
- ORIGINAL ARTICLE -

A Client-based User Authentication Scheme for the Cloud

of Things Environment
Un esquema de Autenticación de Usuario basado en el Cliente Para el Entorno de la

Nube de las Cosas

Norliza Katuk1 Roberto Vergallo2 Tito Sugiharto3 and Rio Andriyat Krisdiawan3

1Universiti Utara Malaysia, Malaysia

k.norliza@uum.edu.my

 2University of Salento, Italy

roberto.vergallo@unisalento.it
3Universitas Kuningan, Indonesia

{tito, rioandriyat}@uniku.ac.id

Abstract

The limited capabilities of IoT devices have resulted

in some of the tasks of IoT applications being

distributed to a cloud server, which witnessed the

arisen of the cloud of things (COT). It enables IoT

applications’ development and deployment as a

service, providing additional data storage, enhanced

processing performance, and fast communication

between devices. As COT involves communication

between IoT devices, a remote server, and users,

remote user authentication is crucial to meeting

security demands. Therefore, this study designs a

client-based user authentication scheme utilizing

smartphone fingerprint recognition technology to fill

the gap. The scheme comprises six phases, namely (i)

configuration phase, (ii) enrolment phase, (iii)

authentication phase, (iv) password update phase, (v)

fingerprint revocation phase, and (vi) smartphone

revocation phase. The security analysis and

automated verification using ProVerif suggested that

the scheme is resistant to user impersonating attacks,

replay attacks, and man-in-the-middle attacks. The

study’s outcome could help secure user credentials

from attacks on applications that involve IoT and the

cloud.

Keywords: cryptography, internet of things, sensors,

authentication, encryption

Resumen

Las capacidades limitadas de los dispositivos IoT han

dado como resultado que algunas de las tareas de las

aplicaciones IoT se distribuyan a un servidor en la

nube, lo que es testigo del surgimiento de la Nube de

las Cosas (COT). Esta permite el desarrollo y la

implementación de aplicaciones IoT como un

servicio, proporcionando almacenamiento de datos

adicional, mayor rendimiento de procesamiento y

comunicación rápida entre dispositivos. Dado que la

COT implica la comunicación entre dispositivos IoT,

un servidor remoto y usuarios, la autenticación de

usuarios remotos es crucial para satisfacer las

demandas de seguridad. Por lo tanto, este estudio

diseña un esquema de autenticación de usuario

basado en el cliente que utiliza tecnología de

reconocimiento de huellas digitales en teléfonos

inteligentes para colmar la brecha. El esquema consta

de seis fases: (i) fase de configuración, (ii) fase de

inscripción, (iii) fase de autenticación, (iv) fase de

actualización de contraseña, (v) fase de revocación de

huellas digitales y (vi) fase de revocación de teléfonos

inteligentes. A partir del análisis de seguridad y la

verificación automatizada con ProVerif surge que el

esquema es resistente a diferentes ataques, por

ejemplo ataques de suplantación de identidad del

usuario, los ataques de repetición y los ataques man-

in-the-middle. El resultado del estudio podría ayudar

a proteger las credenciales de los usuarios de los

ataques a las aplicaciones que involucran IoT y la

nube.

Palabras claves: Criptografía, Internet de las cosas,

Sensores, Autenticación, Encriptación

1. Introduction

Internet of Things (IoT) is a network of various

sensing devices that provides services according to

application integration [1-3]. It has been employed

for data capturing devices in various domains,

including transportation, infrastructure, computing

intelligence, and e-health, just to name a few [4]. The

sensing devices generate massive data that can be

analyzed to form intelligent environments like smart

cities [5], smart homes [6, 7], and smart vehicles [8].

IoT has also merged with cloud computing which

forms a domain known as the cloud of things (COT)

[9-14]. In COT, the cloud server acts as an IoT

backend system that receives data from the sensors,

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 102 -

mailto:k.norliza@uum.edu.my
https://orcid.org/0000-0001-8805-2574
https://orcid.org/0000-0001-8805-2574
https://orcid.org/0000-0001-5299-9950
https://orcid.org/0000-0003-4560-1988

processes them, and stores them centrally [13, 14].

COT arises for monitoring and controlling IoT

devices within mobile cloud computing to support

advanced applications [9, 15]. IoT devices’ limited

capabilities have resulted in some IoT applications

being distributed to a cloud server [16]. Integration of

IoT with cloud computing has become a necessary

technology to manage such data for creating more

valuable and intelligent services and applications [9].

COT also enables the development and deployment

of IoT applications as a service, additional data

storage, enhanced processing performance, and fast

communication between devices [11]. COT’s

emergence can create beneficial services for humans;

however, these services face significant security

threats [17]. Further, limited research has been done

on the shortcomings of IoT and cloud integration,

especially in data security [11].

Researchers believe that communication security

remains a significant problem in the COT

environment. The reason is that the information

remains prone to attacks conducted through SQL

injections, eavesdropping, man-in-the-middle, and

many other methods [11]. As COT involves

communication between a remote server and IoT

devices to establish connectivity in any physical

environment, remote user authentication is crucial to

meet security demands [4]. Authentication ensures

the message is received from a legitimate sender and

serves as a front-line defence of the IoT network from

unauthorized access. Thus, authentication is

considered an essential requirement for IoT [18, 19].

Attacks on confidentiality and authentication, as well

as the availability of network services, are often

significant issues in the security of IoT networks [20].

In addition, COT requires storage, processing, and

energy capacity for security protection.

Unfortunately, the current security scheme that uses

traditional encryption requires a sizeable

computational resource [17]. Conventional

encryption is not suitable for IoT environments due to

limited resources, resulting in lightweight

authentication schemes suitable for IoT environments

[18].

Thanks to mobile computing, they can support

IoT devices’ security, primarily through hardware

such as smartphones [21]. Smartphones can be used

as a user-friendly authentication tool; built based on

the existing ecosystem that defines and enforces

custom security policies necessary for IoT devices

[21]. Nowadays, the smartphone plays beyond a

communication device [22], especially with many

embedded sensors that enable applications in various

domains, including IoT. It appears necessary for

everyone at all levels of age [22]. Smartphones act as

communication, entertainment, socializing,

shopping, educational, and personal organizing tools.

Smartphones also catalyzed access to cloud-based

mobile applications by millions of users [23]. As IoT

contributes to the Internet ecosystem, applications or

services accessible via smartphones benefit users

[14]. Smartphones have been used to interact with IoT

devices to access data and control them [6]. Further,

a smartphone’s built-in camera and fingerprint

scanner could be used as user biometric

authentication for IoT-based applications.

The robust nature of biometric authentication has

led to its significant deployment in diverse domains

[24]. Biometric security systems provide secure

access compared to alphanumeric-based passwords

[25]. It can also be strengthened using multi-factor

authentication [26]. Many authentication schemes

based on biometric systems have been proposed, like

hand-based multibiometric [27], fingerprint [22], and

face image [24]. Nonetheless, the fingerprint is a

reliable method of user authentication as it is unique

to each individual, thus making it efficient to

authenticate users [28]. It is also a suitable

authentication method for accessing COT-based

applications through smartphones. This study aims to

design an authentication scheme for accessing COT

applications using smartphones as the client interface

to address the authentication scheme’s limitation for

COT-based applications. The following sections of

this article describe the proposed scheme’s design and

evaluation.

2. Related Work

Impersonating an authorized user is one of the most

critical threats to any computer system. This threat

can be addressed using proper user authentication

[29] by verifying the communicating parties’ true

identities [30]. In the context of computer-based

systems, authentication is verifying the identity of a

user, device, or other entity requesting access to a

computer system [29]. Authentication methods can be

classified into three, namely (1) methods based on

human memory such as passwords and personal

identification numbers, (2) methods based on

physical devices such as USB cards, magnetic or IC

cards, and (3) methods based on biometrics such as

fingerprint, and iris [31-33]. The authentication

method by itself sends users’ authentication

information to the server in the form of plaintext.

Hackers can easily view confidential information by

eavesdropping on the communication line during the

authentication phase. It could lead to a masquerading

attack (i.e., impersonating legitimate users). This kind

of attack is difficult to identify unless abnormal

activities are detected from the stolen user profiles.

Hence, the authentication methods require additional

mechanisms, specifically encryption methods, to

conceal the original form of users’ authentication

information into an encrypted form. A combination

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 103 -

of the authentication methods and the encryption

mechanism presented systematically and clearly, is

referred to as an authentication scheme.

SAP [34], a European multinational software

corporation, describes an authentication scheme as “a

definition of what is required for an authentication

process”. In a more specific definition, an

authentication scheme specifies the authentication

method, the protocol, the process for authenticating

users, and possible algorithms for verifying the users’

identity to access resources from a computer system

[35]. The authentication scheme is one of the critical

security mechanisms and a crucial requirement for

computer systems. It provides user authentication and

protects user authentication information from being

leaked [36], consequently assisting in user experience

optimization [16]. Studies on authentication schemes

have long started. As a result, many improvements

have been made to cater to the needs of various types

of computer systems. For example, the password is

the most widely used and straightforward user

authentication method in a distributed computer

system environment. However, the method is

vulnerable to password-guessing attacks since many

users create an easy-to-remember password [37].

Therefore, an authentication method could be

insufficient to provide a secure user authentication

process. Therefore researchers designed an improved

authentication scheme that combined the method with

encryption, such as Liao et al. [38], that proposed a

password authentication scheme by using Diffie–

Hellman key agreement protocol to strengthen the

security of passwords.

Authentication schemes that are designed using

single encrypted authentication methods are called

single-factor authentication schemes [39]. On the

other hand, a combination of two or more schemes is

known as multi-factor authentication schemes [40-

42]. Ometov et al. [33] provided a comprehensive

review of authentication schemes’ evolution from

single-factor to multiple-factor. Threats to

authentication information are rising exponentially,

and recent security incidents have demonstrated that

a single-factor authentication scheme is insufficient

[42]. Multi-factor authentication schemes are more

secure than the single-factor authentication scheme in

a distributed computer systems environment [41].

There is also a need for multi-factor authentication

schemes that provide users with different

authentication choices [43].

Multi-factor authentication schemes are designed

to combat security attacks in the corresponding

domains, carefully considering the hardware,

software, and network features that form the

computer systems. For example, multi-factor

authentication schemes designed for wireless sensor

networks and IoT should be secure and lightweight to

cope with sensors’ features limited in power and

processing capabilities [35]. Based on this example,

it can be said that a multi-factor authentication

scheme that works on a particular domain of a

computer system does not necessarily perform

similarly in other environments. Therefore, the design

for multi-factor authentication schemes should tailor

to the intended computer systems or applications’

requirements.

Authentication schemes generally have specific

requirements, including mutual authentication,

confidentiality, anonymity, availability, forward

secrecy, scalability, and attack resistance [35].

However, most importantly, authentication schemes

for IoT should be lightweight because IoT networks

are resource-constrained and are limited in processing

power, battery backup, memory, and speed [35]. As

IoT has evolved and received attention among

researchers, most existing authentication schemes are

designed for IoT devices, not for user authentication

for IoT-based systems, especially COT. For example,

Kalra and Sood [44] proposed an authentication

scheme using HyperText Transfer Protocol cookies

and Public Key Cryptography using Elliptic Curve

Cryptography algorithms for embedded devices and

cloud servers. However, the scheme does not provide

mutual authentication and lacks a session-key

agreement [6]. Due to this limitation, Chang et al. [6]

improved the scheme by simplifying the whole

process from five phases into three phases, namely (1)

the registration phase, (2) the pre-computation and

login phase, and (3) the authentication phase. Other

than this, Gope et al. [45] employed a radio frequency

identification (RFID) tag with a hash function for

encryption. The scheme has the potential in terms of

its performance; however, using RFID tags for

authenticating IoT devices is exposed to cloning

attacks.

IoT is unlikely to fade anytime soon, and

designing lightweight cryptographic schemes suitable

for user authentication in IoT remains a research

challenge [46]. Further, many applications are now

being developed so that IoT devices can connect to

private cloud servers for data storage [47].

Connecting IoT devices to the cloud server created a

new computer system environment named COT,

requiring a different authentication scheme to suit this

setting’s requirements. Literature analysis prepared

for this research revealed that a multi-factor

authentication scheme for the COT environment is

minimal. Amin et al. [47] proposed passwords and

smart cards with hash and XOR as their

authentication mechanism. Performance analysis on

the proposed scheme outperformed selected single-

factor authentication schemes in terms of

computation, storage, and communication cost.

However, studies have also proven that smart

cards may expose users to offline password

guessing attacks and smart-card forgery attacks

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 104 -

with the lost/stolen smart cards [48]. The major

limitation in the existing multi-factor user

authentication scheme could expose users to a severe

security threat within the COT environment,

including masquerading or impersonation attack that

penetrates systems using the lost/stolen smart cards.

Yu et al. [49] emphasized that authentication and key

agreement protocols are the most crucial aspect of

COT security. They proposed an improved

authentication and key agreement scheme based on

He et al.’s [50] scheme. Fig. 1 illustrates the user

authentication model within the IoT-cloud

environment.

Fig. 1 Authentication in an IoT-based cloud environment

[49].

3. The Proposed User Authentication

Scheme

3.1 Security Requirements

The proposed authentication scheme intends to

protect the user credential data and communication

security of the COT system. Therefore, the proposed

authentication scheme should fulfil the following

critical security requirements:

1. Confidentiality: The user credential data stored in

the cloud server should be protected against any

disclosure or unauthorized access.

2. Integrity: The user credential data stored in the

cloud server should not be modified and not

compromised either during the communication

process or storage.

3. Availability: The user credential data stored at the

cloud server and server should always run

correctly and be available at any time the

authorized users need. This requirement

encounters denial-of-service attacks.

4. Anonymity: The user and the cloud server

identities should be concealed during the

communication so that a malicious person cannot

trace the identity of the communication parties.

When the identities are not known, it avoids

identity stolen. Therefore, this requirement can

protect the COT system against user

impersonating attacks.

5. Mutual authentication: The user and the cloud

server should be able to authenticate the identity

of each other to avoid impersonating attacks either

as a legitimate user or a legitimate cloud server.

6. Data freshness: Communicated user credential

data between the cloud server and the user should

be fresh. Resending data between the

communicating parties should be avoided to

protect the systems from replay attacks.

7. Forward secrecy: The malicious person cannot

decrypt a message using the previously

transmitted data from the user and the cloud server

during their communication.

3.2 Threat Models

A COT system may be exposed to the following

threats:

1. Denial-of-service attacks: Malicious persons

create traffic to the cloud server that causes flood

and service breakdown.

2. User impersonating attacks: Malicious persons

use legitimate users’ credentials to gain access to

COT systems.

3. Replay attacks: Malicious persons resend the

communicated message either to the user or the

cloud server.

4. Man-in-the-middle attacks: Malicious persons

capture the message, manipulate, and resend the

message like a legitimate user.

3.3 Notations, Assumptions, and System

Model

The notations in Table 1 are used to describe the

proposed user authentication scheme and protocol for

the COT systems.

Table 1. The nations used for the proposed user

authentication scheme.

Symbol Description

U
IdU

PW

EPW
DPW

F

EF
DF

SP

IdSP
C

CS

IdCS
I

IdI

G
IdG

A

MS
MSId

MK

SK
CK

The user
The unique identity of U

The password of U

Encrypted PW
Decrypted PW

The fingerprint template of U

Encrypted F
Decrypted F

The smartphone for U fingerprint reading

The unique identity of SP
The connection module

The cloud server

The unique identity of CS
The IoT device

The unique identity of I

The gateway connecting I and CS
The unique identity of G

The client IoT-Cloud module on SP

An encrypted communication message
The unique identification of MS

A secret key of G

A shared secret key of CS and G
A shared secret key between SP and CS

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 105 -

L

AL

T
h(.)

H

An activation link

Authenticated L

Timestamp
A one-way hash function

The value derived from h(.)

A bitwise XOR operation
Concatenation

The proposed authentication scheme has the

following assumptions:

1. The scheme covers user credential data for the

authentication in accessing the COT system.

However, this scheme does not cover

communication between the IoT devices with the

cloud server.

2. The shared secret key is sent through a secure link.

3. A secure channel is used between the smartphone

and cloud server communication.

3.4 Authentication Protocol

The proposed authentication scheme for COT

systems contains six phases, namely (i)

Configuration phase, (ii) Enrolment phase, (iii)

Authentication phase, (iv) Password update phase,

(v) Fingerprint revocation phase, and (vi)

Smartphone revocation phase.

Configuration Phase

The initial phase ensures a secure and trusted

establishment of a connection between IoT devices

and a cloud server. Next, a gateway is needed to

connect both parties to form a COT system. Fig. 2

illustrates the configuration phase.

Step C1: The IoT device Ii is connected to

gateway G by the connection module

C. The connection module computes

YG-Ii = H(IdIi MK) for the Ii, for 1 ≤ i

≤ n, where n is the number of IoT

devices. The IoT device and the

gateway store both values of YG-Ii and

MK.

Step C2: The connection module connects

gateway G to the cloud server CS. The

connection module computes YCS-G =

H(IdCS SK) for the cloud server. The

gateway and the cloud server store

both values of YCS-G and MK.

Step C3: The user U downloads the client

module A on his or her smartphone

SP.

Step C4: The user U install the client module A

on his or her smartphone SP.

Enrolment Phase

This phase is initiated and performed once when a

user requires a connection, access, and control to

the IoT devices and their data stored in the cloud

server. Fig. 3 illustrates the enrolment phase.

Step E1: The user U run the client module

A from his or her smartphone SP.

Step E2: The user U chooses his or her

preferred username IdU and

password PW. The client module

A generates a shared secret key

CK and sends it to the cloud server

CS via a secure channel.

Step E3: The cloud server CS generates a

user profile for a new user U and

stores the secret key CK in an

encrypted database.

Step E4: The cloud server CS computer

HIdCS = h(IdCS) and sends an

enrolment respond message

<HIdCS> to the client module A.

Step E5: The client module A stores the

HIdCS in its local storage.

Step E6: The client module A computes

EPW = PW CK, and HEPW = h

(PW IdSP).

Step E7: The client module A sends a

registration request message

<MSId, T, EPW, HEPW, IdU, IdSP> to

the cloud server CS.

Step E8: The cloud server CS receives the

registration request message from

the client module and decrypts

EPW by computing DPW =(EPW

CK).

Step E9: The cloud server CS computes

Fig. 2 Configuration phase.

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 106 -

H’EPW = h (PW || IdSP).

Step E10: The cloud server CS verifies the

integrity of PW by comparing the

H’EPW and HEPW.

Step E11: The cloud server CS stores HEPW,

IdU, IdSP in an encrypted database.

Step E12: The cloud server CS sends a

request message for fingerprint

registration of user < MSId, IdU,

IdSP> to the client module A.

Step E13: The client module A send a

fingerprint request message <

MSId, T, IdU, F> to user U.

Step E14: The user U activates the

fingerprint sensor on the

smartphone SP.

Step E15: The fingerprint sensor on the

smartphone SP is activated and

ready to capture the user U’s

fingerprint image. The user U may

use either his or her thumb or

index finger for the enrolment

process.

Step E16: The client module A captures

multiple fingerprint images of the

user U.

Step E17: The client module A converts the

user U’s fingerprint images into a

set of digital fingerprint template

F.

Step E18: The client module A computes EF

= F CK, and HEF= h (EF || F).

Step E19: The client module A keeps EF and

HEF in its local storage.

Step E20: The client module A sends a

fingerprint registration request

message < MSId, T, EF, HEF, IdU,

IdSP> to the cloud server CS.

Step E21: The cloud server CS receives the

fingerprint registration request

message from the client module

and decrypts EF by computing DF

=(EF CK).

Step E22: The cloud server CS computes

H’EF = h (F || IdSP).

Step E23: The cloud server CS verifies the

integrity of F by comparing the

H’EF and HEF.

Step E24: The cloud server CS amends the

encrypted database storing the

record of IdU, IdSP with HEF and F.

Authentication Phase

This phase is initiated only when a registered user

requires access to the IoT devices and their data

stored in the cloud server. Fig. 4 illustrates the

authentication phase.

Fig. 3 Enrolment phase.

Fig. 4 Authentication phase.

Step A1: The user U activates the client module

A and provides his or her password

PW.

Step A2: The client module A sends an

authentication request message <

MSId, T, IdU, EPW, IdSP >.

Step A3: The cloud server CS verifies the user

U identity by computing DPW =

D(EPW CK).

Step A4: The cloud server CS generates an

encrypted authenticated link AL by

using an activation link L so that AL

= L CK.

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 107 -

Step A5: The cloud server CS sends a response

message < MSId, T, AL, IdCS> for an

authenticated activation link AL to

the user’s smartphone SP.

Step A6: The user U receives the response

message and authorizes the link,

which reinvokes the client module A

on the user’s smartphone SP.

Step A7: The client module A verifies the

server’s authenticity by calculating

H’Idcs = h (IdCS || CK), the AL using

the shared key CK, and the timestamp

T where the time interval (T
*

− T)

T.

Step A8: The client module A activates the

fingerprint sensor on the user’s

smartphone SP and is ready to

capture the user U’s fingerprint

image for authentication.

Step A9: The client module A converts the user

U’s fingerprint images into a set of

digital fingerprint template F’.

Step A10: The client module A computes EF’ =

F CK, and HEF’= h (EF’ || F).

Step A11: The client module A verifies that EF’

= EF and HEF’= HEF.

Step A12: The client module A sends an

authentication granted message <

MSId, T, IdU, IdSP > to the cloud

server CS.

Step 13: The server CS calculates the

timestamp T, where the time interval

(T
*

− T) T. The user U is granted

access to data on the cloud server CS

if the timestamp is valid. Otherwise,

the session is considered expired.

Password update phase

This phase is initiated when a registered user requires

changing their password for a COT system. The

module is invoked only when a registered user U has

been authenticated by the cloud server CS with an

active session. Fig. 5 illustrates the password update

phase.

Step U1: The user U activates the client

module A for password update.

Step U2: The client module A sends a

password change request message

< MSId, T, EPW, HEPW, IdU, IdSP> to

the cloud server CS.

Step U3: The cloud server CS computes

H’EPW = h (PW || CK) and verifies

the integrity of PW by comparing

the H’EPW and HEPW.

Step U4: The cloud server CS computes HIdCS

= h(IdCS) and sends a password

update response message < MSId, T,

HIdCS> to the client module A.

Step U5: The user U chooses a new password

PWi.

Step U6: The client module A computes EPW

= PWi CK, and HEPWi = h (PWi ||

IdSP).

Step U7: The client module A sends a

password updated message <MSId,

T, EPWi, HEPWi, IdU, IdSP> to the

cloud server CS.

Step U8: The cloud server CS receives the

password updated message from the

client module and decrypts EPWi by

computing DPWi =(EPWi CK).

Step U9: The cloud server CS computes

H’EPWi = h (PWi || IdSP).

Step U10: The cloud server CS verifies the

integrity of PWi by comparing the

H’EPWi and HEPWi.

Step U11: The cloud server CS amends the

encrypted database storing the

record of IdU, IdSP with HEPWi.

Fig. 5 Password update phase.

Fingerprint revocation phase

This phase is initiated when a registered user requires

the cancellation of their fingerprint data for

authentication in a COT system. Cancellation of the

fingerprint data may be due to injury or damage to

the fingerprint skin. Fig. 6 illustrates the fingerprint

revocation phase.

Step F1: The user U activates the client

module A for fingerprint revocation.

Step F2: The client module A sends a

fingerprint revocation request

message < MSId, T, EPW, IdU, IdSP> to

the cloud server CS.

Step F3: The cloud server CS computes H’EPW

= h (PW || CK) and verifies the

integrity of PW by comparing the

H’EPW and HEPW.

Step F4: The cloud server CS sends a

fingerprint revocation response

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 108 -

message < MSId, T, HIdCS> to module

A in smartphone SP.

Step F5: The user U accepts response message

< MSId, T, HIdCS> on the smartphone

SP.

Step F6: The user U generates current

timestamp Ti, embeds on revocation

message < MSId, Ti, HIdCS>.

Step F7: The client module A sends fingerprint

revocation message <MSId, Ti, HIdCS>

to the cloud server CS.

Step F8: The cloud server CS deletes HEF and

F from the database.

Step F9: The client module A deletes HEF and

F from its local storage.

Fig. 6 Fingerprint revocation phase.

Smartphone revocation phase

This phase is initiated when a user changes their

smartphone due to a stolen or broken device. Fig. 7

illustrates the smartphone revocation phase.

Fig. 7 Smartphone revocation phase.

Step S1: The user U downloads the client

module Ai on the new smartphone SPi.

Step S2: The user U installs the client module

Ai on the new smartphone SPi.

Step S3: The user U runs the client module Ai

from the new smartphone SPi

activates and provides the new

password PW for the smartphone

revocation

Step S4: The client module Ai sends a

smartphone revocation request

message < MSId, T, EPW, HEPW, IdU,

IdSPi> to the cloud server CS.

Step S5: The cloud server CS decrypts EPW by

computing DPW =(EPW CK).

Step S6: The cloud server CS computes H’EPW

= h (PW || IdSPi) and verifies the

integrity of PW by comparing the

H’EPW and HEPW and replaces IdSP with

IdSPi in the encrypted database storing

the record of IdU.

Step S7: The cloud server CS generates an

encrypted authenticated link AL using

an activation link L so that AL = L

CK.

Step S8: The cloud server CS sends a

smartphone revocation response

message < MSId, T, AL, HIdCS> for an

authenticated activation link AL to the

user’s new smartphone SPi.

Step S9: The user U receives the response

message and authorizes the link,

which reinvokes the client module A

on the users’ new smartphone SPi.

Step S10: The client module A verifies the

server’s authenticity by calculating

H’Idcs = h (IdCS || CK), the AL using

the shared key CK, and the timestamp

T where the time interval (T
*

− T)

T.
Step S11: The client module A activates the

fingerprint sensor on the user’s

smartphone SPi and is ready to

capture the user U’s fingerprint image

for enrolment.

Step S12: The client module A captures multiple

fingerprint images of the user U.

Step S13: The client module A converts the user

U’s fingerprint images into a set of

digital fingerprint template Fi.

Step S14: The client module A computes EFi =

Fi CK, and HEFi= h (EFi || Fi).

Step S15: The client module A keeps EFi and

HEFi in its local storage.

Step S16: The client module A sends a

fingerprint registration request

message < MSId, T, EFi, HEFi, IdU,

IdSPi> to the cloud server CS.

Step S17: The cloud server CS receives the

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 109 -

fingerprint registration request

message from the client module and

decrypts EFi by computing DFi =(EFi

 CK).

Step S18: The cloud server CS computes H’EFi

= h (F || IdSPi).

Step S19: The cloud server CS verifies the

integrity of F by comparing the H’EFi

and HEFi.

Step S20: The cloud server CS replaces the data

in the encrypted database storing the

record of IdU, IdSPi with HEFi and Fi.

4. Evaluation and results

4.1 Security Analysis

The proposed user authentication scheme was

analyzed in terms of four types of attacks for COT

systems:

1. Denial-of-service attacks: Malicious persons

may create traffics to the cloud server CS.

However, the cloud server CS allows the

communication message for user authentication.

At the same time, it discards traffics that contain

invalid message id MSId and timestamp T. Hence,

they could not cause flood and service

breakdown at the cloud server.

2. User impersonating attacks: Malicious persons

could not use legitimate users’ credentials to gain

access to COT systems because the user

credential communicated during the enrolment

and authentication is encrypted. Further, the

cloud server authenticates the user and the device

used every time for the authentication process

through the authentication response message <

MSId, T, IdU, EPW, IdSP >. Every authentication

attempt also requires the activation of

authenticated link AL sent to the user’s

smartphone SP. Then, the malicious persons

cannot obtain the encrypted fingerprint template

stored in the local storage of the smartphone SP

because the hash function in EF’ = F CK, and

HEF’= h (EF’ || F) is irreversible. Therefore, the

user impersonating attacks is impossible.

3. Replay attacks: If malicious persons resend the

message to the user or the cloud server, the

request or response messages would be invalid as

the timestamp T does not fulfil the time interval

(T
*

− T) T.

4. Man-in-the-middle attacks: Malicious persons

could not capture the message, manipulate, and

resend the message like a legitimate user because

users are verified based on the user id and

smartphone id. The authentication process

required a new and current authenticated link

AL. In addition, the users need to capture their

fingerprint images for comparison with those

stored in the local storage of smartphones. The

malicious persons cannot obtain the encrypted

fingerprint template stored in the local storage of

the smartphone SP because the hash function in

EF’ = F CK and HEF’= h (EF’ || F) is irreversible.

Therefore, the scheme is secured against man-in-

the-middle attacks.

Based on the above analysis, the proposed user

authentication scheme is resistant to denial-of-service

attacks, user impersonating attacks, replay attacks,

and man-in-the-middle attacks. The scheme also

fulfils basic user authentication requirements,

including mutual authentication, confidentiality,

anonymity, and forward secrecy.

1. Mutual authentication: The cloud server and the

user embedded their encrypted or hashed identity

in the request and response message like < MSId,

T, HIdCS> and < MSId, T, EPW, IdU, IdSP>. Hence,

each party authenticated themselves during their

communication.

2. Confidentiality: The use of concatenation, hash

and XOR operations on the data protected their

confidentiality.

3. Anonymity: Malicious persons could not capture

the data as the communication channels are

assumed to be secured.

4. Forward secrecy: The secret key used in this

scheme is communicated using a secure channel

where it is not known to the malicious persons.

4.2 Evaluation Using ProVerif

ProVerif [51-60] is an automated tool for verifying

security schemes and protocols [49, 61]. Many recent

studies like [62-66] also used Proverif as a tool to

verify their authentication schemes. The protocols

involved in the proposed user authentication scheme

were transformed into ProVerif code. Each phase in

the proposed scheme was verified individually,

involving different threats and attacks. In ProVerif,

the communication channels and the data

communicated between the communicating entities

should be declared or defined similarly to writing

codes in any programming language.

First, the ProVerif code evaluated the

configuration phase that involved two

communication channels, commIG and CommGCS,

which are intended for communication between the

IoT devices with the gateway and the gateway with

the cloud server. IdI, IdCS, MK, and SK were defined

as four constants representing the IoT devices’ unique

identifier, the cloud server, the secret key, and the

shared key, respectively, as shown in Fig. 8. Two

functions were involved in this phase, namely

Concatenation and Hash. Two events were also

declared to indicate the beginning and end of the

phase. The queries defined in the code intend to check

whether the unique IoT devices, cloud server

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 110 -

identifiers, and secret and shared keys were known to

the attackers. The summary of the results for the

verification is illustrated in Fig. 9. The results

suggested that the attackers cannot get the unique

identifiers and keys communicated during the

configuration phase.

(*----CONFIGURATION PHASE----*)

(*Secure Communication Channel*)

free commIG:channel [private].

free commGCS:channel [private].

(*Identity of the communicating entities*)

free IdI:bitstring [private].

free IdCS:bitstring [private].

(*Secret Key *)

free MK:bitstring [private].

(*Shared key*)

free SK:bitstring [private].

(*Functions*)

fun Concatenation(bitstring,

bitstring):bitstring.

fun Hash(bitstring):bitstring.

(*Events*)

event StartConfiguration(bitstring).

event EndConfiguration(bitstring).

(*Checking whether the data are known to the

attacker*)

query attacker(IdI).

query attacker(IdCS).

query attacker(MK).

query attacker(SK).

Query id:bitstring;inj-

event(EndConfiguration(IdCS))==>inj-

event(StartConfiguration(IdI)).

process

event StartConfiguration(IdI);

let YGIi=Hash(Concatenation(IdI,MK)) in

let YCSG=Hash(Concatenation(IdCS,SK)) in

out(commGCS,YCSG);

event EndConfiguration(IdCS);

0

Fig. 8 ProVerif code for verifying the configuration

phase.

Verification summary:

Query not attacker(IdI[]) is true.

Query not attacker(IdCS[]) is true.

Query not attacker(MK[]) is true.

Query not attacker(SK[]) is true.

Query inj-event(EndConfiguration(IdCS[]))

==> inj-event(StartConfiguration(IdI[])) is

true.

Fig. 9 Verification results for the configuration phase.

In the enrolment phase, two other communication

channels were used, namely commSP and CommCS,

representing the initiation of communication for the

user and the cloud server, respectively. These two

communication channels will be used for the other

subsequent phases of the scheme. Six constants were

defined, representing the unique identifier for the

user, the cloud server, the smartphone, and the secret

key. Other constants include the fingerprint template

and the authenticated link. Concatenation and Hash

functions remain with an additional XOR1 function

for performing the XOR operations. Seven events

were also declared, representing enrolment activities.

The queries check whether or not all information

involved in the phase was known to the attackers. The

complete Proverif code is presented in Fig. 10. The

summary of the results for the verification of the

enrolment phase is illustrated in Fig. 11. The results

suggested that the attackers cannot get the

information during the configuration phase

(*----ENROLMENT PHASE----*)

(*Secure Communication Channel*)

free commSPCS:channel[private].

free commCSSP:channel[private].

(*Identity of the communicating entities*)

free IdU:bitstring[private].

free PW:bitstring[private].

free IdSP:bitstring[private].

free IdCS:bitstring[private].

free F:bitstring[private].

free L:bitstring[private].

(*Secret Key*)

free CK:bitstring [private].

(*Functions*)

fun

Concatenation(bitstring,bitstring):bitstring

.

fun Hash(bitstring):bitstring.

fun XOR1(bitstring,bitstring):bitstring.

(*Events*)

event

StartAuthentication(bitstring,bitstring,bits

tring).

event SuccessfulAuthentication.

event UnSuccessfulAuthentication.

event GenerateAuthenticationLink.

event ActivateSensor.

event FingerprintTemplate(bitstring).

event

EndAuthentication(bitstring,bitstring,bitstr

ing).

(*Checking whether the data are known to the

attacker*)

query attacker(IdU).

query attacker(PW).

query attacker(CK).

query attacker(IdSP).

query attacker(IdCS).

query attacker(F).

query attacker(L).

query id:bitstring;inj-

event(EndAuthentication(IdU,PW,IdSP))==>inj-

event(StartAuthentication(IdU,PW,IdSP)).

process

event StartAuthentication(IdU,PW,IdSP);

new EPW:bitstring;

new MSId:bitstring;

new T:bitstring;

new DPW:bitstring;

new AL:bitstring;

new HIdCS:bitstring;

new H1IdCS:bitstring;

new T1:bitstring;

new F1:bitstring;

new EF:bitstring;

new EF1:bitstring;

new HEF:bitstring;

new HEF1:bitstring;

let EPW=XOR1(PW,CK) in

out(commSPCS,(MSId,T,EPW,IdSP));

let DPW=XOR1(PW,CK) in

if DPW=EPW then event

GenerateAuthenticationLink else event

UnSuccessfulAuthentication;

let AL=XOR1(L,CK) in

out(commCSSP,(MSId, T, AL, IdCS));

let HIdCS=Hash(Concatenation(IdCS,CK)) in

let H1IdCS=Hash(Concatenation(IdCS,CK)) in

if HIdCS=H1IdCS then event ActivateSensor

else event UnSuccessfulAuthentication;

event FingerprintTemplate(F1);

let EF=XOR1(F,CK) in

let HEF=Hash(XOR1(F,CK)) in

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 111 -

let EF1=XOR1(F,CK) in

let HEF1=Hash(XOR1(F,CK)) in

if HEF1=HEF then

out(commSPCS,(MSId,T,IdU,IdSP))else event

UnSuccessfulAuthentication;

if T<>T1 then event SuccessfulAuthentication

else event UnSuccessfulAuthentication;

event EndAuthentication(IdU,PW,IdSP);

0

Fig. 10 Fraction of ProVerif code for verifying the

enrolment phase

Verification summary:

Query not attacker(IdU[]) is true.

Query not attacker(PW[]) is true.

Query not attacker(CK[]) is true.

Query not attacker(IdSP[]) is true.

Query not attacker(IdCS[]) is true.

Query not attacker(F[]) is true.

Query not attacker(L[]) is true.

Query inj-

event(EndAuthentication(IdU[],PW[],IdSP[]))

==> inj-

event(StartAuthentication(IdU[],PW[],IdSP[])

) is true.

Fig. 11 Verification results for the enrolment phase.

The Proverif code for the authentication phase is

illustrated in Fig. 12. In this phase, the channels’

declaration, constants, functions, events, and queries

are similar to the enrolment phase. The only

difference is the process involved in the

authentication phase. The results of the verification of

the authentication phase are summarized in Fig. 13.

(*----AUTHENTICATION PHASE----*)

(*Secure Communication Channel*)

free commSPCS:channel[private].

free commCSSP:channel[private].

(*Identity of the communicating entities*)

free IdU:bitstring[private].

free PW:bitstring[private].

free IdSP:bitstring[private].

free IdCS:bitstring[private].

free F:bitstring[private].

free L:bitstring[private].

(*Secret Key*)

free CK:bitstring [private].

(*Functions*)

fun XOR1(bitstring,bitstring):bitstring.

(*Events*)

event

StartAuthentication(bitstring,bitstring,bits

tring).

event UnSuccessfulAuthentication.

event GenerateAuthenticationLink.

event

EndAuthentication(bitstring,bitstring,bitstr

ing).

(*Checking whether the data are known to the

attacker*)

query attacker(IdU).

query attacker(PW).

query attacker(CK).

query attacker(IdSP).

query attacker(IdCS).

query attacker(F).

query attacker(L).

query id:bitstring;inj-

event(EndAuthentication(IdU,PW,IdSP))==>inj-

event(StartAuthentication(IdU,PW,IdSP)).

process

event StartAuthentication(IdU,PW,IdSP);

new EPW:bitstring;

new MSId:bitstring;

new T:bitstring;

new DPW:bitstring;

let EPW=XOR1(PW,CK) in

out(commSPCS,(MSId,T,EPW,IdSP));

let DPW=XOR1(PW,CK) in

if DPW=EPW then event

GenerateAuthenticationLink else event

UnSuccessfulAuthentication;

event EndAuthentication(IdU,PW,IdSP);

0

Fig. 12 ProVerif code for verifying the authentication

phase.

Verification summary:

Query not attacker(IdU[]) is true.

Query not attacker(PW[]) is true.

Query not attacker(CK[]) is true.

Query not attacker(IdSP[]) is true.

Query not attacker(IdCS[]) is true.

Query not attacker(F[]) is true.

Query not attacker(L[]) is true.

Query inj-

event(EndAuthentication(IdU[],PW[],IdSP[]))

==> inj-

event(StartAuthentication(IdU[],PW[],IdSP[])

) is true.

Fig. 13 Verification results for the authentication phase.

The verification process was also done in the

remaining phases covering the password update,

fingerprint revocation, and smartphone revocation

phases. Only the results of the Proverif verifications

are presented due to the lengthy code. The results for

password update, fingerprint revocation, and

smartphone revocation phases are illustrated in Fig.

14, Fig. 15, and Fig. 16, respectively.

Verification summary:

Query not attacker(IdU[]) is true.

Query not attacker(PW[]) is true.

Query not attacker(CK[]) is true.

Query not attacker(IdSP[]) is true.

Query not attacker(IdCS[]) is true.

Query not attacker(PWi[]) is true.

Query inj-

event(EndPWUpdate(IdU[],PW[],IdSP[])) ==>

inj-event(StartPWUpdate(IdU[],PWi[],IdSP[]))

is true.

Fig. 14 Verification results for the password update phase.

Verification summary:

Query not attacker(IdU[]) is true.

Query not attacker(PW[]) is true.

Query not attacker(CK[]) is true.

Query not attacker(IdSP[]) is true.

Query not attacker(IdCS[]) is true.

Query inj-

event(EndFPRevocation(IdU[],PW[],IdSP[]))

==> inj-

event(StartFPRevocation(IdU[],PW[],IdSP[]))

is true.

Fig. 15 Verification results for the fingerprint revocation

phase.

Verification summary:

Query not attacker(IdU[]) is true.

Query not attacker(PW[]) is true.

Query not attacker(CK[]) is true.

Query not attacker(IdSPi[]) is true.

Query not attacker(IdCS[]) is true.

Query not attacker(L[]) is true.

Query inj-

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 112 -

event(EndSPRevocation(IdU[],PW[],IdSPi[]))

==> inj-

event(StartSPRevocation(IdU[],PW[],IdSPi[]))

is true.

Fig. 16 Verification results for the smartphone revocation

phase.

The proposed authentication scheme has been

evaluated through security analysis and ProVerif

automated verification. The analysis suggested that

the scheme is secure and suitable to be used within

COT. The outcome of this study would be able to

support the need for securing the entire

communication of such systems. IoT, cloud, and

smartphones are expected to grow exponentially to

support various smart and intelligent systems; thus,

authentication is considered an essential requirement

for IoT [18, 19]. Further, biometric authentication,

like a fingerprint, has higher security than

alphanumeric-based passwords [25]. Further, they

can be used with a password and email link to form a

multi-factor authentication that provides robust

security and efficiency for the IoT environment [26].

5. Conclusion and Future Works

This study proposed a user authentication scheme for

COT that intends to meet the security demands to

secure communication between a remote server and

user for accessing the IoT data through the mobile

cloud computing environment. The proposed

authentication comprises six phases: configuration,

enrolment, authentication, password update,

fingerprint revocation, and smartphone revocation.

This authentication scheme utilizes the fingerprint

sensor on the smartphone to accomplish the

authentication process to access data of IoT-based

applications stored on a cloud server. Also, it uses a

one-time authentication link sent by the cloud server

to the user’s smartphone to strengthen the

communication. The scheme used XOR and hash for

data encryption and integrity protection and was

evaluated using an automated verification tool. The

automated and informal evaluation demonstrated that

the proposed scheme fulfils the essential requirement

for remote user authentication schemes and resistance

against known attacks.

Competing interests

The authors have declared that no competing interests exist.

Funding

The Ministry of Higher Education Malaysia funded this

study under the Fundamental Research Grant Scheme (Ref:

FRGS/1/2018/ICT03/UUM/02/1, UUM S/O Code: 14208).

Authors’ contribution

All the authors in this document participated in the

development of and successful completion of the research.

All authors read and approved the final manuscript.

References

[1] N. N. Mohamed, Y. M. Yussoff, M. A. Saleh, and H.

Hashim, “Hybrid cryptographic approach for Internet

of things applications: A review,” Journal of

Information and Communication Technology, vol. 19,

no. 3, pp. 279-319, 2020.

[2] I. U. Din, M. Guizani, J. J. P. C. Rodrigues, S. Hassan,

and V. V. Korotaev, “Machine learning in the Internet

of Things: Designed techniques for smart cities,”

Future Generation Computer Systems, vol. 100, no.

November, pp. 826-843, 2019.

[3] K. Ahmad, O. Mohammad, M. Atieh, and H. Ramadan,

“Enhanced performance and faster response using new

IoT litetechnique,” International Arab Journal of

Information Technology, vol. 16, no. 3A, pp. 548-556,

2019.

[4] B. D. Deebak and F. Al-Turjman, “Lightweight

authentication for IoT/Cloud-based forensics in

intelligent data computing,” Future Generation

Computer Systems, vol. 116, no. March, pp. 406-425,

2021.

[5] A. M. Rashid, A. A. Yassin, A. A. A. Wahed, and A. J.

Yassin, “Smart city security: Face-based image

retrieval model using gray level cooccurrence matrix,”

Journal of Information and Communication

Technology, vol. 19, no. 3, pp. 437-458, 2020.

[6] C.-C. Chang, H.-L. Wu, and C.-Y. Sun, “Notes on

“Secure authentication scheme for IoT and cloud

servers”,” Pervasive and Mobile Computing, vol. 38,

no. July, pp. 275-278, 2017.

[7] N. Katuk, K. R. Ku-Mahamud, N. H. Zakaria, and M.

A. Maarof, “Implementation and recent progress in

cloud-based smart home automation systems,” in

ISCAIE 2018 - 2018 IEEE Symposium on Computer

Applications and Industrial Electronics, 2018, pp. 71-

77.

[8] B. Guo, D. Zhang, Z. Wang, Z. Yu, and X. Zhou,

“Opportunistic IoT: Exploring the harmonious

interaction between human and the Internet of Things,”

Journal of Network and Computer Applications, vol.

36, no. 6, pp. 1531-1539, 2013.

[9] F. Alhaidari, A. Rahman, and R. Zagrouba, “Cloud of

Things: architecture, applications and challenges,”

Journal of Ambient Intelligence and Humanized

Computing, 2020.

[10] A. Botta, W. de Donato, V. Persico, and A. Pescapé,

“Integration of Cloud computing and Internet of

Things: A survey,” Future Generation Computer

Systems, vol. 56, no. March, pp. 684-700, 2016.

[11] F. Daneshgar, O. A. Sianaki, and A. Ilyas,

“Overcoming Data Security Challenges of Cloud of

Things: An Architectural Perspective,” Advances in

Intelligent Systems and Computing, vol. 993, pp. 646-

659, 2020.

[12] D. C. Nguyen, P. N. Pathirana, M. Ding, and A.

Seneviratne, “Integration of Blockchain and Cloud of

Things: Architecture, Applications and Challenges,”

IEEE Communications Surveys and Tutorials, vol. 22,

no. 4, pp. 2521-2549, 2020.

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 113 -

[13] T. C. S. Xavier, I. L. Santos, F. C. Delicato, P. F. Pires,

M. P. Alves, T. S. Calmon, et al., “Collaborative

resource allocation for Cloud of Things systems,”

Journal of Network and Computer Applications, vol.

159, no. June, pp. 102592, 2020.

[14] S. Xuan and D. H. Kim, “Development of Cloud of

Things Based on Proxy Using OCF IoTivity and MQTT

for P2P Internetworking,” Peer-to-Peer Networking

and Applications, vol. 13, no. 3, pp. 729-741, 2020.

[15] H. Elazhary, “Internet of Things (IoT), mobile cloud,

cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and

edge emerging computing paradigms: Disambiguation

and research directions,” Journal of Network and

Computer Applications, vol. 128, no. February, pp.

105-140, 2019.

[16] H. Nguyen, H. H. Nguyen, T. Hoang, D. Choi, and T.

D. Nguyen, “A Generalized Authentication Scheme for

Mobile Phones Using Gait Signals,” in International

Conference on E-Business and Telecommunications,

2015, pp. 386-407.

[17] A. Ayoub, R. Najat, and A. Jaafar, “A lightweight

secure CoAP for IoT-cloud paradigm using elliptic-

curve cryptography,” Indonesian Journal of Electrical

Engineering and Computer Science, vol. 20, no. 3, pp.

1460-1470, 2020.

[18] H. L. Wu, C. C. Chang, Y. Z. Zheng, L. S. Chen, and

C. C. Chen, “A secure IoT-based authentication system

in cloud computing environment,” Sensors

(Switzerland), vol. 20, no. 19, pp. 1-14, 2020.

[19] Z. Houhamdi and B. Athamena, “Identity identification

and management in the internet of things,”

International Arab Journal of Information Technology,

vol. 17, no. 44, pp. 645-654, 2020.

[20] S. M. Kannan Mani, M. Balaji Bharatwaj, and N.

Harini, “A Scheme to Enhance the Security and

Efficiency of MQTT Protocol,” Smart Innovation,

Systems and Technologies, vol. 194, pp. 79-93, 2021.

[21] B. Liao, Y. Ali, S. Nazir, L. He, and H. U. Khan,

“Security Analysis of IoT Devices by Using Mobile

Computing: A Systematic Literature Review,” IEEE

Access, vol. 8, pp. 120331-120350, 2020.

[22] N. Katuk, N. H. Zakaria, and K. R. Ku-Mahamud,

“Mobile phone sensing using the built-in camera,”

International Journal of Interactive Mobile

Technologies, vol. 13, no. 2, pp. 102-114, 2019.

[23] I. A. Alnajjar and M. Mahmuddin, “Feature indexing

and search optimization for enhancing the forensic

analysis of mobile cloud environment,” Information

Security Journal, vol. 30, no. 4, pp. 235-256, 2020.

[24] H. B. Alwan and K. R. Ku-Mahamud, “Cancellable

face template algorithm based on speeded-up robust

features and winner-takes-all,” Multimedia Tools and

Applications, vol. 79, pp. 28675-28693, 2020.

[25] P. C. Venugopal and K. S. A. Viji, “Applying empirical

thresholding algorithm for a keystroke dynamics based

authentication system,” Journal of Information and

Communication Technology, vol. 18, no. 4, pp. 383-

413, 2019.

[26] S. Desai Karanam, S. Shetty, and K. U. G. Nithin, “Fog

computing application for biometric-based secure

access to healthcare data,” Signals and Communication

Technology, pp. 355-383, 2021.

[27] K. Shanmugasundaram, A. S. A. Mohmed, and N. I. R.

Ruhaiyem, “Hybrid improved bacterial swarm

optimization algorithm in hand-based multimodal

biometric authentication system,” Journal of

Information and Communication Technology, vol. 18,

no. 2, pp. 123-141, 2019.

[28] A. Siswanto, N. Katuk, and K. R. Ku-Mahamud,

“Chaotic-based encryption algorithm using henon and

logistic maps for fingerprint template protection,”

International Journal of Communication Networks and

Information Security, vol. 12, no. 1, pp. 1-9, 2020.

[29] I. Velásquez, A. Caro, and A. Rodríguez, “Kontun: A

Framework for recommendation of authentication

schemes and methods,” Information and Software

Technology, vol. 96, no. April, pp. 27-37, 2018.

[30] M. Masdari and S. Ahmadzadeh, “A survey and

taxonomy of the authentication schemes in Telecare

Medicine Information Systems,” Journal of Network

and Computer Applications, vol. 87, no. June, pp. 1-19,

2017.

[31] S. Asha and C. Chellappan, “Authentication of e-

learners using multimodal biometric technology,” in

International Symposium on Biometrics and Security

Technologies, 2008. ISBAST 2008, 2008, pp. 1-6.

[32] S. Seno, T. Sadakane, Y. Baba, T. Shikama, Y. Koui,

and N. Nakaya, “A network authentication system with

multi-biometrics,” in Communications, 2003. APCC

2003. The 9th Asia-Pacific Conference on, 2003, pp.

914-918.

[33] A. Ometov, S. Bezzateev, N. Mäkitalo, S. Andreev, T.

Mikkonen, and Y. Koucheryavy, “Multi-Factor

Authentication: A Survey,” Cryptography, vol. 2, no. 1,

pp. 1, 2018.

[34] SAP. (n.d.). Authentication Scheme. Available:

https://help.sap.com/doc/7ba199e10fdc488293db33f0

709f9225/7.5.6/en-

US/9052c43dac1bcf51e10000000a114084.html

[35] P. K. Dhillon and S. Kalra, “A lightweight biometrics

based remote user authentication scheme for IoT

services,” Journal of Information Security and

Applications, vol. 34, no. June, pp. 255-270, 2017.

[36] H. Zhu, J. Hu, S. Chang, and L. Lu, “ShakeIn: Secure

User Authentication of Smartphones with Single-

Handed Shakes,” IEEE Transactions on Mobile

Computing, vol. 16, no. 10, pp. 2901-2912, 2017.

[37] A. De Santis, M. Flores, and B. Masucci, “One-

Message Unilateral Entity Authentication Schemes,”

presented at the Proceedings of the 12th International

Conference on Availability, Reliability and Security,

Reggio Calabria, Italy, 2017, pp. 1-6.

[38] I.-E. Liao, C.-C. Lee, and M.-S. Hwang, “A password

authentication scheme over insecure networks,”

Journal of Computer and System Sciences, vol. 72, no.

4, pp. 727-740, 2006.

[39] T. Sahayini and M. Manikandan, “Enhancing the

security of modern ICT systems with multimodal

biometric cryptosystem and continuous user

authentication,” International Journal of Information

and Computer Security, vol. 8, no. 1, pp. 55-71, 2016.

[40] D. Dasgupta, A. Roy, and A. Nag, “Multi-Factor

Authentication,” in Advances in User Authentication,

Springer, 2017, pp. 185-233.

[41] M. J. Dillon, “Factors that influence adoption of multi-

factored authentication within large organizations,”

PhD Dissertation, Capella University, 2015.

[42] S. H. Khan, M. A. Akbar, F. Shahzad, M. Farooq, and

Z. Khan, “Secure biometric template generation for

multi-factor authentication,” Pattern Recognition, vol.

48, no. 2, pp. 458-472, 2015.

[43] D. Dasgupta, A. Roy, and A. Nag, “Toward the design

of adaptive selection strategies for multi-factor

authentication,” Computers & Security, vol. 63, no.

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 114 -

November, pp. 85-116, 2016.

[44] S. Kalra and S. K. Sood, “Secure authentication scheme

for IoT and cloud servers,” Pervasive and Mobile

Computing, vol. 24, no. December, pp. 210-223, 2015.

[45] P. Gope, R. Amin, S. K. Hafizul Islam, N. Kumar, and

V. K. Bhalla, “Lightweight and privacy-preserving

RFID authentication scheme for distributed IoT

infrastructure with secure localization services for

smart city environment,” Future Generation Computer

Systems, vol. 83, no. June, pp. 629-637, 2017.

[46] F. Wu, L. Xu, S. Kumari, X. Li, J. Shen, K.-K. R. Choo,

et al., “An efficient authentication and key agreement

scheme for multi-gateway wireless sensor networks in

IoT deployment,” Journal of Network and Computer

Applications, vol. 89, no. July, pp. 72-85, 2017.

[47] R. Amin, N. Kumar, G. P. Biswas, R. Iqbal, and V.

Chang, “A light weight authentication protocol for IoT-

enabled devices in distributed Cloud Computing

environment,” Future Generation Computer Systems,

vol. 78, no. January, pp. 1005-1019, 2018.

[48] T. Maitra, M. S. Obaidat, R. Amin, S. Islam, S. A.

Chaudhry, and D. Giri, “A robust ElGamal‐based

password‐authentication protocol using smart card for

client‐server communication,” International Journal of

Communication Systems, vol. 30, no. 11, p. e3242,

2017.

[49] Y. Yu, L. Hu, and J. Chu, “A secure authentication and

key agreement scheme for IoT-based cloud computing

environment,” Symmetry, vol. 12, no. 1, pp. 150, 2020.

[50] D. He, S. Zeadally, N. Kumar, and W. Wu, “Efficient

and Anonymous Mobile User Authentication Protocol

Using Self-Certified Public Key Cryptography for

Multi-Server Architectures,” IEEE Transactions on

Information Forensics and Security, vol. 11, no. 9, pp.

2052-2064, 2016.

[51] M. Abadi, B. Blanchet, and C. Fournet, “The applied Pi

calculus: Mobile values, new names, and secure

communication,” Journal of the ACM, vol. 65, no. 1,

pp. 1-41, 2017.

[52] X. Allamigeon and B. Blanchet, “Reconstruction of

attacks against cryptographic protocols,” in

Proceedings of the Computer Security Foundations

Workshop, 2005, pp. 140-154.

[53] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified

Models and Reference Implementations for the TLS 1.3

Standard Candidate,” in Proceedings - IEEE

Symposium on Security and Privacy, 2017, pp. 483-

502.

[54] B. Blanchet, “Using horn clauses for analyzing security

protocols,” Cryptology and Information Security

Series, vol. 5, pp. 86-111, 2011.

[55] B. Blanchet, “Security protocol verification: Symbolic

and computational models,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol.

7215 LNCS, pp. 3-29, 2012.

[56] B. Blanchet, “Automatic Verification of Security

Protocols in the Symbolic Model: The Verifier

Proverif,” Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol.

8604, pp. 54-87, 2014.

[57] B. Blanchet, M. Abadi, and C. Fournet, “Automated

verification of selected equivalences for security

protocols,” in Proceedings - Symposium on Logic in

Computer Science, 2005, pp. 331-340.

[58] B. Blanchet, M. Abadi, and C. Fournet, “Automated

verification of selected equivalences for security

protocols,” Journal of Logic and Algebraic

Programming, vol. 75, no. 1, pp. 3-51, 2008.

[59] B. Blanchet and A. Chaudhuri, “Automated formal

analysis of a protocol for secure file sharing on

untrusted storage,” in Proceedings - IEEE Symposium

on Security and Privacy, 2008, pp. 417-431.

[60] V. Cheval and B. Blanchet, “Proving more

observational equivalences with ProVerif,” Lecture

Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 7796 LNCS, pp. 226-

246, 2013.

[61] M. J. Bhuva and S. Singh, “Symmetric key-based

authenticated encryption protocol,” Information

Security Journal, vol. 28, no. 1-2, pp. 35-45, 2019.

[62] C. Dai and Z. Xu, “A secure three-factor authentication

scheme for multi-gateway wireless sensor networks

based on elliptic curve cryptography,” Ad Hoc

Networks, vol. 127, no. March, pp. 102768, 2022.

[63] M. Xu, G. Xu, H. Xu, J. Zhou, and S. Li, “A

decentralized lightweight authentication protocol under

blockchain,” Concurrency and Computation: Practice

and Experience, vol. 34, no. 13, pp. e6920, 2022.

[64] M. Ebrahimi, M. Bayat, and B. Zahednejad, “A Privacy

Preserving Mutual Authentication Scheme Suitable for

IoT-Based Medical Systems,” ISeCure, vol. 14, no. 1,

pp. 57-68, 2022.

[65] M. Bhattacharya, S. Roy, A. K. Das, S. Chattopadhyay,

S. Banerjee, and A. Mitra, “DDoS attack resisting

authentication protocol for mobile based online social

network applications,” Journal of Information Security

and Applications, vol. 65, no. March, pp. 103115, 2022.

[66] B. Hu, W. Tang, and Q. Xie, “A two-factor security

authentication scheme for wireless sensor networks in

IoT environments,” Neurocomputing, vol. 500, no.

August, pp. 741-749, 2022.

Citation: N. Katuk, R. Vergallo, T. Sugiharto

and R. A. Krisdiawan. A Client-based User

Authentication Scheme for the Cloud of

Things Environment. Journal of Computer

Science & Technology, vol. 22, no. 2, pp.

102-115, 2022.
DOI: 10.24215/16666038.22.e08
Received: July 18, 2022 Accepted: September
5, 2022.

Copyright: This article is distributed under

the terms of the Creative Commons License

CC-BY-NC.

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- 115 -

