
ORIGINAL PAPER

Molecular diversification of Trichuris spp. from Sigmodontinae
(Cricetidae) rodents from Argentina based on mitochondrial
DNA sequences

Rocío Callejón1
& María Del Rosario Robles2 & Carlos Javier Panei3,4 & Cristina Cutillas1

Received: 10 February 2016 /Accepted: 7 April 2016 /Published online: 16 April 2016
# Springer-Verlag Berlin Heidelberg 2016

Abstract A molecular phylogenetic hypothesis is presented
for the genus Trichuris based on sequence data from mito-
chondrial cytochrome c oxidase 1 (cox1) and cytochrome b
(cob). The taxa consisted of nine populations of whipworm
from five species of Sigmodontinae rodents from Argentina.
Bayesian Inference, Maximum Parsimony, and Maximum
Likelihood methods were used to infer phylogenies for each
gene separately but also for the combined mitochondrial data
and the combined mitochondrial and nuclear dataset.
Phylogenetic results based on cox1 and cob mitochondrial
DNA (mtDNA) revealed three clades strongly resolved corre-
sponding to three different species (Trichuris navonae,
Trichuris bainae, and Trichuris pardinasi) showing phylogeo-
graphic variation, but relationships among Trichuris species
were poorly resolved. Phylogenetic reconstruction based on
concatenated sequences had greater phylogenetic resolution
for delimiting species and populations intra-specific of
Trichuris than those based on partitioned genes. Thus, popu-

lations of T. bainae and T. pardinasi could be affected by
geographical factors and co-divergence parasite-host.
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Introduction

The Old World mice and rats (Murinae-Muridae) are the larg-
est mammalian subfamily, comprising over 500 species
(Musser and Carleton 2005). Possibly related to the Murinae
are the Gerbillinae, hopping species that live in African and
Asian deserts. The second-largest mammalian subfamily is the
Sigmodontinae (Cricetidae), endemic from American conti-
nent. In the same family, they are often grouped with the
Cricetinae (Old World hamsters) and sometimes with
Arvicolinae (voles, lemmings, and muskrats). The
Arvicolinae are a diverse Holarctic group (>125 species)
(Steppan et al. 2004). The importance of sigmodontines can-
not be underestimated. Some species are reservoirs of the
etiological agents of a number of human and animal diseases.
In South America, all hantaviruses known to cause Hantavirus
Pulmonary Syndrome are associated with species of
sigmodontine rodents, including Oligoryzomys spp.,
Necromys benefactus (Thomas, 1919), Akodon azarae
(Fischer, 1829), Calomys laucha (Fischer, 1814), and
Sigmodon alstoni (Thomas, 1881) (D’Elía 2003). In addition,
sigmodontine rodents are reservoirs of protozoa (Jansen and
Roque 2010; Lanos-Cuentas et al. 1999; Lallo et al. 2009) and
helminthes (Maldonado et al. 2012; Robles et al. 2008, 2016;
Cubillos et al. 1991; Miño et al. 2013; Kuhnen et al. 2012). In
most of the cases, the infections in this host group may indi-
cate the occurrence and level of environmental contamination
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of different zoonotic parasites, affecting many domestic ani-
mals (Herrera et al. 2005; Reperant et al. 2009).

Trichuris Roederer, 1761 (Nematoda: Trichuridae) has a
cosmopolitan distribution and comprises about 80 species that
parasitize a broad spectrum of domestic and wild mammals
(ruminants, marsupials, rodents, and primates, including
humans) (Cafrune et al. 1999; Robles et al. 2006; Robles
2011). To date, 27 Trichuris species have been described from
10 families’ rodents of North and South America. Four spe-
cies are parasites of Cricetidae in North America: Trichuris
opaca Barker and Noyes 1915 from Arvicolinae, Trichuris
neotomae Chandler 1945, Trichuris peromysci Chandler
1946, and Trichuris stansburyi Frandsen and Grundmann
1961 from Neotominae; and six parasites of Cricetidae in
South America: Trichuris chilensis Babero, Cattan and
Cabello 1976; Trichuris travassosi Correa Gomes, Lanfredi,
Pinto and Souza 1992; Trichuris laevitestis Suriano and
Navone 1994; Trichuris pardinasi Robles, Navone and
Notarnicola 2006; Trichuris navonae Robles 2011; and
Trichuris bainae Robles, Cutillas, Panei and Callejón 2014,
all from Sigmodontinae. The last four species are found from
Argentina (Suriano and Navone 1994; Robles et al. 2006,
2014; Robles 2011).

Since 66 % of Trichuris spp. from Cricetidae share a sim-
ilar morphological pattern (Tiner 1950; Babero et al. 1976;
Correa-Gomes et al. 1992; Feliú et al. 2000; Robles et al.
2006; Robles 2011), some studies have used isoenzymatic
patterns and molecular studies to differentiate these nema-
todes (Cutillas et al. 1996, 2002, 2004, 2007; Feliú et al.
2000). Gene sequences have proved useful for delimiting spe-
cies with few detectable morphological differences (Cutillas et
al. 2009; Liu et al. 2012), in sorting through misleading mor-
phological variation to make an accurate species determina-
tion (Salaba et al. 2013), in discovering cryptic species of
Trichuris in novel host species (Liu et al. 2013; Robles et al.
2014), or as independent corroborative data for species that
are morphologically distinct (Cutillas et al. 2014).

Trichuris species from Sigmodontinae rodents present an
interesting evolutive history since these hosts are endemic
from American rodents. These rodents live in different envi-
ronment and geographical distributions, and have been includ-
ed in diverse phylogenetic hypotheses (e.g., Steppan et al.
2004; Cox and Hautier 2015). Five out of six species of
Trichuris from sigmodontine rodents present similar morpho-
logical features, including the absence of a spicular tube, spic-
ular sheath with spines (mostly with a cylindrical shape), and a
non-protrusive vulva (Tiner 1950; Babero et al. 1976; Correa-
Gomes et al. 1992; Feliú et al. 2000; Robles et al. 2006;
Robles 2011). Therefore, it is probable finding several cryptic
species. In this context, although most studies of Trichuris
molecular systematics have focused on delimiting species,
accurately inferring relationships among species is essential
for testing macroevolutionary hypotheses including co-

phylogeny and biogeography, both in support of the phyloge-
netic relationships proposed for their hosts and those linked to
the geographic areas of distribution.

Molecular markers used for species-level questions in
Trichuris include the Internal Transcribed Spacer 1 and 2 nu-
clear regions (ITS1 and ITS2) (Oliveros et al. 2000; Cutillas et
al. 2002, 2004, 2007, 2009, 2015; Callejón et al. 2012b;
Salaba et al. 2013; Robles et al. 2014; Doležalová et al.
2015), 18S nuclear ribosomal RNA gene (Callejón et al.
2013; Guardone et al. 2013; Doležalová et al. 2015), mito-
chondrial 16S ribosomal RNA gene (Callejón et al. 2012b),
and protein-coding mitochondrial genes, including the 12
common genes obtained from mitochondrial genome se-
quences (Liu et al. 2012, 2013), cytochrome c oxidase 1
(cox1) mitochondrial DNA partial gene (Callejón et al.
2013; Doležalová et al. 2015) and cytochrome b (cob) mito-
chondrial DNA partial gene (Cutillas et al. 2015; Callejón et
al. 2015). These genes have different attributes and shortcom-
ings for inferring Trichuris phylogeny, including substantially
different rates and patterns of evolution. Studies combining
more than one locus, such as nuclear and mitochondrial genes,
together withmorphological and ontogenetic comparisons, pro-
videmany advantages over single-locus studies, particularly for
estimates of species-level relationships (Ballard and Rand
2005). Thus, different authors evaluated phylogenetic hypoth-
eses for Trichuris based on two independent loci (Callejón et al.
2013, 2015; Liu et al. 2013; Doležalová et al. 2015).

The main objective of this manuscript is to develop a mo-
lecular phylogenetic hypothesis for whipworm species isolat-
ed from five species of Sigmodontinae rodents from
Argentina using mitochondrial genes, including partial se-
quences of cox1 and cobmtDNA. A phylogenetic reconstruc-
tion based on combined analysis of mitochondrial genes (cox1
and cob) and mitochondrial and nuclear markers (cox1, cob,
and ITS2) is also evaluated.

Materials and methods

Sampling

Twenty adult Trichuris specimens were collected from differ-
ent cricetid (Sigmodontinae) rodents and geographical origins
(Argentina) (Table 1): T. navonae—seven from Akodon
montensis Thomas, 1913 and three from Thaptomys nigrita
Lichtenstein 1829; T. bainae—four from Sooretamys angouya
Fischer 1814; and T. pardinasi—three from Phyllotis
bonariensis Crespo 1964 and three from Phyllotis
xanthopygus Waterhouse 1837.

Akodon montensis is widespread from eastern Paraguay,
northeastern Argentina in gallery forests along rivers or wet-
lands in the provinces of Formosa, Chaco, Corrientes, and
Misiones, and along the southern coast of Brazil. Moreover,
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this species is the dominant member of the small mammal
assemblage in both secondary forest and other anthropogenic
disturbed habitats in Argentina. Thaptomys nigrita is restrict-
ed to moist tropical forest and second-growth forest in south-
eastern Brazil, eastern Paraguay, and northeastern Argentina.
Sooretamys angouya is widely distributed in eastern South
America, from the Brazilian Atlantic rainforest to the humid
forests of eastern Argentina and Paraguay. Phyllotis
bonariensis lives in rocky places at about 400 m elevation in
a range of hills north of Bahia Blanca, Buenos Aires province.
Phyllotis xanthopygus lives in rocky microhabitats on arid
Andean slopes from Junín in Peru to Magallanes in Chile
and Santa Cruz in Argentina, where boulder fields, rock slides,
cliffs, small shale outcroppings, stone walls, and stone huts are
all satisfactory habitations. Also, this species is found at
higher elevations in the Sierras of San Luis and Córdoba prov-
inces in Argentina (D’Elia and Pardiñas 2015).

Species identification was performed according to previous
studies (Robles et al. 2006, 2014; Robles 2011). Worms were
washed extensively in 0.9 % saline solution and stored in
70 % ethanol until required for DNA extraction, PCR ampli-
fication, and posterior sequencing.

Sequences

Genomic DNA from individual worms was extracted using
the DNeasy Blood and Tissue Kit (Qiagen) according to the

manufacturer’s protocol. Quality of extractions was assessed
using 0.8 % agarose gel electrophoresis and ethidium bromide
staining.

Mitochondrial cox1 partial gene was amplified by PCR using
an Eppendorf AG thermocycler and conditions specified for
Trichinella isolates by Nagano et al. (1999) and sequenced using
the following primers: The forward PCR primer was modified
from the reverse primer of Folmer et al. (1994): HC02198F 5′-
TGATTTTTTGGTCACCCTGAAGTTTA-3′, and the reverse
PCR primer was modified from Nagano et al. (1999) to corre-
spond to more broadly conserved cox1 sequence: CORA 5′-
ACYACATAGTAGGTRTCATG-3′. These two primers were
used successfully for cox1 PCR amplification of all species of
Trichuris studied. Amplification reactions consisted of 5 μl 10×
PCR buffer, 2 μl 10 mM dNTP mixture (0.4 mM each), 3 μl
50 mM MgCl2, 5 μl primer mix (1 mM each), 5 μl template
DNA, 0.5 μl Taq DNA polymerase (2.5 U), and autoclaved
distilled water to 50 μl. The following PCR conditions were
applied: 94 °C for 5 min (denaturing), 40 cycles at 94 °C for
1 min (denaturing), 48 °C for 1 min (annealing), 72 °C for 1 min
(primer extension), followed by a post-amplification extension at
72 °C for 7 min.

Mitochondrial cob partial gene was amplified and sequenced
using primers designed from comparisons of complete mtDNA
genome sequences of Trichuris discolor Linstow 1906
(NC_018596), Trichuris ovis Abildgaard 1795 (NC_018597),
Trichuris suis Schrank 1788 (NC_017747), and Trichuris

Table 1 Trichuris specimens collected in different rodent species from Argentina

Trichuris spp. Number of studied
specimens

Host species Locality/province (code) Geographical point

Cox1 Cob

T. navonae 2 2 Akodon montensis Refugio Moconá, Departamento San Pedro,
Misiones province (RM)

27°8′ S,
53°55′ W

3 3 Reserva de Vida Silvestre Urugua-í, Fundación
Vida Silvestre, Departamento General Manuel
Belgrano, Misiones province (UR)

25°59′08.19″ S, 54°06′36.15″ W

2 2 Campo Anexo M. Belgrano, INTA, San Antonio,
Departamento General Manuel Belgrano,
Misiones province (SA)

26°02′52.60″ S,
53°46′21″ W

1 2 Thaptomys nigrita Refugio Moconá, Departamento San Pedro,
Misiones province (SA)

26°02′54.21″ S,
53°46′32.40″ W

– 1 Campo Anexo M. Belgrano, INTA, San Antonio,
Departamento General Manuel Belgrano,
Misiones province (RM)

27°8′ S,
53°55′ W

T. bainae 2 2 Sooretamys angouya Refugio Moconá, Departamento San Pedro,
Misiones province (RM)

27°8′ S,
53°55′ W

2 2 Estación de Animales Silvestres Guaycolec,
Departamento Formosa, Formosa province (GU)

25°58′51″ S,
58°9′52″ W

T. pardinasi 3 3 Phyllotis bonariensis Cerro Bahía Blanca, Parque Provincial Ernesto
Tornquist, Sierra de la Ventana, Partido de
Tornquist, Buenos Aires province (SV)

38°04′47.99″ S,
62°00′22.48″ W

3 2 Phyllotis xanthopygus Cerro Los Linderos, Departamento Calamuchita,
Córdoba province (SC)

32°00′17.82″ S,
64°56′ 01.51″ W
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trichiura Linnaeus 1771 (NC_017750). The forward PCR prim-
er D769 5′-GAGTAATTTTTATAATRCGRGAAGT-3′ and the
reverse PCR primer D770 5′-AATTTTCAGGRTCTCTRC
TTCAATA-3′were used successfully for cob PCR amplification
of all species of Trichuris analyzed. Amplification reactions
consisted of 0.5 mM of each primer, 200 mM dNTP, 3 mM
MgCl2, and 1 U of AmpliTaq® polymerase in a volume of
25 μl. PCR cycling parameters included 94 °C for 5 min (dena-
turing), 36 cycles of 94 °C for 30 s (denaturing), 50 °C for 30 s
(annealing), and 72 °C for 30 s (primer extension), followed by a
post-amplification extension at 72 °C for 7 min.

The PCR products were checked on ethidium bromide-
stained 2 % Tris-Borate-EDTA (TBE) agarose gels. Bands
were eluted from the agarose by using the Wizard® SV Gel
and PCR Clean-Up System (Promega). The purified PCR
products were concentrated and directly sequenced by Stab
Vida (Portugal).

All sequences were completely double-stranded for verifi-
cation using reactions primed from the PCR primers.

Analyses

Sequences based on mtDNA (cox1 and cob) were aligned
using CLUSTAL X (Larkin et al. 2007) as described by
Callejón et al. (2013). The nucleotide sequences of the
protein-coding genes (cox1 and cob) were first translated Bin
silico^ to confirm that they lacked internal stop codons and to
verify (by BLAST match) that inferred amino acid sequences
were characteristic of the predicted nematode protein.

ITS2 sequences based on nuclear ribosomal DNA (rDNA)
obtained from GenBank (Robles et al. 2014) were incorporat-
ed to a comparative analysis (Table 2). Nucleotide sequence
data reported in this paper are available in the GenBank™
database (accession numbers in Table 3).

Sequences from two outgroup taxa (Table 2) were included
in each analysis to root the phylogenetic trees: Trichuris muris
Schrank, 1788 from Mus domesticus Schwarz and Schwarz,
1943 (Murinae) and Trichuris arvicolae Feliú, Spakulová,
Casanova, Renauld, Morand, Hugot et al. 2000 from
Myodes glareolus Schreber 1780 (Arvicolinae) from Spain.

Phylogenetic trees were inferred using nucleotide data and
produced using three methods: Bayesian Inference (BI),
Maximum Parsimony (MP), and Maximum Likelihood (ML)
using the PhyML package (Guindon and Gascuel 2003),
MEGA 5.0 program (Tamura et al. 2011), andMrBayes version
3.1.2 (Ronquist and Huelsenbeck 2003), respectively.
jModelTest version 0.1.1 (Posada 2008) was used to compare
the fit of nucleotide substitution models using the Akaike infor-
mation criterion. For the study of the three concatenated datasets
(cox1, cob, and ITS2), analyses were partitioned by gene. For
Bayesian analysis, models for individual genes within partitions
were those selected by jModelTest. For ML inference using
PhyML, the rapid bootstrap algorithm (with GTRCAT) was

used (1000 replicates) to assess the relative reliability of clades,
whereas the best ML tree was found using the GTRGAMMA
model. Models selected by jModelTest for BI included nst=6
with gamma rates (cox1 and cob), nst=6 with invgamma rates
(ITS2), and nst =mixed for concatenated analysis. For the
Bayesian analysis, we ran three independent runs of four
Markov chains for 10 million generations, sampling every 500
generations.

Results

Cox1 mtDNA partial gene

A single cox1 PCR product was amplified from each Trichuris
species included in this study. The partial sequences were 401
and 405 base pairs (bp) in length. The G+C content of the
cox1 partial gene of Trichuris species was 35–38 %, the max-
imum values corresponding to three individuals of T. bainae
and the minimum values to six individuals of T. navonae from
Misiones (Table 3).

The multiple alignment of 20 cox1 nucleotide sequences
(including outgroups) yielded a dataset of 341 characters.
jModelTest determined that the best-fit model for cox1
mtDNA datasets was GTR + G, which was used for
Maximum Likelihood and Bayesian analysis.

The range of intra-population similarity of Trichuris spp.
based on cox1 mtDNA sequences was 97.7–100 % with the
maximum value corresponding to T. bainae from Formosa
and the minimum value corresponding to T. pardinasi from
Buenos Aires. On the other hand, the inter-population similar-
ity was analyzed in T. bainae isolated from Misiones and
Formosa with the maximum value (99.6 %) and T. pardinasi
isolated from Córdoba and Buenos Aires with the minimum
value (97.0 %).

The comparative study between different cox1mtDNA se-
quences obtained for each species (alignment not shown) re-
vealed the highest similarity (90.4 %) between T. pardinasi
from Córdoba and T. bainae fromMisiones, whereas the low-
est similarity (86.7 %) was observed between T. navonae from
Misiones and T. pardinasi from Córdoba. The cox1 datasets
provided moderate phylogenetic resolution among most
Trichuris taxa regardless of inference method. The consensus
tree showed three clear clades corresponding with three dif-
ferent Trichuris spp. with good resolution; nevertheless, with-
in the Trichuris spp. group from Argentina, all relationships
among clades were not resolved by the three methods (BI,MP,
and ML) (Table 4). The topology showed all species of
Trichuris from South America (Argentina) separated from
those belonging to Trichuris spp. from Europe (Spain) with
absolute support (100 % Bayesian Posterior Probabilities
(BPP) and 100 % ML Bootstrap Value (BV)). Furthermore,
T. arvicolae from Europe appeared clustered together and
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separated of T. muris from Europe with high support (100 %
BPP, 99 % MP, and 92 % ML BV) (unpublished data).

Trichuris spp. fromArgentina showed three main clades by
BI, MP, and ML methods (Table 4). Clade 1 clustered
T. navonae from different hosts and localities from
Misiones. Clade 2 clustered T. bainae from Misiones and
Formosa. Finally, Clade 3 clustered T. pardinasi populations
from Buenos Aires and Córdoba. In addition, a subclade 2a
including T. bainae from Formosa was observed by the three
methods with robust support (Table 4) separated of T. bainae
from Misiones and a subclade 3a including T. pardinasi from
Buenos Aires with moderate support which appeared separat-
ed from T. pardinasi from Córdoba.

Cob mtDNA partial gene

A single cob PCR product was amplified from each Trichuris
species included in this study. The partial sequences were
505 bp in length. The G+C content of the cob partial gene
of Trichuris species ranged from 28 to 32 %, the maximum
values corresponding to one individual of T. pardinasi from
Córdoba and one individual of T. pardinasi from Buenos

Aires and the minimum values to seven individuals of
T. navonae from Misiones (Table 3).

The multiple alignment of 21 cob nucleotide sequences
(including outgroups) yielded a dataset of 494 characters.
jModelTest determined that the best-fit model for cob
mtDNA datasets was GTR + G, which was used for
Maximum Likelihood and Bayesian analysis.

The range of intra-population similarity of Trichuris spp.
based on cob mtDNA sequences was 98.4–99.8 % with the
maximum value corresponding to T. bainae from Formosa
and Misiones and the minimum value corresponding to
T. pardinasi from Córdoba. On the other hand, the inter-
population similarity was analyzed in T. bainae isolated from
Buenos Aires and Formosa with the maximum value (99.6 %)
and T. pardinasi isolated from Córdoba and Buenos Aires
with the minimum value (98.0 %).

When the cob mtDNA sequences of the different species
and host isolates of the genus Trichuris were compared, the
highest similarity (88.9 %) was obtained between T. navonae
from Misiones and T. bainae from Misiones and Formosa,
respectively, whereas the lowest similarity (84.8 %) was ob-
served between T. pardinasi compared with T. navonae and
T. bainae populations. The cob datasets provided moderate

Table 2 Sequences of Trichuris
spp. and outgroup species
obtained from GenBank and used
for phylogenetic analyses

Species Host species/geographical origin Marker Accession number

Trichuris navonae A. montensis/Refugio Moconá (Misiones) ITS2 HG934435

HG934436

HG934437

HG934438

A. montensis/Urugua-í (Misiones) ITS2 HG934443

HG934444

HG934441

A. montensis/San Antonio (Misiones) ITS2 HG934434

T. nigrita/San Antonio (Misiones) ITS2 HG934440

T. nigrita/Urugua-í (Misiones) ITS2 HG934439

Trichuris bainae S. angouya/Refugio Moconá (Misiones) ITS2 HG934431

HG934432

S. angouya/Guaycolec (Formosa) ITS2 HG934433

Trichuris pardinasi P. xanthopygus/Sierra de la Ventana (Buenos Aires) ITS2 HG934448

HG934445

HG934449

P. xanthopygus/Sierra de Cordoba (Cordoba) ITS2 HG934447

HG934446

Outgroup

Trichuris muris Mus domesticus/Spain Cox1

Cob

ITS2

HE653130

LM994701

FN543175

Trichuris arvicolae Myodes glareolus/Spain Cox1

Cob

ITS2

FR851284

LM994698

FR849660
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phylogenetic resolution among most Trichuris taxa regardless
of inference method. The consensus trees showed good reso-
lution within the Trichuris spp. group from Argentina; how-
ever, all relationships among clades were not resolved by the
three methods (BI, MP, and ML) (Table 4). The topology
showed all species of Trichuris from South America
(Argentina) separated from those belonging to Trichuris spp.
from Europe (Spain) with absolute support (100 % BPP and
100 % ML BV) (Table 4).

Overall, in the Trichuris populations from Argentina, there
were three clades (Table 4). Clade 1 clustered T. navonae from

different hosts from different geographical localities from
Misiones region, Clade 2 clustered T. bainae from Misiones
and Formosa, and Clade 3 clustered T. pardinasi populations
from Buenos Aires and Córdoba (Table 4). The topology
showed that Clade 1 (T. navonae) related with Clade 2
(T. bainae). In addition, a subclade 2b clustered T. bainae from
Misiones separated of T. bainae from Formosa. A subclade 3a
includingT. pardinasi fromBuenosAireswithmoderate support
was recovered in cob data. In contrast to the cox1 mtDNA, a
subclade 2a corresponding to T. bainae from Formosa was not
revealed by cob mtDNA sequences (Table 4).

Table 3 GenBank accession number of cox1 and cob partial gene sequences of 19 individuals of Trichuris spp. isolated from five rodent species from
Argentina

Species Host species/geographical origin Number of base pairs G +C% Accession numbers

Cox1

Trichuris navonae A. montensis/Refugio Moconá (Misiones) 405
405

35
35

HG934459
HG934462

A. montensis/Urugua-í (Misiones) 405
405
405

36
36
35

HG934458
HG934460
HG934464

A. montensis/San Antonio (Misiones) 405
405

35
35

HG934461
HG934463

T. nigrita/San Antonio (Misiones) 405 35 HG934457

Trichuris bainae S. angouya/Refugio Moconá (Misiones) 405
405

38
37

HG934466
HG934465

S. angouya/Guaycolec (Formosa) 405
401

38
38

HG934467
LN899586

Trichuris pardinasi P. bonariensis/Sierra de la Ventana (Buenos Aires) 405
405
405

37
37
36

HG934451
HG934453
HG934452

P. xanthopygus/Sierra de Córdoba (Córdoba) 405
405
405

37
36
37

HG934455
HG934454
HG934456

Cob

Trichuris navonae A. montensis/Refugio Moconá (Misiones) 505
505

28
28

LN899565
LN899566

A. montensis/Urugua-í (Misiones) 505
505
505

29
28
28

LN899567
LN899568
LN899569

A. montensis/San Antonio (Misiones) 505
505

28
28

LN899571
LN899570

T. nigrita/San Antonio (Misiones) 505
505

28
29

LN899572
LN899573

T. nigrita/Refugio Moconá (Misiones) 505 29 LN899584

Trichuris bainae S. angouya/Refugio Moconá (Misiones) 505
505

30
30

LN899574
LN899575

S. angouya/Guaycolec (Formosa) 505
505

30
30

LN899576
LN899582

Trichuris pardinasi P. bonariensis/Sierra de la Ventana (Buenos Aires) 505
505
505

31
31
32

LN899578
LN899579
LN899577

P. xanthopygus/Sierra de Córdoba (Córdoba) 505
505

32
31

LN899580
LN899581
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Phylogenetic relationship based on concatenated cox1
and cob mtDNA sequence datasets

The combined analysis of mitochondrial genes (cox1 and cob)
revealed a similar topology than those obtained by separate
analysis of the two genes (Fig. 1). Thus, three clades were
observed according to three different species of Trichuris.
The concatenated analysis of the mitochondrial genes showed
that Clade 1 (T. navonae) related with Clade 2 (T. bainae) with
moderate support (100 % BPP, 68 % MP, and 80 % ML BV).

In concordance with cox1 and cob data, a subclade 2a and
subclade 3a were recovered (Fig. 1, Table 4).

Phylogenetic relationship based on concatenated mtDNA
(cox1 and cob) and rDNA (ITS2) sequence datasets

BI, MP, and ML analysis of the combined mtDNA (cox1 and
cob) and rDNA (ITS2) datasets yielded a similar tree topology
to that observed by partitioned mitochondrial and nuclear
markers (Fig. 2). Phylogenetic trees revealed a strong support
for Clade 1, Clade 2, and Clade 3 (>95 %). The combined
analysis of the mtDNA and rDNA sequences revealed the
sister-group relationship among Clade 1 and 2. Furthermore,
in concordance with cox1 and cob data, a subclade 3a includ-
ing T. pardinasi from Buenos Aires with high support was
recovered (Fig. 2 and Table 4).

Discussion

Comparative analyses of coding and non-coding regions of
ribosomal DNA (rDNA) have become a useful tool for the

construction of the phylogenetic trees of many organisms in-
cluding nematodes (Subbotin et al. 2001). Internal Transcribed
Spacer regions (ITS1, ITS2) of the rDNA are often useful for
differentiating closely related nematode species (Xie et al.
1994). The ribosomal DNA segments ITS1 and ITS2 have been
shown to be two of the best molecular markers for analyzing
genetic relationships at species level in Trichuris. For example,
sequences obtained by amplification of the ITSs of seven dif-
ferent Trichuris species (Trichuris leporis Frolich 1789, T. ovis,
T. muris, T. arvicolae, T. suis, T. discolor, and T. trichiura)
permit reliable diagnosis (Oliveros et al. 2000; Cutillas et al.
2002, 2004, 2007, 2009; Callejón et al. 2010, 2012a).
Furthermore, a comparative phylogenetic study of ITS1 and
ITS2 sequences from Trichuris species from different hosts
revealed three different genetic lineages corresponding with
host groups (Callejón et al. 2012a). Similarly, analyses of nu-
clear ribosomal RNA, including SSU (Callejón et al. 2013) and
ITS sequences (Ravasi et al. 2012; Nissen et al. 2012), support
the specific characterization of T. suis and the determination of a
new species: Trichuris colobae Cutillas, De Rojas, Zurita,
Oliveros and Callejón 2014, a parasite of the primate Colobus
guereza kikuyensis Rúppell 1835 (Cutillas et al. 2014).

Nevertheless, previous studies have mainly relied on se-
quence analysis of the ITS regions (Cavallero et al. 2015;
Ravasi et al. 2012; Ghai et al. 2014; Cutillas et al. 2009;
Nissen et al. 2012), and as this region contains multiple re-
peats, the alignment of sequences even between closely relat-
ed wormswill include a number of gaps. This makes inference
of the phylogenetic relationship between Trichuris species
problematic, and it is therefore highly recommended to sup-
plement such analysis with other genetic markers such as mi-
tochondrial DNA genes (Callejón et al. 2013).

Table 4 Monophyly of mitochondrial and ribosomal partial sequences of selected groups based on several combinations of datasets and inference
methods

Cox1 mtDNA Cob mtDNA Mitochondrial genes (cox1 + cob) Mitochondrial (cox1, cob) and nuclear
(ITS2, Robles et al. 2013) markers

BPP/MP/ML BPP/MP/ML BPP/MP/ML BPP/MP/ML

Trichuris populations from Argentina 100/–/100 100/–/100 100/–/100 100/–/100

Clade 1 69/98/100 100/100/100 100/100/100 100/100/99

Clade 2 90/99/100 99/100/100 100/100/100 100/100/99

Clade 3 95/99/100 –/100/– 100/100/– 100/100/95

Clade 1 clustered with Clade 2 –/68/– 96/–/60 100/68/80 100/75/–

Subclade 2a 98/89/82 –/–/– 93/91/88 One sequence of subclade 2a included in
the phylogenetic analysis

Subclade 2b –/–/– 82/–/– –/–/– –/–/–

Subclade 3a 90/60/100 61/84/80 100/85/70 100/85/86

Subclade 3b –/–/– –/–/– –/–/– –/–/–

BPP Bayesian Posterior Probability,MPMaximum Parsimony,MLMaximum Likelihood bootstrap. Clade 1: T. navonae; Clade 2: T. bainae, Subclade
2a: T. bainae from Formosa, Subclade 2b: T. bainae fromMisiones; Clade 3: T. pardinasi, Subclade 3a: T. pardinasi from Buenos Aires, Subclade 3b: T.
pardinasi from Córdoba
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MtDNA has proved useful in molecular phylogeny due to
its maternal inheritance, rapid rate of divergence, and lack of
recombination (Arrivillaga et al. 2002). Mitochondrial
genes data have been used for the characterization of
Trichuris species and their relationships (Cutillas et al. 2009;
2012b, 2015; Liu et al. 2012; Hawash et al. 2015; Doležalová
et al. 2015).

Phylogenetic investigations that include multiple loci
have advantages over single-locus studies not only for
estimates of species-level relationships (Ballard and
Rand 2005) but for testing hypotheses of species or spe-
cies delimitation (Pérez-Ponce de León and Nadler 2010;
Nadler and Pérez-Ponce de León 2011). Recent progress
has been made in understanding the phylogeny of the
Trichuris genus. There seem to be host-specific patterns
in infection with particular Trichuris species or subspecies
(Betson et al. 2015). Future research priorities should in-
clude multiple genetic marker analysis of Trichuris sam-
pled from different hosts and diverse geographical loca-
tions to provide insights into parasite transmission within
and between host species.

In the present paper, we carried out a molecular study,
based on multiple genetic marker analysis, of populations of
Trichuris spp. isolated from five Sigmodontinae rodents’ spe-
cies from Argentina. Three species were identified:
T. navonae, T. bainae, and T. pardinasi. The overall A+T
content of the cox1 and cob sequences in these species is
consistent with mitochondrial genomes of T. trichiura
(68.1 %) and T. suis (71.5 %) (Liu et al. 2012).

The percentage of inter-specific similarity observed along
the three species based on cox1 and cobmtDNA partial genes
far exceeded the intra-population and inter-population similar-
ity. The highest values of inter-specific similarity based on
cox1 partial gene (90.4 %) were observed between T. bainae
from Misiones and T. pardinasi from Córdoba, while the
highest values of inter-specific similarity based on cob partial
gene (88.9 %) was observed between T. navonae (Misiones)
and T. bainae (Formosa). Although the clades were strongly
supported, in the case of subclades they were moderate, sug-
gesting that these individuals may represent the same species,
although they could be on the way to diverge. Attending to the
inter-specific similarity observed in the genus Trichuris based

Fig. 1 Phylogenetic tree of Trichuris species based on combined analysis
of cytochrome c oxidase 1 and cytochrome b mitochondrial DNA
sequences. Tree shown was inferred using Bayesian Inference.
Bayesian Posterior Probabilities (BPP) of clades are listed first,

followed by Maximum Parsimony (MP) and Maximum Likelihood
(ML) bootstrap values, respectively, for clade frequencies exceeding
60 %
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on cox1 partial gene (68.7–84.3 %, Callejón et al. 2013) and
cob partial gene (69.2–97.1 %, unpublished data), the present
results confirm that T. pardinasi, T. navonae, and T. bainae are
different species.

The phylogenetic analysis of the concatenated sequences
(cox1 and cob) revealed three different clades: Clade 1 and
Clade 2 (T. navonae and T. bainae, respectively) which appeared
related but separated and a Clade 3 clustering both populations
of T. pardinasi (Buenos Aires and Córdoba). These results are in
agreement with those cited by Robles et al. (2014). The concat-
enation of these mitochondrial genes with nuclear sequences
(ITS2) revealed phylogenetic results similar to those observed
by individual gene analysis. Thus, these results suggest that
resolving relationships representing the deepest nodes in the
Trichuris phylogeny will require analysis of additional indepen-
dent loci represented by nuclear genes.

Since the survival of Trichuris individuals in a host de-
pends on many factors as host immunologic status (mainly
associated with the taxonomy) or/and ecology aspects, the

characteristics of its life cycle and environmental factors have
been the main aspects used by different authors to explain the
geographical distribution of Trichuris species (Bundy et al.
1988; Bundy and Cooper 1989; Grencis et al. 1993;
Anderson 2000). Thus, the question is if the species of
Trichuris could act as markers of their hosts and/or areas and
if this could be observed as a co-divergence or captured pro-
cess in co-phylogeny. In this context, the geographical and
host distributions of Trichuris spp. have been poorly analyzed.

Rodent hosts could be used to understand the ecological
and evolutionary factors that affect the geographical and host
distribution of Trichuris spp. The Trichuris species from
sigmodontine rodents clustered together and separated from
Trichuris species isolated from murine and arvicoline rodents.
The host distribution of T. navonae, T. bainae, and
T. pardinasi showed correspondence with different tribes in-
cluded in Sigmodontinae rodents such as Clade 1—
Akodontini, Clade 2—Oryzomyini, and Clade 3—
Phyllotini. T. navonae (Clade 1) is a parasite of A. montensis,

Fig. 2 Phylogenetic tree of Trichuris species based on combined analysis
of mitochondrial DNA (cytochrome c oxidase 1 and cytochrome b) and
nuclear ribosomal DNA (Internal Transcribed Spacer 2) inferred using
MaximumLikelihood analysis. Bayesian Posterior Probabilities of clades

are listed first, followed by Maximum Parsimony and Maximum
Likelihood bootstrap values, respectively, for clade frequencies
exceeding 60 %
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one of the most abundant host species present in a wide geo-
graphical distribution from the Atlantic forest and Cerrado to
Brazil, Paraguay, and Argentina (Pardiñas et al. 2006, 2008;
Cirignoli et al. 2011; De la Sancha 2014). Also, T. navonae is
present in another sympatric host species, T. nigrita, that is not
easy to capture and is less abundant (Bonvicino et al. 2002;
Patton et al. 2008). Both rodents occur in the same microhab-
itat, living in primary and secondary forests (Pardiñas et al.
2005).

T. bainae (Clade 2) is a parasite of S. angouya, a rodent
with sympatric distribution with the two akodontines men-
tioned above, although this species lives more frequently in
trees and ground (Bonvicino et al. 2002; Cirignoli et al. 2005;
Teta et al. 2007; Percequillo et al. 2008). This rodent is con-
sidered common (easy to capture) but not abundant
(Bonvicino et al. 2002).

In this study, the clades showed different levels of host
specificity. Clade 1 and 2 indicated the presence of different
species of Trichuris in the same biome, but with each species
associated with a different host tribe and ecological habits. In
addition, these species of whipworm follow their hosts along
their geographical distribution, such as T. bainae (Clade 2 and
subclade 2a) in S. angouya fromMisiones and Formosa prov-
inces. Although the humid Chaco (Formosa) and tropical for-
ests (Misiones) are very different in floristic composition, get-
ting the Argentina area, these biomes are geographically
closed (Mayle 2004; Pennington et al. 2000).

On the other hand, T. pardinasi (Clade 3) is a parasite of
P. bonariensis and P. xanthopygus, both abundant species which
are found in a wide variety of habitats, but these are restricted
mainly to rocky outcrops (Polop 1989; Kramer et al. 1999).
P. bonariensis is distributed only in Sierra de la Ventana, south-
east of Buenos Aires province (Argentina) (Crespo 1964;
Pardiñas and Jayat 2008), while P. xanthopygus has a wide
distribution, along the Andes from west central Peru to Santa
Cruz Province (Argentina) and the adjacent Magellan Region of
Chile (Musser and Carleton 2005). The population of
P. bonariensis from Sierra de la Ventana was originally cited
as an endemic species by Crespo (1964), Reig (1987), Galliari
et al. (1996), and Musser and Carleton (2005). Later, this popu-
lation was considered as P. xanthopygus as stated by Pardiñas et
al. (2004). Currently, there is no solid evidence available to
justify this second proposal and specific status (Steppan et al.
2007); for this reason, we follow the first taxonomic proposal.
Clade 3 indicated the presence of the same species of Trichuris
in two congener host species in two disjoint areas suggesting
specificity at the host generic level (or specific level if futures
studies confirm that P. bonariensis (subclade 3a) and
P. xanthopygus are conspecific). Notably, the Sierras de
Córdoba and Sierra de la Ventana are areas considered faunistic
islands that share a considerable number of species and subspe-
cies, i.e., mollusks, insects, and amphibians (Ringuelet 1961), as
well as T. pardinasi.

Interestingly, Trichuris from different host origin (Muridae
and Cricetidae) from the OldWorld generated a monophyletic
group separated from Trichuris of Sigmodontinae (Cricetidae)
from the NewWorld (Figs. 1 and 2). The question leads again
to the lack of knowledge on the behavior of distribution of
Trichuris: Are the geographical factors and processes that af-
fect the distribution of Trichuris greater than those of phylo-
genetic origin?

Conclusion

Mitochondrial (cox1 and cob) markers, used in the present
work, are useful tools to discriminate Trichuris spp.
(T. navonae, T. bainae, and T. pardinasi) and different popu-
lations of T. bainae and T. pardinasi with different geograph-
ical origins and rodent hosts. The phylogenetic tree based on
combined mitochondrial and nuclear sequences of Trichuris
spp. from different rodent hosts fromArgentina revealed three
clades corresponding to these three Trichuris spp. showing
different levels of host specificity. More comprehensive un-
derstanding of the co-divergence parasite-host will require
increased taxa sampling of Trichuris species and the increased
resolution provided by multigene molecular phylogenies.
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