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Abstract

Let H be a Hilbert space, W a closed subspace of H, and Q a (linear
bounded) projection from H onto W with null space M⊥. We study de-
compositions like Qf =

∑
n∈N
〈 f, hn 〉 fn, where {fn}n∈N and {hn}n∈N are

frames for the subspaces W and M, respectively. This type of decom-
positions corresponds to sampling formulae. By considering the synthesis
operator F (resp. H) of the sequence {fn}n∈N (resp. {hn}n∈N), the formula
above can be expressed as the factorization Q = FH∗. We study differ-
ent properties of these factorizations and decompositions of oblique and
orthogonal projections. Several characterizations of these decompositions
are presented. By means of an operator inequality for positive operators,
we get a result which minimizes the norm of F −H.
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1 Introduction

The classical sampling formula of Whittaker-Kotelnikov-Shannon says that for
every x ∈ R it holds

f(x) =
∑
n∈Z

f(n) sinc(x− n), (1)

for every function f ∈ L2(R) whose Fourier transform is supported in the interval

[−1, 1]; here, sincx =
sinπx

πx
. The convergence of this series is uniform on R,

a fortiori it converges in the L2 sense. The set of those functions with Fourier
transform supported in [−1, 1] is one of the well-known Paley-Wiener spaces
and it will be denoted PW . This point of view has been the basis for many
generalizations of the classical sampling theory, mainly for nonuniform sampling
(see Aldroubi-Gröchenig [1], Benedetto [5], Jerri [24], and Kramer [25]). A
unified view is obtained from representations in Reproducing Kernel Hilbert
Spaces (Nashed and Walter [32,33], and Yao [41]). The reader will also find
excellent accounts of the WKS formula and its applications and generalizations
in the surveys by Jerri [23], Higgins [22], and Unser [38], and in the books by
Higgins [20] and Higgins and Stens [21], among many other sources. PW is a
closed subspace of L2(R) and formula (1) provides the orthogonal projection P
from L2(R) onto PW ; in fact, if sn = sinc(· − n), then we note that f(n) =
〈 f, sn 〉 for every f ∈ PW and that {sn}n∈Z is an orthonormal basis of PW .
As Unser observes in [38], these facts were first proven by G. H. Hardy [18] who
wrote: “ It is odd that, although these functions occur repeatedly in analysis,
especially in the theory of interpolation, it does not seem to have been remarked
explicitly that they form an orthogonal system.” Therefore, we get

Pf =
∑
n∈Z

〈 f, sn 〉 sn ∀ f ∈ L2(R) . (2)

On the other hand, if T is the operator defined on some fixed orthonormal basis
{en}n∈Z of L2(R) by Ten = sn, then (2) is the explicit form of the factorization
P = TT ∗. In this factorization the fact that P is a self-adjoint projection is not
independent of the fact that the vectors sn = Ten constitute an orthonormal
basis of PW . Indeed, this is the well-known method in linear algebra used
to construct the orthogonal projection onto a fixed subspace explicitly. This
remark shows that any orthonormal basis {e ′

n} of L2(R) and any orthonormal
basis {s′n} of PW induces a factorization P = T̃ T̃ ∗, or, which is the same, a
formula Pf =

∑
n

〈
f, s′n

〉
s′n similar to formula (2).

Unser’s observation is the starting point of our paper, in which we will con-
sider more general factorizations of projections, in a sense that we describe now.
It is useful to notice that for every bounded linear projection Q ∈ L(H) its range
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and null space induce a direct sum decomposition of H and, conversely, every
direct sum decomposition H = W +M⊥ induces a unique projection Q with
range W and null space M⊥. These correspondences preserve orthogonality
in the sense that Q is orthogonal if and only if W is orthogonal to M⊥, i.e.,
W =M. LetW be a closed subspace of H and Q a (bounded linear) projection
from H onto W with null spaceM⊥. We study factorizations, such as

Q = FH∗, (3)

where F,H ∈ L(�2,H), R(F ) = W and R(H) =M; throughout, R(T ) denotes
the range of the operator T . This leads to the study of sampling formulae like

f =
∑
n∈N

〈 f, hn 〉 fn, f ∈ W (4)

where {fn}n∈N and {hn}n∈N are not necessarily bases of their respective sub-
spaces: they are frames for these subspaces, which means that they respectively
span W and M in a controlled way (see definitions below). Christensen and
Eldar [8,14], describe this situation by saying that {hn}n∈N is an oblique dual
frame of {fn}n∈N onM. The reader should observe that the most general sam-
pling formula,

f =
∑
n∈N

〈 f, hn 〉 fn, f ∈ W,

can be written as FH∗Q = Q, where F and H are defined by Fen = fn,
Hen = hn and Q is any (bounded linear) projection ontoW. Here fn (resp. hn)
is not supposed to belong toW (resp. M). This type of factorization, studied by
Li and Ogawa (and also by Ogawa and Berrached [34,35] for finite dimensional
spaces) comes from the notion of pseudoframes of subspaces extensively studied
in [30] (see also [9]). Li and Ogawa refer to {hn}n∈N as an interpolating se-
quence and {fn}n∈N as an approximating sequence. Since the analysis operator
of a pseudoframe is in general an unbounded operator, we prefer to restrict our
study to more specific factorizations which allow us to work with bounded linear
operators. We intend to study the general case elsewhere. A main difference
between our approach and those of Li-Ogawa and Christensen-Eldar is that we
study pairs (F,H) as described in (3), while those authors fix a certain F (resp.
H) and then study the fiber pr−1

1 (F ) (resp. pr−1
2 (H)), where pr1(F,H) = F

(resp. pr2(F,H) = H). We should mention here that Unser and Aldroubi [39]
were among the first to use oblique projections in sampling theory.

In order to describe the results of this work, it is convenient to introduce the
subset XQ of L(�2,H)× L(�2,H) defined by

XQ := {(F, H) : FH∗ = Q, R(F ) = R(Q) and R(H) = N(Q)⊥}.
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Each pair (F,H) ∈ XQ corresponds to a sampling formula like (4) with an
additional condition, namely that the right-hand side of (4) vanishes for f ∈
M⊥. More precisely,

Qf =
∑
n∈N

〈 f, hn 〉 fn = FH∗f , f ∈ H (5)

where Fen = fn and Hen = hn. The operator version of the sampling formulae
by Li and Ogawa is given by FQ = {(F,H) : FH∗Q = Q}. Since F and H may
be unbounded and R(F ) (resp. R(H)) may be strictly bigger than W (resp.
M), it follows that XQ is significantly smaller than FQ. In Proposition 3.2 we
show how to identify, inside XQ, those pairs that produce biorthogonal sampling
formulae, i.e., those that satisfy 〈 fn, hm 〉 = δm,n. By using techniques of gener-
alized inverses, we show that, given a projection Q with rangeW and null space
M⊥ and an injective operator F ∈ L(�2,H) with R(F ) = W, there is a unique
H ∈ L(�2,H) such that Q = FH∗. This corresponds to the fact that every Riesz
basis of W determines a unique Riesz basis ofM such that ({fn}n∈N, {hn}n∈N)
is biorthogonal. The first main result identifies the set XQ with a set of pairs
of operators previously studied by Gramsch [17] and Corach, Porta and Recht
[11]. This set is a homogeneous space with a very rich differential structure that
is studied in [11]. The second main result gives a criteria of metric optimality,
in the sense that we solve, without uniqueness, the problem

arg min{‖F −H‖2 : (F,H) ∈ XQ} .

More explicitly, we prove that

min{‖F −H‖2 : (F,H) ∈ XQ} = 2
(
‖Q‖ − 1

)
,

and we show a set of pairs (F,H) ∈ XQ that realize the minimum. As a corollary,
we obtain that only for orthogonal projections this minimum is equal to zero.
The key part of the proof of the minimization theorem is an operator inequality,
which may have interest by itself: for every positive invertible operators C, B
on H such that B ≥ 1, it holds that

‖C + C−1/2BC−1/2‖ ≥ 2‖B1/2‖;

this means that

inf
{
‖C + C−1/2BC−1/2‖ : C ∈ GL(H)+

}
is attained in C = B1/2.

We show then that our methods give a short proof of a result by Christensen
and Eldar [8, Cor. 4.4] on frames of translates for shift invariant spaces.
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2 Preliminaries

Given two separable Hilbert spaces, K andH, the set of bounded linear operators
from K to H is denoted by L(K,H). For an operator, A ∈ L(K,H), we denote
by R(A) the range or image of A; N(A), the null space of A; A∗, the adjoint
of A; ‖A‖, the usual norm of A; and, if R(A) is closed, A†, the Moore-Penrose
pseudoinverse of A. The set L(H,H) is denoted L(H), GL(H) denotes the
group of invertible operators on H, and L(H)+ denotes the cone of positive
(semi-definite) operators of L(H). If H = W ⊕M⊥, then the projection Q
onto W defined by this decomposition is denoted by PW||M⊥ . Observe that
P ∗

W||M⊥ = PM||W⊥ .

Generalized inverses

In this subsection we mention the definition and basic facts on generalized in-
verses. The reader is referred to the books by Nashed [31], by Ben-Israel and
Greville [4], and Campbell and Meyer Jr. [6] for more information. Throughout
this section, K and H are Hilbert spaces.

Definition 2.1. Let A ∈ L(K,H). A generalized inverse (or pseudoinverse) of
A is an operator B ∈ L(H,K) such that ABA = A and BAB = B.

It is a well-known fact that A ∈ L(K,H) has a generalized inverse if and only
if R(A) is closed. Also recall that A has a closed range if and only if A∗ has
a closed range. The next proposition relates generalized inverses with oblique
projections.

Proposition 2.2. Let A ∈ L(K,H).

1. If B ∈ L(H,K) is a generalized inverse of A, then

i. AB is an oblique projection onto R(A).

ii. BA is an oblique projection whose null space is N(A).

2. Given a pair of projections Q ∈ L(H) and P ∈ L(K) such that R(Q) =
R(A) and N(P ) = N(A), there is a unique generalized inverse B of A
such that AB = Q and BA = P .

Definition 2.3. Given A ∈ L(K,H) with a closed range, the Moore-Penrose’s

generalized inverse of A, denoted by A†, is the unique generalized inverse as-
sociated to the orthogonal projections onto R(A) and N(A)⊥, respectively. In
other words, A† is the unique generalized inverse of A such that A†A and AA†

are self-adjoint projections.

In terms of the Moore-Penrose generalized inverse, the set of generalized inverses
can be parametrized in the following way.
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Proposition 2.4. If A ∈ L(K,H) has a closed range and projections Q and Q̃
satisfy R(Q) = R(A) and N(Q̃) = N(A), then the unique generalized inverse B
of A such that AB = Q and BA = Q̃ is given by

B = Q̃A†Q.

Reduced solutions of the equation AX = B

Along this note, the following result of Douglas [12] (see also [16]) will be used
several times.

Theorem 2.5. Given A,B ∈ L(K,H), the following conditions are equivalent:

1. R(B) ⊆ R(A).

2. There exists a positive number λ such that BB∗ ≤ λ AA∗.

3. There exists D ∈ L(K) such that B = AD.

Moreover, given a complement S of N(A) in K there is a unique operator D ∈
L(K) that satisfies one of the conditions above and also R(D) ⊆ S. It also
holds that N(D) = N(B). This D is called a reduced solution of the equation
B = AX. Among the reduced solutions, there is only one corresponding to
N(A)⊥. This D is called the Douglas solution of the equation AX = B and it
satisfies

‖D‖2 = inf
{
λ ∈ R : BB∗ ≤ λ AA∗

}
. (6)

�

Remark 2.6. Note that if D is a solution of AX = B, then BB∗ = ADD∗A∗ ≤
‖D‖2AA∗. So, if D0 is the Douglas solution of AX = B, by the characterization
of ‖D0‖ given in (6), we get ‖D0‖ ≤ ‖D‖. �

Remark 2.7. If A ∈ L(K,H) has closed range, then the Douglas solution of
AX = B is A†B: in fact, A(A†B) = B because AA† = PR(A) and PR(A)B = B
because R(B) ⊆ R(A). On the other side, R(A†B) ⊆ R(A†) = N(A)⊥. �

Frames

We introduce some basic facts about frames in Hilbert spaces. For complete
descriptions of frame theory and applications, the reader is referred to the review
by Heil and Walnut [19] or the books by Young [42] and Christensen [7].

Consider a sequence {fn}n∈N of elements of a Hilbert space H. {fn}n∈N is a
Bessel sequence if there exists a positive number B such that∑

n∈N

| 〈 f, fn 〉 |
2 ≤ B‖f‖2 ∀ f ∈ H.
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A frame for a closed subspace W of H is a sequence {fn}n∈N such that each fn
belongs to W and there exist numbers α, β > 0 such that, for every f ∈ W,

α‖f‖2 ≤
∑
n∈N

| 〈 f, fn 〉 |
2 ≤ β‖f‖2. (7)

The optimal constants α, β for equation (7) are called the frame bounds for F .
F is a Parseval frame if α = β = 1. Note that, as each fn ∈ W, for every
f ∈ W⊥ it holds that 〈 f, fn 〉 = 0. This shows that every frame for W is in
particular a Bessel sequence in H.

Any Bessel sequence F = {fn}n∈N defines a bounded linear operator T : �2 → H
by Ten = fn, where {en}n∈N denotes the “canonical” basis of �2. This operator is
called the synthesis operator of F , T ∗ ∈ L(H, �2), is called the analysis operator

of F , and S = TT ∗ is called frame operator of F . It is easy to see that T ∗f =∑
n∈N

〈f, fn〉en and, therefore,

Sf =
∑
n∈N

〈 f, fn 〉 fn ∀ f ∈ H. (8)

Observe that, in the case of a frame for a (closed) subspace W, from (7) we
obtain the operator inequality α ·PW ≤ S ≤ β ·PW . Hence, S|W is invertible in
L(W) and R(T ) =W. The dimension of N(T ) is sometimes called excess of F .
A Riesz basis for a closed subspace W is a frame for this subspace with excess
equal to zero (see Balan et al. [3]).

3 Biorthogonal decompositions of oblique projections

In this section we will study decompositions of oblique projections by using
biorthogonal systems. First of all, we obtain some basic results about biorthog-
onal systems from the point of view of generalized inverses.

Definition 3.1. Given Bessel sequences {fn}n∈N and {hn}n∈N , then the pair

{{fn}, {hn}} is called biorthogonal system if for every m,n ∈ N it holds that

〈 fm, hn 〉 = δm,n.

Proposition 3.2. Let {fn}n∈N and {hn}n∈N be Bessel sequences with synthesis

operators denoted by F and H, respectively, and let W = R(F ) andM = R(H).
The following statements are equivalent:

1. {{fn}, {hn}} is a biorthogonal system;

2. H∗F = I.
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3. H = W ⊕ M⊥, {fn}n∈N and {hn}n∈N are Riesz bases of W and M,

respectively, and for every f ∈ H it holds

Qf =
∑
n∈N

〈 f, hn 〉 fn , (9)

where Q is the oblique projection onto W parallel to M⊥.

Proof.

1⇔ 2) Note that the matrix of H∗F with respect to the canonical basis of �2 is⎛⎜⎜⎜⎝
〈 f1, h1 〉 〈 f2, h1 〉 〈 f3, h1 〉 . . .
〈 f1, h2 〉 〈 f2, h2 〉 〈 f3, h2 〉 . . .
〈 f1, h3 〉 〈 f2, h3 〉 〈 f3, h3 〉 . . .

...
...

...
. . .

⎞⎟⎟⎟⎠
So, the equivalence between 1. and 2. follows from the definition of
biorthogonal systems.

2⇒ 3) As H∗F = I, H∗ is surjective and F is injective. Analogously, taking
the adjoint, we get that F ∗H = I, which shows that F ∗ is surjective and
H is injective. On the other hand, as F ∗ and H∗ have closed ranges, F
and H also have closed ranges. In particular, {fn}n∈N and {hn}n∈N are
Riesz bases for W andM, respectively. Finally, as H∗F = I, it holds that
FH∗ is a projection onto R(F )(=W) with null space N(H∗)(=M⊥). So
Q = FH∗, which is equivalent to (9).

3⇒ 1) As {fn}n∈N is a Riesz basis and fm =
∑

n∈N
〈 fm, hn 〉 fn, we get that for

every m,n ∈ N it holds that 〈 fm, hn 〉 = δmn.

�

The following proposition states that any oblique projection with infinite dimen-
sional range can be decomposed by using biorthogonal systems.

Proposition 3.3. Let W andM be two infinite dimensional closed subspaces of

H such that H =W ⊕M⊥, and let Q be the oblique projection onto W parallel

toM⊥, i.e., Q = PW||M⊥. For every Riesz basis {fn}n∈N of W there is a unique

Riesz basis {hn}n∈N of M such that:

Qf =
∑
n∈N

〈 f, hn 〉 fn . (10)

Remark 3.4. Note that, in order to have a biorthogonal decomposition of a
projection Q, it is necessary that dimR(Q) =∞. In the above proposition the
hypothesis dimW =∞ is used to guarantee this necessary condition.
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Proof of Proposition 3.3. Let F be the synthesis operator of {fn}n∈N and let
H : �2 → H be the adjoint of the unique generalized inverse of F such that
FH∗ = Q and H∗F = I (see Prop. 2.4). If we define hn = H(en), then we get,
for every f ∈ H, ∑

n∈N

〈 f, hn 〉 fn = FH∗f = Qf .

As H∗F = I, by Proposition 3.2 {{fn}, {hn}} is a biorthogonal system. So,
{hn}n∈N is a Riesz basis for M.

Now, suppose that {g′n}n∈N is another Riesz basis ofM with synthesis oper-
ator H ′ that also satisfies equation (10). Then F (H ′)∗ = Q and, by Proposition
3.2, (H ′)∗F = I. Therefore, H∗ and (H ′)∗ are pseudoinverses of F associated to
the same pair of projections. As a consequence, by Proposition 2.2 H∗ = (H ′)∗,
which proves the uniqueness of the Riesz basis {hn}n∈N. �

If we identify a biorthogonal system {{fn}n∈N, {hn}n∈N} with the pair of op-
erator (F,H) consisting of the synthesis operators of {fn}n∈N and {hn}n∈N,
respectively, the set of biorthogonal systems that satisfy (10) can be identified
with the set

BQ = {(F, H) ∈ L(�2,H)× L(�2,H) : FH∗ = Q, and H∗F = I}.

In terms of this set, Proposition 3.3 can be rewritten in the following way.

Corollary 3.5. For every F ∈ L(�2,H) such that R(F ) = R(Q) and N(F ) =
{0} there is a unique operator H ∈ L(�2,H) such that (F,H) ∈ BQ. Moreover,

if Ω denote the set of synthesis operators of all the Riesz bases for W, then

Λ : Ω→ BQ given by Λ(F ) =
(
F,
(
(F ∗F )−1F ∗Q

)∗)
is an homeomorphism from

Ω onto BQ.

4 Frame decompositions of oblique projections

In the previous section we used biorthogonal systems to decompose oblique
projections. In some applications, more general decompositions are required.
Let W and M be closed subspaces of H such that H =W ⊕M⊥ and let Q be
the oblique projection onto W parallel toM⊥. If we use a biorthogonal system
{{fn}n∈N, {hn}n∈N} to decomposeQ, then {fn}n∈N as well as {hn}n∈N have to be
Riesz bases, as shown in Proposition 3.2. Suppose that this decomposition of Q
is associated with a sampling-reconstruction procedure, where {hn}n∈N is used to
sample a signal f ∈ W and {fn}n∈N is used to reconstruct the signal. As {hn}n∈N

is a Riesz basis, if some part of the information contained in the sampling data
{〈 f, hn 〉}n∈N is lost, then it is impossible to get a perfect reconstruction of
f . This is the reason why, in signal processing, frames instead of Riesz bases
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are used to sample signals. As frames are overcomplete systems of vectors,
they permit the design of reconstruction methods that can identify errors in the
received data. There are many ways to do this, and the linear reconstruction
methods are closely related with generalized inverses.

Throughout this section we study decompositions of Q by means of frames.
As in Corollary 3.5, we study such decompositions by means of the synthesis
operators of the corresponding frames.

If {fn}n∈N is a frame ofW and {hn}n∈N is a frame ofM with synthesis operators
F and H, respectively, then the frame decomposition of Q given by

Qf =
∑
n∈N

〈 f, hn 〉 fn

is equivalent to the factorization Q = FH∗. Observe that this factorization is
not unique because different frames of W,M produce different factorizations of
Q. This leads us to define and study the following subset of L(�2,H)×L(�2,H):

XQ := {(F, H) : FH∗ = Q, R(F ) = R(Q) and R(H) = N(Q)⊥}.

In the following proposition we list some alternative characterizations of XQ. On
one side, these presentations of XQ permit us to observe that XQ has been studied
before, under a quite different aspect; on the other side, later computations relay
on some of these characterizations.

Theorem 4.1. Given F,H ∈ L(�2,H), the following statements are equivalent:

1. (F,H) ∈ XQ;

2. FH∗F = F , H∗FH∗ = H∗, and FH∗ = Q;

3. R(F ) = R(Q), H = (Q̃F †Q)∗ where Q̃ is an oblique projection such that

N(Q̃) = N(F );

4. R(F ) = R(Q) and H∗ is a reduced solution of FX = Q;

5. FH∗ = Q, QF = F , and H∗Q = H∗

Proof.

1⇒ 2) Given (F,H) ∈ XQ,

FH∗ = Q ,FH∗F = QF = F and H∗FH∗ = H∗Q = (Q∗H)∗ = H∗.

2⇒ 3) It follows by Proposition 2.4 .
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3⇒ 4) As FQ̃ = F and R(FF †) = R(F ) = R(Q),

FH∗ = FQ̃F †Q = FF †Q = Q,

which shows that H∗ is a solution of FX = Q. On the other hand,
R(H∗) = R(Q̃), which is a complement of N(F ). Hence, H∗ is a reduced
solution.

4⇒ 5) Clearly FH∗ = Q and QF = Q. As H∗ is a reduced solution, N(H∗) =
N(Q). So, H∗Q = H∗.

5⇒ 1) The equation FH∗ = Q implies that R(Q) ⊆ R(F ), and equation QF = F
implies the other inclusion. So, R(F ) = R(Q). By taking the adjoints, we
obtain that R(H) = N(Q)⊥ = R(Q∗).

�

Remark 4.2. Note that the projection onto the first coordinate, pr1((F,H)) =
F , defines a map from XQ onto the space of epimorphisms of L(�2,W) (and
something analogous for M). Item 3 of the theorem above gives a parameteri-
zation of pr−1

1 (F ) in terms of all oblique projections Q̃ with the same null space
as F . A more general result valid for pseudoframes is from Li and Ogawa [30,
Thm. 2 and 5]; a similar parameterization is the following one by Christensen
and Eldar [8, Thm. 3.2;13, Thm. 1]: they prove that H ∈ L(�2,H) belongs
to pr−1(F ) if and only if there exists K ∈ L(�2,H) such that R(K) ⊆ M and
H = PM//W⊥(FF ∗)†F +K −KF ∗(FF ∗)†F . Our conditions look more manage-
able.

Topological remarks. The trivial projection Q = I produces the non-trivial
space XI . According to item 3 of Theorem 4.1,

XI =
{
(F,H) : F,H ∈ E , FH∗ = I

}
=
{
(F, (Q̃F †)∗) : F ∈ E , Q̃ ∈ L(�2), Q = Q2, N(Q̃) = N(F )

}
,

where E denotes the set of epimorphisms of L(�2,H), i.e., E = {F ∈ L(�2,H) :
R(F ) = H}. This is a set of continuity of the Moore-Penrose operation (see [28]).
In fact, F ∈ E if and only if FF ∗ ∈ GL(H); therefore, it is easy to check that
F † = F ∗(FF ∗)−1, and this shows that, on E , F → F † is continuous (moreover,
real analytic). About the topological properties of E , the reader is referred to
[10]. Recall from [10] that E = {T ∈ L(H) : R(T ) = H} is an open subset of
L(H) with a natural action

GL(H)× E −−→ E

defined by (G,T ) → TG−1. For each T ∈ E its orbit OT := {TG−1 : G ∈
GL(H)} is the connected components of T in E . Moreover, the component is
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determined by the nullity of T : T ′ ∈ E belong to OT if and only if dimN(T ) =
dimN(T ′). Fix an orthonormal basis {en}n∈N of H and define the unilateral
shift S ∈ L(H) by Sen = en+1 (n ∈ N). Then S∗ ∈ E and all “finite” connected
components of E have the form GL(H) · S∗n. The map E → E defined by
T → (TT ∗)−1/2T is a retraction from E onto the subset Ẽ = {T ∈ L(H) :
TT ∗ = I}. It is well known that E corresponds naturally to the set of all frames
on H and, under this correspondence, Ẽ is mapped onto the set of all Parseval
frames. By means of the projection onto the first coordinate pr1 : XI → E , we
can completely describe the topological and geometrical structure of XI . An
analogous statement holds for the set XQ and the map pr1 : XQ → CRW , where
CRW is the set of all operators from �2 to H whose range isW. These results will
be described elsewhere. We only mention here that the connected components
of (F,H) ∈ XQ can be characterized in terms of dimN(F ): in fact, it can be
proved that a pair (S, T ) ∈ XQ belongs to the connected component of (F,H) if
and only if dimN(S) = dimN(F ).

Optimal factorizations

Since we are generalizing factorizations as P = TT ∗, where T is a partial isom-
etry with final space R(P ), it seems natural to search for a way of minimizing,
given Q = FH∗, the difference F − H. To minimize the norm of this differ-
ence may be one. Intuitively, ‖F − H‖ measures how well distributed is one
frame with respect to the other. In finite dimensional spaces a similar notion of
optimality is defined to classify the different methods of orthogonalization (see
[37]).

In terms of sampling theory the operators F and H can be identified with the
frames {fn}n∈N and {hn}n∈N used to reconstruct and to sample, respectively.
Then ‖F − H‖ measures the distance between both frames. If the sampling
space M and the reconstruction space W coincide, i.e., the decomposition of
the space and the corresponding projections are orthogonal, then we can use
the same frame to sample and to rescontruct a given signal. If those spaces are
different, i.e., the decomposition and the corresponding projections are oblique,
this is, of course, impossible. The next result gives a minimum for ‖F − H‖.
Notice that the minimum is related with the angle between the spaces W and
M⊥ by means of the norm of the oblique projection PW||M⊥ .

Theorem 4.3. Let Q = PW||M⊥. Then the problem

min
(F,H)∈XQ

‖F −H‖2

has a solution. More precisely, ‖F − H‖2 ≥ 2
(
‖Q‖ − 1

)
for all (F,H) ∈ XQ,

and the equality holds for every pair (F,H) such that FF ∗ = (QQ∗)1/2 and H∗

is the Douglas solution of the equation FX = Q.
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Proof of Theorem 4.3. Given (F,H) ∈ XQ, it holds

‖F −H‖2 = ‖(F −H)(F −H)∗‖ = ‖FF ∗ +HH∗ − FH∗ −H∗F‖

= ‖FF ∗ +HH∗ − (Q+Q∗)‖. (11)

Claim: it is enough to minimize over pairs (F,H0) where H∗
0 is the Douglas

solution of FX = Q. Indeed, given an operator F such that R(F ) = R(Q), then
for every H such that (F,H) ∈ XQ it holds that

F (F ∗ −H∗) = FF ∗ −Q.

If H∗
0 is the Douglas solution of FX = Q, then F ∗−H∗

0 is the Douglas solution
of FX = FF ∗ −Q. So, by remark 2.6, we get

‖F −H0‖ = ‖F ∗ −H∗
0‖ ≤ inf

H: (F,H)∈XQ

‖F ∗ −H∗‖ = inf
H: (F,H)∈XQ

‖F −H‖,

which proves our claim. So, it is enough to consider pairs (F,H0) ∈ XQ such
that H∗

0 is the Douglas solution of FX = Q. As F has a closed range, H0

has an explicit formula in terms of the Moore-Penrose inverse of F , namely
H0 = Q∗(F †)∗ (see Remark 2.7). Using this expression of H0 in equation (11),
we get

‖F−H0‖
2 = ‖FF ∗+Q∗(F †)∗F †Q−(Q+Q∗)‖ = ‖FF ∗+Q∗(FF ∗)†Q−(Q+Q∗)‖.

(12)

Then, the decomposition H = W ⊕ W⊥ induces the following 2 × 2 matrix
representation of an operator A ∈ L(H):

A =

(
A11 A12

A21 A22

)

where A11 := PWAPW |W , A12 := PWA(I − PW)|W⊥ , etc. With respect to this
decomposition Q and FF ∗ have the next form:

Q =

(
1 x
0 0

)
, FF ∗ =

(
a 0
0 0

)
,

where a : W → W is invertible, 1 denotes the identity of L(W), and the zeros
denote the corresponding null operators. Using these matrix representations we
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obtain

‖F −H0‖
2 =

∥∥∥∥(a 0
0 0

)
+

(
1 0
x∗ 0

)(
a−1 0
0 0

)(
1 x
0 0

)
−

(
2 x
x∗ 0

)∥∥∥∥
=

∥∥∥∥(a 0
0 0

)
+

(
a−1 a−1x
x∗a−1 x∗a−1x

)
−

(
2 x
x∗ 0

)∥∥∥∥
=

∥∥∥∥(a+ a−1 − 2 (a−1 − 1)x
x∗(a−1 − 1) x∗a−1x

)∥∥∥∥
=

∥∥∥∥(a−1/2 − a1/2 0

x∗a−1/2 0

)(
a−1/2 − a1/2 a−1/2x

0 0

)∥∥∥∥
=

∥∥∥∥(a−1/2 − a1/2 a−1/2x
0 0

)(
a−1/2 − a1/2 0

x∗a−1/2 0

)∥∥∥∥
=

∥∥∥∥(a−1 + a− 2 + a−1/2xx∗a−1/2 0
0 0

)∥∥∥∥
= ‖a+ a−1/2(1 + xx∗)a−1/2‖ − 2

where the last equality holds because a+a−1/2(1+xx∗)a−1/2 ≥ 2. Therefore, our
problem has been reduced to the next minimization problem: given a positive
operator B such that 1 ≤ B, find positive invertible operators A such that

‖A+A−1/2BA−1/2‖ = inf
C>0
‖C + C−1/2BC−1/2‖.

Fix C > 0 (this means that C is a positive invertible operator). Given h ∈ H

with ‖h‖ = 1, let f =
C1/2h

‖C1/2h‖
. Then

‖C + C−1/2BC−1/2‖ ≥ 〈Cf, f 〉+
〈
BC−1/2f, C−1/2f

〉
=

〈
C2h, h

〉
〈Ch, h 〉

+
〈Bh, h 〉

〈Ch, h 〉

≥
〈Ch, h 〉2

〈Ch, h 〉
+
〈Bh, h 〉

〈Ch, h 〉

= 〈Ch, h 〉+
〈Bh, h 〉

〈Ch, h 〉

where the second inequality is a consequence of Jensen’s inequality. Now, using
the fact that the function f(t) = t+ α

t attains its minimum in (0,+∞) at t =
√
α,

we get

‖C + C−1/2BC−1/2‖ ≥ 2 〈Bh, h 〉1/2 > 0.

As h is any unitary vector of H, we obtain that

‖C + C−1/2BC−1/2‖ ≥ 2‖B‖1/2, C > 0 .
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On the other hand, if we take C = B1/2, clearly we obtain that C+C−1/2BC−1/2 =
2B1/2. So, the minimum is attained in C = B1/2.

With respect to our original problem, this says that if a0 = (1 + xx∗)1/2 or,
equivalently, if F0F

∗
0 = (QQ∗)1/2, then

‖F0F
∗
0 +Q∗(F0F

∗
0 )†Q−(Q+Q∗)‖ = min

F :R(F )=R(Q)
‖FF ∗+Q∗(FF ∗)†Q−(Q+Q∗)‖,

and ‖F0F
∗
0 + Q∗(F0F

∗
0 )†Q − (Q + Q∗)‖ = 2‖QQ∗‖1/2 − 2 = 2‖Q‖ − 2. This

implies that the pair (F0, H0) with H0 = Q∗(F †
0 )∗ satisfies

‖F0 −H0‖
2 = 2

(
‖Q‖ − 1

)
= min

(F,H)∈XQ

‖F −H‖2,

which concludes the proof. �

Remark 4.4. Note that the trivial decompositions Q = QQ and Q = PWQ
induce pairs of the form (QU,Q∗U) and (PWU,Q

∗U) of XQ, where U is any
isometric isomorphism between �2 and H. In both cases it holds that

‖QU−Q∗U‖2 = ‖PWU−Q
∗U‖2 = ‖Q‖2−1 = (‖Q‖+1)(‖Q‖−1) ≥ 2(‖Q‖−1).

Moreover, the more acute the angle between W andM⊥ is, the greater ‖Q‖+1
is, so that these decompositions are far from being optimal. It should also be
mentioned that in the theorem we describe only some of the minimizers, but we
do not know the general form of all of them.

Application to frames of translates

Given k ∈ Z, let Tk ∈ L(L2(R)) be the unitary operator defined by

Tk(φ)(x) = φ(x− k).

A subspace W of L2(R) is called shift invariant if Tk(W) ⊆ W for every k ∈ Z.
On the other hand, a frame of (integer) translates (or shift invariant frame)
for a subspace W is a frame for W that has the form {Tkφ}k∈Z for some φ ∈
L2(R). Throughout this subsection, we suppose that the domain of the synthesis
operator is �2(Z) instead of �2(N). So, given a shift invariant subspace W of
L2(R) and a frame F = {fn}n∈N for W with synthesis operator F , F is a shift
invariant frame if and only if the following identity holds:

T1 F = F S, (13)

where S ∈ L(�2(Z)) is the shift operator, defined on the canonical basis of �2(Z)
as Sen = en+1.

The next result is of Christensen and Eldar ([8, Corol. 4.4]), but their proof is
much longer and uses completely different techniques.
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Corollary 4.5. Let W and M be shift invariant subspaces of H = L2(R) and

suppose that there is a frame of translates {Tkφ}k∈Z for W. If F is the synthesis

operator of {Tkφ}, then XQ contains only one pair (F,H) such that H is the

synthesis operator of a shift invariant frame.

Proof. Observe, first, that T1F = FS. AsM is also shift invariant, T ∗
1QT1 = Q

or equivalently T ∗
1Q = QT ∗

1 . So, H = (F †Q)∗ is not only a frame for M such
that (F,H) ∈ XQ (Thm. 4.1) but it is also a shift invariant frame. In fact, as
F †T1 = SF †, HS = (F †Q)∗S = (S−1F †Q)∗ = (F †T ∗

1Q)∗ = (F †QT ∗
1 )∗ = T1H,

which implies that the frame associated to H is also shift invariant.

Conversely, suppose that (F,H) is a pair of XQ such that are synthesis operators
of shift invariant frames. Then, by Theorem 4.1, we get that H = (PT †Q)∗.
Moreover, P = H∗F . As F and H are synthesis operators of shift invariant
frames, FS = TF and HS = TS. Therefore, S∗(H∗F )S = H∗F . In other
words, the projection P commutes with the bilateral shift operator S, which
implies that P is self-adjoint. As the null space of P is fixed, the operator H is
unique. �
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