily adapted to
our case. ✷

Finally, we estimate the remaining term in (6.2):

Lemma 6.2 There holds∣∣∣∣
∫

Ω
ρ̂Fg · χ

∣∣∣∣ ≤ Ch2‖(f, θ, g)‖ |(f, θ, g)|t.

Proof. Since (f, θ, g) ∈ G, then g = ∇q and, because of (2.14), q ∈ H2(Ω)2

with
‖q‖2,Ω ≤ C

(‖f‖1/2,Γ + ‖div g‖0,Ω

) ≤ C‖(f, θ, g)‖.
Now, since divχ = 0 and χ = uh −∇ξ, we have∫

Ω
ρ̂Fg · χ =

∫
∂Ω
ρ̂Fq (uh −∇ξ) · n =

∫
Γ
ρ̂Fq (uh · n− wh) ,

the latter because of (wh, βh,∇ξ) ∈ G. Since (wh, βh, uh) ∈ Gh, then
uh · n = P (wh), with P being the L2(Γ )-projection onto the piecewise
constant functions on T Γ

h . Hence,∣∣∣∣
∫

Ω
ρ̂Fg · χ

∣∣∣∣ =
∣∣∣∣
∫

Γ
ρ̂F [q − P (q)] [P (wh)− wh]

∣∣∣∣
≤ Ch2‖q‖1,Γ ‖wh‖1,Γ

≤ Ch2‖q‖2,Ω‖wh‖1,Γ

≤ Ch2‖(f, θ, g)‖ |(f, θ, g)|t,

concluding the proof. ✷

Summing up we obtain an optimal order of convergence for the approx-
imation of the eigenvalues:

Theorem 6.3 Let µt and µth be as in Theorem 6.2. Then, for t and h small
enough, there holds

|µt − µth| ≤ Ch2.(6.3)
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Proof. Let (f, θ, g) be an eigenfunction corresponding to µt normalized in
| · |t. We apply Remark 7.5 in [3] which, in our case, reads

|µt − µth| ≤ C
[ ∣∣∣rt((Tt − Tth)(f, θ, g), (f, θ, g)

)∣∣∣
+ |(Tt − Tth)(f, θ, g)|2t

]
,

with a constant C depending only on the distance of µt to the rest of the
spectrum of Tt. By repeating the arguments in the proof of Theorem 6.2 we
observe that, for t small enough, this constant can be chosen independent
of t.

Now, since Tt(f, θ, g) = µt(f, θ, g) and Tt is t-uniformly bounded, then

‖(f, θ, g)‖ ≤ C
µt
|(f, θ, g)|t ≤ C,

the latter because µt → µ0. Thus, using (6.2), Lemmas 5.3, 6.1 and 6.2 and
Theorem 5.1, we conclude the proof. ✷

Theorems 6.2 and 6.3 have been stated for eigenvalues of Tt (i.e., the
equations of the fluid coupledwith Reissner-Mindlin equations for the plate)
converging to simple eigenvalues of T0 (i.e., idem with Kirchhoff equations
for the plate). A multiple eigenvalue of the latter arises usually because of
symmetries of the geometry; in such a case, the eigenvalue of the former
converging to it is also multiple and with the same multiplicity. The proofs
of both theorems above extend trivially to cover this case.

Instead, if T0 had a multiple eigenvalue not due to symmetry reasons,
it could split into different eigenvalues of Tt. In this case, the proofs of the
theorems do not provide estimates independent of the thickness, since the
constants therein blow up as the distance between the eigenvalues of Tt

becomes smaller.
For conforming methods, the minimum-maximum principle yields es-

timates not involving this distance (see for instance Sect. 8 of [3]). This
approach has been partially extended by Vanmaele and Ženı́šek [22,23] to
certain non conformities: namely, the approximation of the spectral prob-
lem for divergence type elliptic operators on curved domains. However, to
the best of our knowledge, estimates of this kind have not been proved for
general non conforming methods.

On the other hand, by combining Theorems 3.2 and 5.1 we have that

‖(Tth − T0)(f, θ, g)‖ ≤ C(t+ h) |(f, θ, g)|t ∀(f, θ, g) ∈ H.
This estimate can be used to prove spectral convergence as t and h both
converge to zero. In fact, if µ0 is an eigenvalue of T0 with multiplicity m,
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Fig. 1. 3D cavity filled with fluid

there exist exactlym eigenvalues µ(1)
th , . . . , µ

(m)
th of Tth (repeated according

to their respectivemultiplicities) converging toµ0 as t andh goes to zero (see
once more [17]). Let E0 be the eigenspace of T0 corresponding to µ0 and Eth

be the direct sum of the eigenspaces of Tth corresponding to µ(1)
th , . . . , µ

(m)
th .

Then, by proceeding as in Theorem 6.2 we have that

δ̂ (E0, Eth) ≤ C(t+ h),
where δ̂ denotes the gap or symmetric distance between both subspaces (see
for instance [3]).

This can be also used to prove that µ(j)
th , j = 1, . . . ,m, all converge

to µ0 with order at least O(t + h). However, the arguments in the proof
of Theorem 6.3 cannot be used in this case to prove a double order of
convergence (indeed, rt degenerates as t goes to zero and thus it does not
induce a norm on H for t = 0). Nevertheless, the numerical experiments
show that such double order estimates also hold.

7. Numerical experiments

We present in this section some numerical results obtained with a fortran
implementation of the finite element method described above. The code was
previously validated by computing the vibration modes of moderately thick
plates in contact with fluids and comparing the obtained results with those
yielded by the method described in [5] (which is a code to compute the
vibration modes of three-dimensional structures coupled with fluids that
was applied to the 3D elasticity equations of the plate).

As a first test of the performance of our method we have considered a 3D
cavity completely filled with water with all of its walls being perfectly rigid,
except for one of them which has been taken as a moderately thick plate
clamped by its whole boundary. We have used the geometrical parameters
for the cavity and the plate as given in Fig. 1.

We have considered the following values for the physical parameters of
the plate and the fluid which correspond to steel and water, respectively,
– density of the plate: ρP = 7700 kg/m3,
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Fig. 2. Mesh on the fluid for N = 1

– Young modulus: E = 1.44× 1011 Pa,
– Poisson coefficient: ν = 0.35,
– density of the fluid: ρF = 1000 kg/m3,
– sound speed: c = 1430m/s,

We have used succesive uniform refinements of the initial mesh which is
depicted in Fig. 2. The refinement parameter N is the number of layers of
elements for the fluid domain in the vertical direction; it is related with the
meshize by h =

√
3/N .

We denote by ωh
m them-th lowest computed approximate angular vibra-

tion frequency (i.e., the square root of them-th strictly positive eigenvalue
of the discrete problem (4.4)) and ωm the corresponding exact vibration
frequency to which it converges. We have observed that the relative error of
ωh

m behaves roughly like

ωh
m − ωm

ωm
≈ Cmh

α,(7.1)

with an order of convergence α very close to 2 and constants Cm which
depend on the particular mode but are almost independent of the meshsize
h. Then, for each mode, we have estimated the exact vibration frequencies
ωm, the value of the constantsCm and the order of convergence α by means
of a least square fitting of the model

ωh
m ≈ ωm (1 + Cmh

α)

to the approximate frequencies computed on four different meshes (N =
3, 4, 5, 6).

Table 1 shows the six lowest vibration frequencies of the coupled system
computed with our method for each of these meshes. We also include for
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Table 1. Angular vibration frequencies of a moderately thick steel plate in contact with
water

Mode N = 3 N = 4 N = 5 N = 6 α ωm Cm

ωh
1 696.880 697.166 697.302 697.377 1.92 697.555 −0.0028

ωh
2 1019.075 1017.201 1016.310 1015.819 1.91 1014.635 0.0125

ωh
3 1081.299 1081.559 1081.682 1081.750 1.93 1081.911 −0.0016

ωh
4 1317.326 1317.121 1317.037 1316.995 2.44 1316.921 0.0012

ωh
5 1470.968 1464.565 1461.561 1459.916 1.95 1456.063 0.0129

ωh
6 1504.253 1505.621 1506.242 1506.574 2.07 1507.298 −0.0063
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Fig. 3. Deformed plate and fluid pressure. Mode ω1
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Fig. 4. Deformed plate and fluid pressure. Mode ω2
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Fig. 5. Deformed plate and fluid pressure. Mode ω3

each mode the estimated values of the exact vibration frequency ωm, the
order of convergence α and the constant Cm. It can be observed that the
approximation is excellent even for rather coarse meshes.

Figs. 3 to 8 show the deformed plate and the fluid pressure for each of
these six vibration modes.

Secondly we have checked the stability of the method as the thickness
becomes small. To this goal we have applied our method to a sequence of
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Fig. 6. Deformed plate and fluid pressure. Mode ω4
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Fig. 7. Deformed plate and fluid pressure. Mode ω5
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Fig. 8. Deformed plate and fluid pressure. Mode ω6

model problems, the first one being that of the previous test (i.e., with the
same physical and geometrical parameters) and the others being obtained
by succesively reducing the thickness t of the plate; the densities of the plate
and the fluid has been taken accordingly to the assumptions made in Sect. 2;
namely, ρF = ρ̂Ft

3 and ρP = ρ̂Pt
2.

For each vibrationmode and each thickness twehave estimated the order
of convergence α, the constants Cm in estimate (7.1) and the exact vibra-
tion frequencies ωm by a least square fitting of the computed approximate
frequencies ωm

h similar to that of the previous experiment.
We summarize the results obtained for the two lowest frequencyvibration

modes in Table 2 and Table 3, respectively. It can be clearly observed in both
tables that the constantsCm do not depend on the thickness and, hence, that
the method is free of locking.
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Table 2. First vibration frequency ωh
1 for plates of different thickness coupled with fluid

t N = 3 N = 4 N = 5 N = 6 α ω1 C1

0.5 696.880 697.167 697.302 697.377 1.92 697.555 −0.0028
0.05 715.219 715.726 715.965 716.095 1.95 716.403 −0.0048
0.005 715.413 715.924 716.164 716.296 1.95 716.605 −0.0048
0.0005 715.415 715.926 716.166 716.298 1.95 716.607 −0.0048

Table 3. Second vibration frequency ωh
2 for plates of different thickness coupled with fluid

t N = 3 N = 4 N = 5 N = 6 α ω2 C2

0.5 1019.075 1017.201 1016.310 1015.819 1.91 1014.635 0.0125
0.05 1112.976 1111.292 1110.494 1110.054 1.91 1108.998 0.0102
0.005 1114.178 1112.502 1111.706 1111.267 1.91 1110.206 0.0102
0.0005 1114.190 1112.515 1111.718 1111.279 1.91 1110.219 0.0102
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