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Abstract 

The limited capabilities of IoT devices have resulted 

in some of the tasks of IoT applications being 

distributed to a cloud server, which witnessed the 

arisen of the cloud of things (COT). It enables IoT 

applications’ development and deployment as a 

service, providing additional data storage, enhanced 

processing performance, and fast communication 

between devices. As COT involves communication 

between IoT devices, a remote server, and users, 

remote user authentication is crucial to meeting 

security demands. Therefore, this study designs a 

client-based user authentication scheme utilizing 

smartphone fingerprint recognition technology to fill 

the gap. The scheme comprises six phases, namely (i) 

configuration phase, (ii) enrolment phase, (iii) 

authentication phase, (iv) password update phase, (v) 

fingerprint revocation phase, and (vi) smartphone 

revocation phase. The security analysis and 

automated verification using ProVerif suggested that 

the scheme is resistant to user impersonating attacks, 

replay attacks, and man-in-the-middle attacks. The 

study’s outcome could help secure user credentials 

from attacks on applications that involve IoT and the 

cloud. 

Keywords: cryptography, internet of things, sensors, 

authentication, encryption 

Resumen 

Las capacidades limitadas de los dispositivos IoT han 

dado como resultado que algunas de las tareas de las 

aplicaciones IoT se distribuyan a un servidor en la 

nube, lo que es testigo del surgimiento de la Nube de 

las Cosas (COT). Esta permite el desarrollo y la 

implementación de aplicaciones IoT como un 

servicio, proporcionando almacenamiento de datos 

adicional, mayor rendimiento de procesamiento y 

comunicación rápida entre dispositivos. Dado que la 

COT implica la comunicación entre dispositivos IoT, 

un servidor remoto y usuarios, la autenticación de 

usuarios remotos es crucial para satisfacer las 

demandas de seguridad. Por lo tanto, este estudio 

diseña un esquema de autenticación de usuario 

basado en el cliente que utiliza tecnología de 

reconocimiento de huellas digitales en teléfonos 

inteligentes para colmar la brecha. El esquema consta 

de seis fases: (i) fase de configuración, (ii) fase de 

inscripción, (iii) fase de autenticación, (iv) fase de 

actualización de contraseña, (v) fase de revocación de 

huellas digitales y (vi) fase de revocación de teléfonos 

inteligentes. A partir del análisis de seguridad y la 

verificación automatizada con ProVerif surge que el 

esquema es resistente a diferentes ataques, por 

ejemplo ataques de suplantación de identidad del 

usuario, los ataques de repetición y los ataques man-

in-the-middle. El resultado del estudio podría ayudar 

a proteger las credenciales de los usuarios de los 

ataques a las aplicaciones que involucran IoT y la 

nube. 

Palabras claves: Criptografía, Internet de las cosas, 

Sensores, Autenticación, Encriptación 

1. Introduction

Internet of Things (IoT) is a network of various 

sensing devices that provides services according to 

application integration [1-3]. It has been employed 

for data capturing devices in various domains, 

including transportation, infrastructure, computing 

intelligence, and e-health, just to name a few [4]. The 

sensing devices generate massive data that can be 

analyzed to form intelligent environments like smart 

cities [5], smart homes [6, 7], and smart vehicles [8]. 

IoT has also merged with cloud computing which 

forms a domain known as the cloud of things (COT) 

[9-14]. In COT, the cloud server acts as an IoT 

backend system that receives data from the sensors, 
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processes them, and stores them centrally [13, 14]. 

COT arises for monitoring and controlling IoT 

devices within mobile cloud computing to support 

advanced applications [9, 15]. IoT devices’ limited 

capabilities have resulted in some IoT applications 

being distributed to a cloud server [16]. Integration of 

IoT with cloud computing has become a necessary 

technology to manage such data for creating more 

valuable and intelligent services and applications [9]. 

COT also enables the development and deployment 

of IoT applications as a service, additional data 

storage, enhanced processing performance, and fast 

communication between devices [11]. COT’s 

emergence can create beneficial services for humans; 

however, these services face significant security 

threats [17]. Further, limited research has been done 

on the shortcomings of IoT and cloud integration, 

especially in data security [11].  

Researchers believe that communication security 

remains a significant problem in the COT 

environment. The reason is that the information 

remains prone to attacks conducted through SQL 

injections, eavesdropping, man-in-the-middle, and 

many other methods [11]. As COT involves 

communication between a remote server and IoT 

devices to establish connectivity in any physical 

environment, remote user authentication is crucial to 

meet security demands [4]. Authentication ensures 

the message is received from a legitimate sender and 

serves as a front-line defence of the IoT network from 

unauthorized access. Thus, authentication is 

considered an essential requirement for IoT [18, 19]. 

Attacks on confidentiality and authentication, as well 

as the availability of network services, are often 

significant issues in the security of IoT networks [20]. 

In addition, COT requires storage, processing, and 

energy capacity for security protection. 

Unfortunately, the current security scheme that uses 

traditional encryption requires a sizeable 

computational resource [17]. Conventional 

encryption is not suitable for IoT environments due to 

limited resources, resulting in lightweight 

authentication schemes suitable for IoT environments 

[18].  

Thanks to mobile computing, they can support 

IoT devices’ security, primarily through hardware 

such as smartphones  [21]. Smartphones can be used 

as a user-friendly authentication tool; built based on 

the existing ecosystem that defines and enforces 

custom security policies necessary for IoT devices 

[21]. Nowadays, the smartphone plays beyond a 

communication device [22], especially with many 

embedded sensors that enable applications in various 

domains, including IoT. It appears necessary for 

everyone at all levels of age [22]. Smartphones act as 

communication, entertainment, socializing, 

shopping, educational, and personal organizing tools. 

Smartphones also catalyzed access to cloud-based 

mobile applications by millions of users [23]. As IoT 

contributes to the Internet ecosystem, applications or 

services accessible via smartphones benefit users 

[14]. Smartphones have been used to interact with IoT 

devices to access data and control them [6]. Further, 

a smartphone’s built-in camera and fingerprint 

scanner could be used as user biometric 

authentication for IoT-based applications.  

The robust nature of biometric authentication has 

led to its significant deployment in diverse domains 

[24]. Biometric security systems provide secure 

access compared to alphanumeric-based passwords 

[25]. It can also be strengthened using multi-factor 

authentication [26]. Many authentication schemes 

based on biometric systems have been proposed, like 

hand-based multibiometric [27], fingerprint [22], and 

face image [24]. Nonetheless, the fingerprint is a 

reliable method of user authentication as it is unique 

to each individual, thus making it efficient to 

authenticate users [28]. It is also a suitable 

authentication method for accessing COT-based 

applications through smartphones. This study aims to 

design an authentication scheme for accessing COT 

applications using smartphones as the client interface 

to address the authentication scheme’s limitation for 

COT-based applications. The following sections of 

this article describe the proposed scheme’s design and 

evaluation. 

2. Related Work

Impersonating an authorized user is one of the most 

critical threats to any computer system. This threat 

can be addressed using proper user authentication 

[29] by verifying the communicating parties’ true 

identities [30]. In the context of computer-based 

systems, authentication is verifying the identity of a 

user, device, or other entity requesting access to a 

computer system [29]. Authentication methods can be 

classified into three, namely (1) methods based on 

human memory such as passwords and personal 

identification numbers, (2) methods based on 

physical devices such as USB cards, magnetic or IC 

cards, and (3) methods based on biometrics such as 

fingerprint, and iris [31-33]. The authentication 

method by itself sends users’ authentication 

information to the server in the form of plaintext. 

Hackers can easily view confidential information by 

eavesdropping on the communication line during the 

authentication phase. It could lead to a masquerading 

attack (i.e., impersonating legitimate users). This kind 

of attack is difficult to identify unless abnormal 

activities are detected from the stolen user profiles. 

Hence, the authentication methods require additional 

mechanisms, specifically encryption methods, to 

conceal the original form of users’ authentication 

information into an encrypted form. A combination 
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of the authentication methods and the encryption 

mechanism presented systematically and clearly, is 

referred to as an authentication scheme. 

SAP [34], a European multinational software 

corporation, describes an authentication scheme as “a 

definition of what is required for an authentication 

process”. In a more specific definition, an 

authentication scheme specifies the authentication 

method, the protocol, the process for authenticating 

users, and possible algorithms for verifying the users’ 

identity to access resources from a computer system 

[35]. The authentication scheme is one of the critical 

security mechanisms and a crucial requirement for 

computer systems. It provides user authentication and 

protects user authentication information from being 

leaked [36], consequently assisting in user experience 

optimization [16]. Studies on authentication schemes 

have long started. As a result, many improvements 

have been made to cater to the needs of various types 

of computer systems. For example, the password is 

the most widely used and straightforward user 

authentication method in a distributed computer 

system environment. However, the method is 

vulnerable to password-guessing attacks since many 

users create an easy-to-remember password [37]. 

Therefore, an authentication method could be 

insufficient to provide a secure user authentication 

process. Therefore researchers designed an improved 

authentication scheme that combined the method with 

encryption, such as Liao et al. [38], that proposed a 

password authentication scheme by using Diffie–

Hellman key agreement protocol to strengthen the 

security of passwords.  

Authentication schemes that are designed using 

single encrypted authentication methods are called 

single-factor authentication schemes [39]. On the 

other hand, a combination of two or more schemes is 

known as multi-factor authentication schemes [40-

42]. Ometov et al. [33] provided a comprehensive 

review of authentication schemes’ evolution from 

single-factor to multiple-factor. Threats to 

authentication information are rising exponentially, 

and recent security incidents have demonstrated that 

a single-factor authentication scheme is insufficient 

[42]. Multi-factor authentication schemes are more 

secure than the single-factor authentication scheme in 

a distributed computer systems environment [41]. 

There is also a need for multi-factor authentication 

schemes that provide users with different 

authentication choices [43].  

Multi-factor authentication schemes are designed 

to combat security attacks in the corresponding 

domains, carefully considering the hardware, 

software, and network features that form the 

computer systems. For example, multi-factor 

authentication schemes designed for wireless sensor 

networks and IoT should be secure and lightweight to 

cope with sensors’ features limited in power and 

processing capabilities [35]. Based on this example, 

it can be said that a multi-factor authentication 

scheme that works on a particular domain of a 

computer system does not necessarily perform 

similarly in other environments. Therefore, the design 

for multi-factor authentication schemes should tailor 

to the intended computer systems or applications’ 

requirements.    

Authentication schemes generally have specific 

requirements, including mutual authentication, 

confidentiality, anonymity, availability, forward 

secrecy, scalability, and attack resistance [35]. 

However, most importantly, authentication schemes 

for IoT should be lightweight because IoT networks 

are resource-constrained and are limited in processing 

power, battery backup, memory, and speed [35]. As 

IoT has evolved and received attention among 

researchers, most existing authentication schemes are 

designed for IoT devices, not for user authentication 

for IoT-based systems, especially COT. For example, 

Kalra and Sood [44] proposed an authentication 

scheme using HyperText Transfer Protocol cookies 

and Public Key Cryptography using Elliptic Curve 

Cryptography algorithms for embedded devices and 

cloud servers. However, the scheme does not provide 

mutual authentication and lacks a session-key 

agreement [6]. Due to this limitation, Chang et al. [6] 

improved the scheme by simplifying the whole 

process from five phases into three phases, namely (1) 

the registration phase, (2) the pre-computation and 

login phase, and (3) the authentication phase. Other 

than this, Gope et al. [45] employed a radio frequency 

identification (RFID) tag with a hash function for 

encryption. The scheme has the potential in terms of 

its performance; however, using RFID tags for 

authenticating IoT devices is exposed to cloning 

attacks.  

IoT is unlikely to fade anytime soon, and 

designing lightweight cryptographic schemes suitable 

for user authentication in IoT remains a research 

challenge [46]. Further, many applications are now 

being developed so that IoT devices can connect to 

private cloud servers for data storage [47]. 

Connecting IoT devices to the cloud server created a 

new computer system environment named COT, 

requiring a different authentication scheme to suit this 

setting’s requirements. Literature analysis prepared 

for this research revealed that a multi-factor 

authentication scheme for the COT environment is 

minimal. Amin et al. [47] proposed passwords and 

smart cards with hash and XOR as their 

authentication mechanism. Performance analysis on 

the proposed scheme outperformed selected single-

factor authentication schemes in terms of 

computation, storage, and communication cost.  

However, studies have also proven that smart 

cards may expose users to offline password 

guessing attacks and smart-card forgery attacks 
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with the lost/stolen smart cards [48]. The major 

limitation in the existing multi-factor user 

authentication scheme could expose users to a severe 

security threat within the COT environment, 

including masquerading or impersonation attack that 

penetrates systems using the lost/stolen smart cards. 

Yu et al. [49] emphasized that authentication and key 

agreement protocols are the most crucial aspect of 

COT security. They proposed an improved 

authentication and key agreement scheme based on 

He et al.’s [50] scheme. Fig. 1 illustrates the user 

authentication model within the IoT-cloud 

environment. 

Fig. 1 Authentication in an IoT-based cloud environment 

[49]. 

3. The Proposed User Authentication

Scheme

3.1 Security Requirements 

The proposed authentication scheme intends to 

protect the user credential data and communication 

security of the COT system. Therefore, the proposed 

authentication scheme should fulfil the following 

critical security requirements: 

1. Confidentiality: The user credential data stored in

the cloud server should be protected against any

disclosure or unauthorized access.

2. Integrity: The user credential data stored in the

cloud server should not be modified and not

compromised either during the communication

process or storage.

3. Availability: The user credential data stored at the

cloud server and server should always run

correctly and be available at any time the

authorized users need. This requirement

encounters denial-of-service attacks.

4. Anonymity: The user and the cloud server

identities should be concealed during the

communication so that a malicious person cannot

trace the identity of the communication parties.

When the identities are not known, it avoids

identity stolen. Therefore, this requirement can

protect the COT system against user

impersonating attacks.

5. Mutual authentication: The user and the cloud

server should be able to authenticate the identity

of each other to avoid impersonating attacks either

as a legitimate user or a legitimate cloud server.

6. Data freshness: Communicated user credential

data between the cloud server and the user should

be fresh. Resending data between the

communicating parties should be avoided to

protect the systems from replay attacks.

7. Forward secrecy: The malicious person cannot

decrypt a message using the previously

transmitted data from the user and the cloud server

during their communication.

3.2 Threat Models 

A COT system may be exposed to the following 

threats: 

1. Denial-of-service attacks: Malicious persons

create traffic to the cloud server that causes flood

and service breakdown.

2. User impersonating attacks: Malicious persons

use legitimate users’ credentials to gain access to

COT systems.

3. Replay attacks: Malicious persons resend the

communicated message either to the user or the

cloud server.

4. Man-in-the-middle attacks: Malicious persons

capture the message, manipulate, and resend the

message like a legitimate user.

3.3 Notations, Assumptions, and System 

Model 

The notations in Table 1 are used to describe the 

proposed user authentication scheme and protocol for 

the COT systems. 

Table 1. The nations used for the proposed user 

authentication scheme. 

Symbol Description 

U  
IdU 

PW  

EPW 
DPW 

F 

EF 
DF 

SP 

IdSP 
C 

CS  

IdCS 
I 

IdI 

G 
IdG 

A 

MS 
MSId 

MK 

SK 
CK 

The user 
The unique identity of U 

The password of U  

Encrypted PW 
Decrypted PW 

The fingerprint template of U 

Encrypted F 
Decrypted F 

The smartphone for U fingerprint reading 

The unique identity of SP 
The connection module 

The cloud server 

The unique identity of CS 
The IoT device 

The unique identity of I 

The gateway connecting I and CS 
The unique identity of G 

The client IoT-Cloud module on SP 

An encrypted communication message 
The unique identification of MS 

A secret key of G 

A shared secret key of CS and G 
A shared secret key between SP and CS 
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L 

AL 

T 
h(.) 

H 

 

 

An activation link 

Authenticated L 

Timestamp 
A one-way hash function 

The value derived from h(.) 

A bitwise XOR operation 
Concatenation 

The proposed authentication scheme has the 

following assumptions: 

1. The scheme covers user credential data for the

authentication in accessing the COT system.

However, this scheme does not cover

communication between the IoT devices with the

cloud server.

2. The shared secret key is sent through a secure link.

3. A secure channel is used between the smartphone

and cloud server communication.

3.4 Authentication Protocol 

The proposed authentication scheme for COT 

systems contains six phases, namely (i) 

Configuration phase, (ii) Enrolment phase, (iii) 

Authentication phase, (iv) Password update phase, 

(v) Fingerprint revocation phase, and (vi) 

Smartphone revocation phase. 

Configuration Phase 

The initial phase ensures a secure and trusted 

establishment of a connection between IoT devices 

and a cloud server. Next, a gateway is needed to 

connect both parties to form a COT system. Fig. 2 

illustrates the configuration phase. 

Step C1: The IoT device Ii is connected to 

gateway G by the connection module 

C. The connection module computes 

YG-Ii = H(IdIi  MK) for the Ii, for 1 ≤ i 

≤ n, where n is the number of IoT 

devices. The IoT device and the 

gateway store both values of YG-Ii and 

MK. 

Step C2: The connection module connects 

gateway G to the cloud server CS. The 

connection module computes YCS-G = 

H(IdCS  SK) for the cloud server. The 

gateway and the cloud server store 

both values of YCS-G and MK. 

Step C3: The user U downloads the client 

module A on his or her smartphone 

SP. 

Step C4: The user U install the client module A 

on his or her smartphone SP. 

Enrolment Phase 

This phase is initiated and performed once when a 

user requires a connection, access, and control to 

the IoT devices and their data stored in the cloud 

server. Fig. 3 illustrates the enrolment phase. 

Step E1: The user U run the client module 

A from his or her smartphone SP. 

Step E2: The user U chooses his or her 

preferred username IdU and 

password PW. The client module 

A generates a shared secret key 

CK and sends it to the cloud server 

CS via a secure channel. 

Step E3: The cloud server CS generates a 

user profile for a new user U and 

stores the secret key CK in an 

encrypted database. 

Step E4: The cloud server CS computer 

HIdCS = h(IdCS) and sends an 

enrolment respond message 

<HIdCS> to the client module A. 

Step E5: The client module A stores the 

HIdCS in its local storage. 

Step E6: The client module A computes 

EPW = PW CK, and HEPW = h 

(PW   IdSP). 

Step E7: The client module A sends a 

registration request message 

<MSId, T, EPW, HEPW, IdU, IdSP> to 

the cloud server CS. 

Step E8: The cloud server CS receives the 

registration request message from 

the client module and decrypts 

EPW by computing DPW =(EPW  

CK). 

Step E9: The cloud server CS computes 

Fig. 2 Configuration phase. 
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H’EPW = h (PW  || IdSP). 

Step E10: The cloud server CS verifies the 

integrity of PW by comparing the 

H’EPW and HEPW. 

Step E11: The cloud server CS stores HEPW, 

IdU, IdSP in an encrypted database. 

Step E12: The cloud server CS sends a 

request message for fingerprint 

registration of user < MSId, IdU, 

IdSP> to the client module A. 

Step E13: The client module A send a 

fingerprint request message < 

MSId, T, IdU, F> to user U. 

Step E14: The user U activates the 

fingerprint sensor on the 

smartphone SP. 

Step E15: The fingerprint sensor on the 

smartphone SP is activated and 

ready to capture the user U’s 

fingerprint image. The user U may 

use either his or her thumb or 

index finger for the enrolment 

process. 

Step E16: The client module A captures 

multiple fingerprint images of the 

user U. 

Step E17: The client module A converts the 

user U’s fingerprint images into a 

set of digital fingerprint template 

F. 

Step E18: The client module A computes EF 

= F  CK, and HEF= h (EF || F). 

Step E19: The client module A keeps EF and 

HEF in its local storage. 

Step E20: The client module A sends a 

fingerprint registration request 

message < MSId, T, EF, HEF, IdU, 

IdSP> to the cloud server CS. 

Step E21: The cloud server CS receives the 

fingerprint registration request 

message from the client module 

and decrypts EF by computing DF 

=(EF  CK). 

Step E22: The cloud server CS computes 

H’EF = h (F || IdSP). 

Step E23: The cloud server CS verifies the 

integrity of F by comparing the 

H’EF and HEF. 

Step E24: The cloud server CS amends the 

encrypted database storing the 

record of IdU, IdSP with HEF and F. 

Authentication Phase 

This phase is initiated only when a registered user 

requires access to the IoT devices and their data 

stored in the cloud server. Fig. 4 illustrates the 

authentication phase. 

Fig. 3 Enrolment phase. 

Fig. 4 Authentication phase. 

Step A1: The user U activates the client module 

A and provides his or her password 

PW. 

Step A2: The client module A sends an 

authentication request message < 

MSId, T, IdU, EPW, IdSP >. 

Step A3: The cloud server CS verifies the user 

U identity by computing DPW = 

D(EPW  CK). 

Step A4: The cloud server CS generates an 

encrypted authenticated link AL by 

using an activation link L so that AL 

= L CK. 

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 107 -



Step A5: The cloud server CS sends a response 

message < MSId, T, AL, IdCS> for an 

authenticated activation link AL to 

the user’s smartphone SP. 

Step A6: The user U receives the response 

message and authorizes the link, 

which reinvokes the client module A 

on the user’s smartphone SP. 

Step A7: The client module A verifies the 

server’s authenticity by calculating 

H’Idcs = h (IdCS  || CK), the AL using 

the shared key CK, and the timestamp 

T where the time interval (T 
* 

−  T )  

T. 

Step A8: The client module A activates the 

fingerprint sensor on the user’s 

smartphone SP and is ready to 

capture the user U’s fingerprint 

image for authentication. 

Step A9: The client module A converts the user 

U’s fingerprint images into a set of 

digital fingerprint template F’. 

Step A10: The client module A computes EF’ =

F  CK, and HEF’= h (EF’ || F). 

Step A11: The client module A verifies that EF’ 

= EF and HEF’= HEF. 

Step A12: The client module A sends an

authentication granted message < 

MSId, T, IdU, IdSP > to the cloud 

server CS. 

Step 13: The server CS calculates the

timestamp T, where the time interval 

(T 
* 

−  T )  T. The user U is granted 

access to data on the cloud server CS 

if the timestamp is valid. Otherwise, 

the session is considered expired. 

Password update phase 

This phase is initiated when a registered user requires 

changing their password for a COT system. The 

module is invoked only when a registered user U has 

been authenticated by the cloud server CS with an 

active session. Fig. 5 illustrates the password update 

phase. 

Step U1: The user U activates the client 

module A for password update. 

Step U2: The client module A sends a 

password change request message 

< MSId, T, EPW, HEPW, IdU, IdSP> to 

the cloud server CS. 

Step U3: The cloud server CS computes 

H’EPW = h (PW  || CK) and verifies 

the integrity of PW by comparing 

the H’EPW and HEPW. 

Step U4: The cloud server CS computes HIdCS 

= h(IdCS) and sends a password 

update response message < MSId, T, 

HIdCS> to the client module A. 

Step U5: The user U chooses a new password 

PWi.  

Step U6: The client module A computes EPW 

= PWi  CK, and HEPWi = h (PWi  || 

IdSP). 

Step U7: The client module A sends a 

password updated message <MSId, 

T, EPWi, HEPWi, IdU, IdSP> to the 

cloud server CS. 

Step U8: The cloud server CS receives the 

password updated message from the 

client module and decrypts EPWi by 

computing DPWi =(EPWi  CK). 

Step U9: The cloud server CS computes 

H’EPWi = h (PWi  || IdSP). 

Step U10: The cloud server CS verifies the 

integrity of PWi by comparing the 

H’EPWi and HEPWi. 

Step U11: The cloud server CS amends the 

encrypted database storing the 

record of IdU, IdSP with HEPWi. 

Fig. 5 Password update phase. 

Fingerprint revocation phase 

This phase is initiated when a registered user requires 

the cancellation of their fingerprint data for 

authentication in a COT system. Cancellation of the 

fingerprint data may be due to injury or damage to 

the fingerprint skin. Fig. 6 illustrates the fingerprint 

revocation phase. 

Step F1: The user U activates the client 

module A for fingerprint revocation. 

Step F2: The client module A sends a 

fingerprint revocation request 

message < MSId, T, EPW, IdU, IdSP> to 

the cloud server CS. 

Step F3: The cloud server CS computes H’EPW 

= h (PW  || CK) and verifies the 

integrity of PW by comparing the 

H’EPW and HEPW. 

Step F4: The cloud server CS sends a 

fingerprint revocation response 
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message < MSId, T, HIdCS> to module 

A in smartphone SP. 

Step F5: The user U accepts response message 

< MSId, T, HIdCS> on the smartphone 

SP. 

Step F6: The user U generates current 

timestamp Ti, embeds on revocation 

message < MSId, Ti, HIdCS>. 

Step F7: The client module A sends fingerprint 

revocation message <MSId, Ti, HIdCS> 

to the cloud server CS. 

Step F8: The cloud server CS deletes HEF and 

F from the database. 

Step F9: The client module A deletes HEF and 

F from its local storage. 

Fig. 6 Fingerprint revocation phase. 

Smartphone revocation phase 

This phase is initiated when a user changes their 

smartphone due to a stolen or broken device. Fig. 7 

illustrates the smartphone revocation phase. 

Fig. 7 Smartphone revocation phase. 

Step S1: The user U downloads the client 

module Ai on the new smartphone SPi. 

Step S2: The user U installs the client module 

Ai on the new smartphone SPi. 

Step S3: The user U runs the client module Ai 

from the new smartphone SPi 

activates and provides the new 

password PW for the smartphone 

revocation 

Step S4: The client module Ai sends a 

smartphone revocation request 

message < MSId, T, EPW, HEPW, IdU, 

IdSPi> to the cloud server CS. 

Step S5: The cloud server CS decrypts EPW by 

computing DPW =(EPW  CK). 

Step S6: The cloud server CS computes H’EPW 

= h (PW  || IdSPi) and verifies the 

integrity of PW by comparing the 

H’EPW and HEPW and replaces IdSP with 

IdSPi in the encrypted database storing 

the record of IdU. 

Step S7: The cloud server CS generates an 

encrypted authenticated link AL using 

an activation link L so that AL = L 

CK. 

Step S8: The cloud server CS sends a 

smartphone revocation response 

message < MSId, T, AL, HIdCS> for an 

authenticated activation link AL to the 

user’s new smartphone SPi. 

Step S9: The user U receives the response 

message and authorizes the link, 

which reinvokes the client module A 

on the users’ new smartphone SPi. 

Step S10: The client module A verifies the 

server’s authenticity by calculating 

H’Idcs = h (IdCS  || CK), the AL using 

the shared key CK, and the timestamp 

T where the time interval (T 
* 

−  T )  

T. 
Step S11: The client module A activates the 

fingerprint sensor on the user’s 

smartphone SPi and is ready to 

capture the user U’s fingerprint image 

for enrolment. 

Step S12: The client module A captures multiple 

fingerprint images of the user U. 

Step S13: The client module A converts the user 

U’s fingerprint images into a set of 

digital fingerprint template Fi. 

Step S14: The client module A computes EFi = 

Fi  CK, and HEFi= h (EFi || Fi). 

Step S15: The client module A keeps EFi and 

HEFi in its local storage. 

Step S16: The client module A sends a 

fingerprint registration request 

message < MSId, T, EFi, HEFi, IdU, 

IdSPi> to the cloud server CS. 

Step S17: The cloud server CS receives the 
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fingerprint registration request 

message from the client module and 

decrypts EFi by computing DFi =(EFi 

 CK). 

Step S18: The cloud server CS computes H’EFi 

= h (F || IdSPi). 

Step S19: The cloud server CS verifies the 

integrity of F by comparing the H’EFi 

and HEFi. 

Step S20: The cloud server CS replaces the data 

in the encrypted database storing the 

record of IdU, IdSPi with HEFi and Fi. 

4. Evaluation and results

4.1 Security Analysis 

The proposed user authentication scheme was 

analyzed in terms of four types of attacks for COT 

systems: 

1. Denial-of-service attacks: Malicious persons

may create traffics to the cloud server CS.

However, the cloud server CS allows the

communication message for user authentication.

At the same time, it discards traffics that contain

invalid message id MSId and timestamp T. Hence,

they could not cause flood and service

breakdown at the cloud server.

2. User impersonating attacks: Malicious persons

could not use legitimate users’ credentials to gain

access to COT systems because the user

credential communicated during the enrolment

and authentication is encrypted. Further, the

cloud server authenticates the user and the device

used every time for the authentication process

through the authentication response message <

MSId, T, IdU, EPW, IdSP >. Every authentication

attempt also requires the activation of

authenticated link AL sent to the user’s

smartphone SP. Then, the malicious persons

cannot obtain the encrypted fingerprint template

stored in the local storage of the smartphone SP

because the hash function in EF’ = F  CK, and

HEF’= h (EF’ || F) is irreversible. Therefore, the

user impersonating attacks is impossible.

3. Replay attacks: If malicious persons resend the

message to the user or the cloud server, the

request or response messages would be invalid as

the timestamp T does not fulfil the time interval

(T 
* 

− T )  T.

4. Man-in-the-middle attacks: Malicious persons

could not capture the message, manipulate, and

resend the message like a legitimate user because

users are verified based on the user id and

smartphone id. The authentication process

required a new and current authenticated link

AL. In addition, the users need to capture their

fingerprint images for comparison with those

stored in the local storage of smartphones. The

malicious persons cannot obtain the encrypted 

fingerprint template stored in the local storage of 

the smartphone SP because the hash function in 

EF’ = F  CK and HEF’= h (EF’ || F) is irreversible. 

Therefore, the scheme is secured against man-in-

the-middle attacks. 

Based on the above analysis, the proposed user 

authentication scheme is resistant to denial-of-service 

attacks, user impersonating attacks, replay attacks, 

and man-in-the-middle attacks. The scheme also 

fulfils basic user authentication requirements, 

including mutual authentication, confidentiality, 

anonymity, and forward secrecy. 

1. Mutual authentication: The cloud server and the

user embedded their encrypted or hashed identity

in the request and response message like < MSId,

T, HIdCS> and < MSId, T, EPW, IdU, IdSP>. Hence,

each party authenticated themselves during their

communication.

2. Confidentiality: The use of concatenation, hash

and XOR operations on the data protected their

confidentiality.

3. Anonymity: Malicious persons could not capture

the data as the communication channels are

assumed to be secured.

4. Forward secrecy: The secret key used in this

scheme is communicated using a secure channel

where it is not known to the malicious persons.

4.2 Evaluation Using ProVerif 

ProVerif [51-60] is an automated tool for verifying 

security schemes and protocols [49, 61]. Many recent 

studies like [62-66] also used Proverif as a tool to 

verify their authentication schemes. The protocols 

involved in the proposed user authentication scheme 

were transformed into ProVerif code. Each phase in 

the proposed scheme was verified individually, 

involving different threats and attacks. In ProVerif, 

the communication channels and the data 

communicated between the communicating entities 

should be declared or defined similarly to writing 

codes in any programming language.  

First, the ProVerif code evaluated the 

configuration phase that involved two 

communication channels, commIG and CommGCS, 

which are intended for communication between the 

IoT devices with the gateway and the gateway with 

the cloud server. IdI, IdCS, MK, and SK were defined 

as four constants representing the IoT devices’ unique 

identifier, the cloud server, the secret key, and the 

shared key, respectively, as shown in Fig. 8. Two 

functions were involved in this phase, namely 

Concatenation and Hash. Two events were also 

declared to indicate the beginning and end of the 

phase. The queries defined in the code intend to check 

whether the unique IoT devices, cloud server 
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identifiers, and secret and shared keys were known to 

the attackers. The summary of the results for the 

verification is illustrated in Fig. 9. The results 

suggested that the attackers cannot get the unique 

identifiers and keys communicated during the 

configuration phase. 

(*----CONFIGURATION PHASE----*) 

(*Secure Communication Channel*) 

free commIG:channel [private].  

free commGCS:channel [private].  

(*Identity of the communicating entities*) 

free IdI:bitstring [private].  

free IdCS:bitstring [private].  

(*Secret Key *) 

free MK:bitstring [private]. 

(*Shared key*) 

free SK:bitstring [private]. 

(*Functions*) 

fun Concatenation(bitstring, 

bitstring):bitstring. 

fun Hash(bitstring):bitstring. 

(*Events*) 

event StartConfiguration(bitstring). 

event EndConfiguration(bitstring). 

(*Checking whether the data are known to the 

attacker*) 

query attacker(IdI).  

query attacker(IdCS).  

query attacker(MK).  

query attacker(SK).  

Query id:bitstring;inj-

event(EndConfiguration(IdCS))==>inj-

event(StartConfiguration(IdI)). 

process 

event StartConfiguration(IdI); 

let YGIi=Hash(Concatenation(IdI,MK)) in 

let YCSG=Hash(Concatenation(IdCS,SK)) in 

out(commGCS,YCSG); 

event EndConfiguration(IdCS); 

0 

Fig. 8  ProVerif code for verifying the configuration 

phase. 

----------------------------------------- 

Verification summary: 

Query not attacker(IdI[]) is true. 

Query not attacker(IdCS[]) is true. 

Query not attacker(MK[]) is true. 

Query not attacker(SK[]) is true. 

Query inj-event(EndConfiguration(IdCS[])) 

==> inj-event(StartConfiguration(IdI[])) is 

true. 

Fig. 9 Verification results for the configuration phase. 

In the enrolment phase, two other communication 

channels were used, namely commSP and CommCS, 

representing the initiation of communication for the 

user and the cloud server, respectively. These two 

communication channels will be used for the other 

subsequent phases of the scheme. Six constants were 

defined, representing the unique identifier for the 

user, the cloud server, the smartphone, and the secret 

key. Other constants include the fingerprint template 

and the authenticated link. Concatenation and Hash 

functions remain with an additional XOR1 function 

for performing the XOR operations. Seven events 

were also declared, representing enrolment activities. 

The queries check whether or not all information 

involved in the phase was known to the attackers. The 

complete Proverif code is presented in Fig. 10. The 

summary of the results for the verification of the 

enrolment phase is illustrated in Fig. 11. The results 

suggested that the attackers cannot get the 

information during the configuration phase 

(*----ENROLMENT PHASE----*) 

(*Secure Communication Channel*) 

free commSPCS:channel[private].  

free commCSSP:channel[private].  

(*Identity of the communicating entities*) 

free IdU:bitstring[private].  

free PW:bitstring[private].  

free IdSP:bitstring[private].  

free IdCS:bitstring[private]. 

free F:bitstring[private].  

free L:bitstring[private]. 

(*Secret Key*) 

free CK:bitstring [private]. 

(*Functions*) 

fun 

Concatenation(bitstring,bitstring):bitstring

. 

fun Hash(bitstring):bitstring. 

fun XOR1(bitstring,bitstring):bitstring. 

(*Events*) 

event 

StartAuthentication(bitstring,bitstring,bits

tring). 

event SuccessfulAuthentication. 

event UnSuccessfulAuthentication. 

event GenerateAuthenticationLink. 

event ActivateSensor. 

event FingerprintTemplate(bitstring). 

event 

EndAuthentication(bitstring,bitstring,bitstr

ing). 

(*Checking whether the data are known to the 

attacker*) 

query attacker(IdU).  

query attacker(PW).  

query attacker(CK).  

query attacker(IdSP). 

query attacker(IdCS).  

query attacker(F).  

query attacker(L).  

query id:bitstring;inj-

event(EndAuthentication(IdU,PW,IdSP))==>inj-

event(StartAuthentication(IdU,PW,IdSP)). 

process 

event StartAuthentication(IdU,PW,IdSP); 

new EPW:bitstring; 

new MSId:bitstring; 

new T:bitstring; 

new DPW:bitstring; 

new AL:bitstring; 

new HIdCS:bitstring; 

new H1IdCS:bitstring; 

new T1:bitstring; 

new F1:bitstring; 

new EF:bitstring; 

new EF1:bitstring; 

new HEF:bitstring; 

new HEF1:bitstring; 

let EPW=XOR1(PW,CK) in 

out(commSPCS,(MSId,T,EPW,IdSP)); 

let DPW=XOR1(PW,CK) in 

if DPW=EPW then event 

GenerateAuthenticationLink else event 

UnSuccessfulAuthentication; 

let AL=XOR1(L,CK) in 

out(commCSSP,(MSId, T, AL, IdCS)); 

let HIdCS=Hash(Concatenation(IdCS,CK)) in 

let H1IdCS=Hash(Concatenation(IdCS,CK)) in 

if HIdCS=H1IdCS then event ActivateSensor 

else event UnSuccessfulAuthentication; 

event FingerprintTemplate(F1); 

let EF=XOR1(F,CK) in 

let HEF=Hash(XOR1(F,CK)) in 
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let EF1=XOR1(F,CK) in 

let HEF1=Hash(XOR1(F,CK)) in 

if HEF1=HEF then 

out(commSPCS,(MSId,T,IdU,IdSP))else event 

UnSuccessfulAuthentication; 

if T<>T1 then event SuccessfulAuthentication 

else event UnSuccessfulAuthentication; 

event EndAuthentication(IdU,PW,IdSP); 

0 

Fig. 10 Fraction of ProVerif code for verifying the 

enrolment phase 

----------------------------------------- 

Verification summary: 

Query not attacker(IdU[]) is true. 

Query not attacker(PW[]) is true. 

Query not attacker(CK[]) is true. 

Query not attacker(IdSP[]) is true. 

Query not attacker(IdCS[]) is true. 

Query not attacker(F[]) is true. 

Query not attacker(L[]) is true. 

Query inj-

event(EndAuthentication(IdU[],PW[],IdSP[])) 

==> inj-

event(StartAuthentication(IdU[],PW[],IdSP[])

) is true. 

Fig. 11 Verification results for the enrolment phase. 

The Proverif code for the authentication phase is 

illustrated in Fig. 12. In this phase, the channels’ 

declaration, constants, functions, events, and queries 

are similar to the enrolment phase. The only 

difference is the process involved in the 

authentication phase. The results of the verification of 

the authentication phase are summarized in Fig. 13.  

(*----AUTHENTICATION PHASE----*) 

(*Secure Communication Channel*) 

free commSPCS:channel[private].  

free commCSSP:channel[private].  

(*Identity of the communicating entities*) 

free IdU:bitstring[private].  

free PW:bitstring[private].  

free IdSP:bitstring[private].  

free IdCS:bitstring[private]. 

free F:bitstring[private].  

free L:bitstring[private]. 

(*Secret Key*) 

free CK:bitstring [private]. 

(*Functions*) 

fun XOR1(bitstring,bitstring):bitstring. 

(*Events*) 

event 

StartAuthentication(bitstring,bitstring,bits

tring). 

event UnSuccessfulAuthentication. 

event GenerateAuthenticationLink. 

event 

EndAuthentication(bitstring,bitstring,bitstr

ing). 

(*Checking whether the data are known to the 

attacker*) 

query attacker(IdU).  

query attacker(PW).  

query attacker(CK).  

query attacker(IdSP). 

query attacker(IdCS).  

query attacker(F).  

query attacker(L).  

query id:bitstring;inj-

event(EndAuthentication(IdU,PW,IdSP))==>inj-

event(StartAuthentication(IdU,PW,IdSP)). 

process 

event StartAuthentication(IdU,PW,IdSP); 

new EPW:bitstring; 

new MSId:bitstring; 

new T:bitstring; 

new DPW:bitstring; 

let EPW=XOR1(PW,CK) in 

out(commSPCS,(MSId,T,EPW,IdSP)); 

let DPW=XOR1(PW,CK) in 

if DPW=EPW then event 

GenerateAuthenticationLink else event 

UnSuccessfulAuthentication; 

event EndAuthentication(IdU,PW,IdSP); 

0 

Fig. 12 ProVerif code for verifying the authentication 

phase. 

----------------------------------------- 

Verification summary: 

Query not attacker(IdU[]) is true. 

Query not attacker(PW[]) is true. 

Query not attacker(CK[]) is true. 

Query not attacker(IdSP[]) is true. 

Query not attacker(IdCS[]) is true. 

Query not attacker(F[]) is true. 

Query not attacker(L[]) is true. 

Query inj-

event(EndAuthentication(IdU[],PW[],IdSP[])) 

==> inj-

event(StartAuthentication(IdU[],PW[],IdSP[])

) is true. 

Fig. 13 Verification results for the authentication phase. 

The verification process was also done in the 

remaining phases covering the password update, 

fingerprint revocation, and smartphone revocation 

phases. Only the results of the Proverif verifications 

are presented due to the lengthy code. The results for 

password update, fingerprint revocation, and 

smartphone revocation phases are illustrated in Fig. 

14, Fig. 15, and Fig. 16, respectively. 

----------------------------------------- 

Verification summary: 

Query not attacker(IdU[]) is true. 

Query not attacker(PW[]) is true. 

Query not attacker(CK[]) is true. 

Query not attacker(IdSP[]) is true. 

Query not attacker(IdCS[]) is true. 

Query not attacker(PWi[]) is true. 

Query inj-

event(EndPWUpdate(IdU[],PW[],IdSP[])) ==> 

inj-event(StartPWUpdate(IdU[],PWi[],IdSP[])) 

is true. 

Fig. 14 Verification results for the password update phase. 

----------------------------------------- 

Verification summary: 

Query not attacker(IdU[]) is true. 

Query not attacker(PW[]) is true. 

Query not attacker(CK[]) is true. 

Query not attacker(IdSP[]) is true. 

Query not attacker(IdCS[]) is true. 

Query inj-

event(EndFPRevocation(IdU[],PW[],IdSP[])) 

==> inj-

event(StartFPRevocation(IdU[],PW[],IdSP[])) 

is true. 

Fig. 15 Verification results for the fingerprint revocation 

phase. 

----------------------------------------- 

Verification summary: 

Query not attacker(IdU[]) is true. 

Query not attacker(PW[]) is true. 

Query not attacker(CK[]) is true. 

Query not attacker(IdSPi[]) is true. 

Query not attacker(IdCS[]) is true. 

Query not attacker(L[]) is true. 

Query inj-
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event(EndSPRevocation(IdU[],PW[],IdSPi[])) 

==> inj-

event(StartSPRevocation(IdU[],PW[],IdSPi[])) 

is true. 

Fig. 16 Verification results for the smartphone revocation 

phase. 

The proposed authentication scheme has been 

evaluated through security analysis and ProVerif 

automated verification. The analysis suggested that 

the scheme is secure and suitable to be used within 

COT. The outcome of this study would be able to 

support the need for securing the entire 

communication of such systems. IoT, cloud, and 

smartphones are expected to grow exponentially to 

support various smart and intelligent systems; thus, 

authentication is considered an essential requirement 

for IoT [18, 19]. Further, biometric authentication, 

like a fingerprint, has higher security than 

alphanumeric-based passwords [25]. Further, they 

can be used with a password and email link to form a 

multi-factor authentication that provides robust 

security and efficiency for the IoT environment [26].  

5. Conclusion and Future Works

This study proposed a user authentication scheme for 

COT that intends to meet the security demands to 

secure communication between a remote server and 

user for accessing the IoT data through the mobile 

cloud computing environment. The proposed 

authentication comprises six phases: configuration, 

enrolment, authentication, password update, 

fingerprint revocation, and smartphone revocation. 

This authentication scheme utilizes the fingerprint 

sensor on the smartphone to accomplish the 

authentication process to access data of IoT-based 

applications stored on a cloud server. Also, it uses a 

one-time authentication link sent by the cloud server 

to the user’s smartphone to strengthen the 

communication. The scheme used XOR and hash for 

data encryption and integrity protection and was 

evaluated using an automated verification tool. The 

automated and informal evaluation demonstrated that 

the proposed scheme fulfils the essential requirement 

for remote user authentication schemes and resistance 

against known attacks.  
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