
Computing Conference 2017
18-20 July 2017 | London, UK

1 | P a g e
978-1-5090-5443-5/17/$31.00 ©2017 IEEE

Approaches to Mobile Application Development:
Comparative Performance Analysis

Lisandro Delía
Institute of Research in Computer Science

III-LIDI. School of Computer Science.
National University of La Plata

50 y 120. 2nd Floor
La Plata, Argentina
+54 221 4227707

ldelia@lidi.info.unlp.edu.ar

Nicolás Galdamez
Institute of Research in Computer Science

III-LIDI. School of Computer Science.
National University of La Plata

50 y 120. 2nd Floor
La Plata, Argentina
+54 221 4227707

ngaldamez@lidi.info.unlp.edu.ar

Leonardo Corbalan
Institute of Research in Computer Science

III-LIDI. School of Computer Science.
National University of La Plata

50 y 120. 2nd Floor
La Plata, Argentina
+54 221 4227707

corbalan@lidi.info.unlp.edu.ar

Patricia Pesado
Institute of Research in Computer Science III-LIDI. School of

Computer Science. National University of La Plata
50 y 120. 2nd Floor
La Plata, Argentina
+54 221 4227707

ppesado@lidi.info.unlp.edu.ar

Pablo Thomas
Institute of Research in Computer Science III-LIDI. School of

Computer Science. National University of La Plata
50 y 120. 2nd Floor
La Plata, Argentina
+54 221 4227707

pthomas@lidi.info.unlp.edu.ar

Abstract—The purpose of software development is meeting
both functional and non-functional requirements. In mobile
device applications, non-functional requirements are more
relevant due to the restrictions inherent to these devices. The
performance of a mobile application affects user preference for
use. In this article, we present a performance study of the
approaches used to develop software for mobile devices for the
two currently more commonly used operating systems: iOS and
Android. The results obtained are analyzed, and conclusions
supported by the tests carried out are drawn.

Keywords—mobile devices; multi-platform mobile applications;
native mobile applications; performance

I. INTRODUCTION

Barely a few decades ago, the use of software systems was
limited to a reduced group of specialized users. Those times are
in high contrast with the current situation, with smartphones,
small general purpose mobile computers, have become
everyday and ubiquitous products. These devices can be used
to carry out complex and critical tasks, which results in a
requirement for the continuous improvement of computational
capacity, availability, efficient performance, and so forth. The
fast evolution of this technology puts a strain on Software
Engineering.

In relation to the development for mobile devices, a number
of features specific to this activity that were not present in
traditional software development have to be taken into account
[1]. The type of device on which the application to be
developed will be run should be considered. The diversity of
platforms, programming languages, development tools,
standards, protocols and network technologies, limited device
capacity in some cases, and time-to-market demands, to

mention but a few, are some of the issues to be dealt with.

In most cases, the success of a software product for mobile
devices will be conditioned by the popularity it achieves. To
maximize market presence, it should be possible to run the
application on as many existing mobile platforms as possible,
especially the two most popular ones: Android and iOS [2]. To
achieve this goal, there are two alternatives:

1) Developing specific applications for each platform,
with several parallel development projects, using the tools and
languages specific to each platform. These applications are
known as native applications.

2) Developing applications that can be run directly on
more than one operating system platform using a single
development project. These applications are known as multi-
platform applications.

In recent years, the interest of the Software Engineering
community for the development of multi-platform applications
for mobile devices has increased.

In [3], the authors present a comparative analysis of
development approaches for mobile device multi-platform
application, and the following taxonomy is proposed: mobile
web applications, hybrid applications, interpreted applications
and cross-compilation applications.

In [4] and [5], the general aspects of multi-platform
development frameworks for mobile devices are discussed.

In [6], non-functional aspects are compared for the different
multi-platform application development approaches for mobile
devices.

In [7], the authors of this paper have analyzed the

Computing Conference 2017
18-20 July 2017 | London, UK

2 | P a g e
978-1-5090-5443-5/17/$31.00 ©2017 IEEE

advantages and disadvantages of the multi-platform
development methods mentioned above, from the point of view
of the Software Engineer.

The method of choice for the development of applications
for mobile devices depends on several factors. One of these,
oftentimes essential, is execution time. The desire for
optimizing the execution time of any software application is
inherent to the Computer Science field. This is evident, for
example, by the evolution of processor computation power.
Additionally, efficient performance is one of the attributes that
software applications must meet based on several quality
standards, including ISO/IEC 9126 and ISO/IEC 25010 [8].

As regards the development of applications for mobile
devices, application execution time is relevant and should be
considered for various reasons.

An application's execution time is strongly linked to energy
consumption [9], which is limited by battery life.

Also, application performance is mainly reflected by user
ratings in on-line application stores. Low-performing
applications can result in non-satisfied users, resulting in
negative publicity [2]. Andre Charland and Brian Leroux
identify execution time as one of the main issues to solve when
developing multi-platform applications, and they state that end
users care about software quality and user experience [10].

Corral, Sillitti y Succi carried out a comparative analysis
between the performance of native and hybrid applications
using the Phonegap framework for one version of the Android
OS [11].

It should be noted that no articles assessing and comparing
the performance for the various multi-platform development
methods following the taxonomy proposed in [3], namely
mobile web applications, hybrid applications, interpreted
applications and cross-compilation applications, have been
found. This is the taxonomy used as reference in this article.

In this paper, a comparative analysis of the performance
achieved by mobile device applications developed using the
native approach and the different multi-platform approaches
described in [3] is presented.

Section 2 introduces the different types of mobile
applications, Section 3 describes the experiment used to
determine execution times for native applications and the
various multi-platform mobile application development
methods, Section 4 presents and discusses the results obtained,
and subsequent sections summarize our conclusions and future
work.

II. TYPES OF APPLICATIONS FOR MOBILE DEVICES

In recent years, the mobile device market, especially that of
smart phones, has seen a remarkable growth. In particular, the
operating systems that have grown the most are Android and
iOS [2].

Each of these operating systems has its own development
infrastructure. The main challenge application providers face is
offering solutions for all platforms in the market; however,

achieving this goal usually involves high development costs
that are often hard to afford [12].

The ideal solution to this problem from a developer
perspective is creating and maintaining a single application for
all platforms. The purpose of multi-platform development is
maintaining the same code base for various platforms. Thus,
the development effort and cost is significantly reduced.

In the following sections, we present the different
approaches used for developing applications for mobile
devices:

A. Native Applications

Native applications are developed to be run on a specific
platform, considering the type of device, the operating system
and the version to be used.

The source code is compiled to obtain the executable code,
similar to the process used for traditional desktop applications.

When the application is ready for distribution, it is
transferred to the specific App Stores (application stores) of
each operating system. These stores have an audit process in
place to assess if the application meets the requirements of the
platform on which it is to be run. Finally, the application
becomes available to the end users.

An important characteristic of native applications is the
possibility of interacting with all the capabilities offered by the
device (camera, GPS, accelerometer, calendar, and so forth).
Additionally, Internet access is not required to run these
applications. Their execution is fast and they can be run in the
background and alert the user when an event requiring their
attention occurs.

This development approach involves higher costs, since a
different programming language has to be used for each
platform. Therefore, if the goal is to span over several
platforms, an application for each of them has to be produced.
This involves carrying out the codification, testing,
maintenance, and new version distribution processes more than
once.

B. Web Applications

Web applications for mobiles are designed to be executed
in the browser of the device. They are developed using HTML,
CSS and JavaScript, the same technologies used for creating
web sites.

One of the advantages of this approach is that no specific
component has to be installed in the device, and no approval
from the manufacturer is required for the applications to be
published and used. Only Internet access is required. Also,
updates appear directly on the device, since changes are
applied on the server and available immediately to the users. In
brief, it is fast and easy to implement.

However, the greatest advantage of web applications is
unquestionably their independence from the platform. There is
no need to adapt to any specific operating system. Only a
browser is required. On the other hand, this could reduce
execution speed and result in a poorer user experience with

Computing Conference 2017
18-20 July 2017 | London, UK

3 | P a g e
978-1-5090-5443-5/17/$31.00 ©2017 IEEE

interfaces that are more limited than those offered by native
applications. Also, performance can be affected by
connectivity issues.

Finally, the security restrictions imposed by the execution
of the code through a browser result in a more difficult access
for the applications to all the features offered by the device
[13].

C. Hybrid Applications

Hybrid applications use web technologies (HTML,
JavaScript and CSS), but are not run by a browser. Instead,
they are run on a web container of the device that has access to
device-specific features through an API.

Hybrid applications offer great advantages because they
allow code reuse for the various platforms, access to device
hardware, and distribution through application stores [7].

Hybrid applications have two disadvantages in relation to
native applications:

1) User experience suffers from not using the native
components in the interface.

2) Execution could be slower due to the additional load
associated to the web container.

One of the most popular frameworks is Apache Cordova
[14]; it uses HTML, JavaScript and CSS technologies, run on a
specific web container, plus an API to access the functionalities
of the mobile device itself. The architecture of an Apache
Cordova application is represented in Fig. 1.

D. Interpreted Applications

Interpreted applications are built from a single project that
is mostly translated to native code, with the rest being
interpreted at runtime. Their implementation is platform-
independent and uses several technologies and languages, such
as Java, Ruby, XML, and so forth.

Unlike the web and hybrid multi-platform development
approaches, with the interpreted applications approach native
interfaces are obtained, which is one of the main advantages of
this type of applications.

Fig. 1. Architecture of an Apache Cordova application [14]

Some of the most popular interpreted development
environments are Appcelerator Titanium [15] and NativeScript
[16].

Appcelerator Titanium is an open source framework that
allows creating mobile applications for iOS and Android
platforms. This framework includes Titanium Studio, a free-
code development environment for the codification of multi-
platform mobile applications, and SDK Titanium, a number of
tools for developing, testing, analyzing, debugging and
compiling applications.

The applications developed with Appcelerator Titanium are
coded using JavaScript, which is interpreted at runtime by
means of a JavaScript engine that is run on the operating
system of the device. Using Titanium's API, each element of
the JavaScript code is mapped to its corresponding native
element. Thus, Titanium's API acts as a bridge, providing user
interfaces built with native controls.

NativeScript is a recent open source project that allows
generating native applications using JavaScript. Additionally,
the application can be developed using TypeScript, which is a
free, open source language developed by Microsoft, that
extends to JavaScript, essentially adding static typing and
class-based objects. In this sense, when the application is
compiled, the TypeScript code is translated to JavaScript code.

NativeScript provides a multi-platform module that allows
obtaining native applications from JavaScript code. This
module allows accessing the functionalities offered by the
device and its underlying platform consistently from the
JavaScript code. Similarly, user interfaces can be defined by
means of JavaScript code, HTML documents and CSS files,
independently from the real native components. When the
application is compiled, part of the multi-platform code is
translated to native code, while the remaining code is
interpreted at runtime. Fig. 2 shows a representation of the
internal architecture of NativeScript [16].

For the time being, NativeScript allows generating
applications for Android and iOS, but Windows Phone support
is projected.

Fig. 2. Interpretation process with NativeScript [16]

E. Applications Generated by Cross-Compilation

These applications are compiled natively by creating a
specific version for each target platform. Some examples of

Computing Conference 2017
18-20 July 2017 | London, UK

4 | P a g e
978-1-5090-5443-5/17/$31.00 ©2017 IEEE

development environments used to generate applications by
cross-compilation are Xamarin [17] and Corona [18].

Xamarin allows compiling fully native applications for
iOS, Android and OS X sharing the same base code written in
C#. Integrated to Microsoft Visual Studio, it also allows
generating applications for Windows, including Windows RT
for tablets and Windows Phone for mobiles.

Xamarin allows sharing the entire business logics code, but
user interfaces must be programmed separately for each target
platform (see Fig. 3). Thus, code reutilization is affected by the
characteristics of the application being developed. Statistical
studies carried out by Xamarin report that code reutilization is
close to 85%.

Corona is a multi-platform framework that allows
developers build general-purpose applications and games for
major platforms, including OS X, Windows, iOS, Android,
Kindle, Windows Phone 8, Apple TV and Android TV. A
single base code is used, which is then published for the
different platforms. Unlike Xamarin, no specialized rewriting
or projects are required. Programming is done with Lua, which
is a simple scripting language.

Fig. 3. Xamarin's unique development approach [17]

Basically, Corona focuses on helping the developer build
applications in a fast and simple manner. Corona provides a
large number of APIs and plugins that add specific
functionalities and help speed up and simplify application
development.

III. EXPERIMENTS

A. Test Design

All tests whose results are presented here were carried out
on mobile devices with Android and iOS operating systems,
since currently both OS combined represent the lion's share of
the global market, as indicated in [2].

To carry out experiments, multi-platform development
frameworks were selected based on the alternatives presented
in [7]. Tests were designed to assess the performance of
Apache Cordova [14], Appcelerator Titanium [15] and
Xamarin [17], corresponding to the hybrid, interpreted and
cross-compilation development methods, respectively. Other
multi-platform development frameworks that have been
gaining popularity recently were also tested: NativeScript
(interpreted development) and Corona (cross-compilation).

Finally, web applications and the native development approach
for Android and iOS were also included in the set of tests. This
resulted in a fairly representative sample of the various
currently available options.

To carry out the tests, six different mobile devices were
used – three of them, identified as DA1, DA2 and DA3 (two
smartphones and one tablet) had the Android operating system,
while the other three, identified as DI1, DI2 and DI3 (two
smartphones and one tablet), had the iOS operating system (see
Table 1).

TABLE I. MOBILE DEVICES USED FOR TESTING

ID OS Characteristics

DA1 Android 4.4.

Smartphone, brand: Motorola, model:
Moto-G2, processor: Quad-core 1.2
GHz Cortex-A7, RAM 1GB
Snapdragon 400

DA2 Android 5.0.2.

Smartphone, brand: Samsung, model:
S6, processor: Octa-core (4x2.1 GHz
Cortex-A57 & 4x1.5 GHz Cortex-
A53), RAM 3GB Exynos 7420 Octa

DA3 Android 4.2.2
Tablet, brand: Samsung, model: Tab
2, processor: Dual-core 1.0 GHz,
RAM 1GB TI OMAP 4430

DI1 iOS 9.2

Smartphone, brand: Apple, model: 5S,
processor: Dual-core 1.3 GHz
Cyclone (ARM v8-based), RAM 1GB
Apple A7

DI2 iOS 9.1

Smartphone, brand: Apple, model: 6
plus, processor: Dual-core 1.4 GHz
Typhoon (ARM v8-based), RAM
1GB Apple A8

DI3 iOS 9.1

Tablet, brand: Apple, model: Ipad
Air, processor: Dual-core 1.3 GHz
Cyclone (ARM v8-based), RAM 1GB
Apple A7

Seven different analysis scenarios were defined, one for
each development strategy used:

1) Native for Android and native for iOS
2) Web applications (multi-platform)
3) Apache Cordova (multi-platform, hybrid)
4) Appcelerator Titanium (multi-platform, interpreted)
5) NativeScript (multi-platform, interpreted)
6) Xamarin (multi-platform, cross-compilation)
7) Corona (multi-platform, cross-compilation)
Tests for each of the seven scenarios listed above were

carried out in all six devices, for a total of 42 test cases.

To assess processing speed, a simple calculation including
several iterations, mathematical operations and floating point
arithmetic was proposed, which is summarized in the following
series:

݁݅ݎ݁ݏ =෍ ෍ (logଶ(݇) + 32݆݇ + √݇ଵ଴଴଴଴଴
௞ୀଵ + ݇௝ିଵ)ହ

௝ୀଵ (1)

As way of example, Fig. 4 shows the multi-platform code
developed in Apache Cordova for calculating this series.

The experiment proposed allows accurately measuring the
variable that is being analyzed, in this case, the execution time
required to carry out intensive mathematical calculations.

Computing Conference 2017
18-20 July 2017 | London, UK

5 | P a g e
978-1-5090-5443-5/17/$31.00 ©2017 IEEE

This type of mathematical calculation is frequent in various
applications that are run on mobile devices, such as games,
augmented reality applications, image processing applications,
and so forth, in which using the processing power of the
Graphics Processing Unit (GPU) to carry out the calculation is
not always possible.

The source code used for the experiments carried out can
be found in [19].

In the following sections, we describe the experiments and
discuss the results obtained.

B. Data Collection

For each of the 42 test cases defined, 30 separate runs of
the experiment were carried out, obtaining in each case a
sample T, where T = T1, T2, … T30, and Ti = time required for
calculating the series on the nth run of the experiment. Time Ti
is expressed in milliseconds.

To characterize each of the samples obtained, statistic
variables തܶ and S, corresponding to the mean (or sample
average) and sample standard deviation (see Table 2) were
calculated.

TABLE II. STATISTICAL VARIABLES USED FOR DATA ANALYSIS

Given sample T=T1, T2, …, Tn

Mean or sample average തܶ = ൬1݊൰෍ ௜ܶ௡
௜ୀଵ

Sample standard deviation ܵ = ඩ 1݊ − 1෍(௜ܶ − തܶ)ଶ௡
௜ୀଵ

IV. RESULTS OBTAINED

Table 3 shows a summary of the results obtained. It
includes the values for തܶ and S calculated for each of the test
cases. These values allow comparing the performance of the
different applications generated with the different development
approaches, assessed on each of the six devices used.

The values presented in Table 3 and represented as bar
charts in Fig. 5 suggest that Android operating system and iOS
operating system cases should be analyzed separately. Clearly,
the shapes of the bar charts shown in Figure 2 are repeated in a
similar manner in the scenarios with the same operating
system, but there are marked differences between different
operating systems.

Fig. 4. Series calculation, multi-platform code developed in Apache Cordova

TABLE III. SUMMARY OF THE RESULTS OBTAINED

 Native WebApp
Apache
Cordova

Titanium NativeScript Xamarin Corona

DA1
തܶ 532.93 186.27 230.33 211.67 187.30 395.17 1401.73

S 16.14 6.32 14.22 24.95 9.39 8.95 12.60

DA2
തܶ 211.80 90.67 85.77 95.63 89.67 211.00 600.53
S 19.97 12.48 8.83 7.64 9.16 6.69 5.95

DA3
തܶ 763.80 172.73 190.60 192.70 183.50 379.33 1344.30
S 28.98 15.51 9.36 16.80 3.04 8.31 23.39

DI1
തܶ 4.13 57.10 323.73 299.77 252.03 125.43 39.63
S 0.78 16.55 16.62 4.01 7.28 11.03 0.85

DI2
തܶ 4.13 41.90 263.97 241.13 223.43 103.03 98.63
S 0.73 5.38 15.44 4.95 8.61 4.91 6.13

DI3
തܶ 2.53 41.67 292.23 272.67 225.97 110.53 109.67
S 0.57 4.44 10.82 5.50 2.77 3.90 2.75

var startTime = new Date().getTime();
var serie = 0;
for (var j=1; j <= 5; j++)
{
 for (var k=1; k <= 100000; k++)
 {
 series = series + (Math.log(k)/Math.LN2) + (3*k/2*j) +
 Math.sqrt(k) + Math.pow(k, j-1);
 }
}
var finalTime = new Date().getTime();
var duration = finalTime - startTime;
document.getElementById('result').innerHTML = duration + ' -> ' + series;

Computing Conference 2017
18-20 July 2017 | London, UK

6 | P a g e
978-1-5090-5443-5/17/$31.00 ©2017 IEEE

V. RESULT ANALYSIS

Due to hardware differences in the devices used, comparing
the performance obtained with native Android applications to
that obtained with native iOS applications would not be
prudent. However, the results obtained allow concluding that
the native approach used in iOS is much more efficient than the
one used in Android. There are several factors that can justify
this, for example, the inherent difference in running Objective
C code in iOS, compared to running Java code in Android,
which requires Android Runtime (ART) to operate, which
slows it down.

As regards multi-platform web applications, performance
results stood out positively compared to the rest, both in
Android and iOS. Thus, the multi-platform web development
approach would be a convenient option to achieve good
performance in all mobile devices, regardless of their operating
system. However, this choice could be affected by the
limitations these applications have to fully access the specific
features of each device.

As regards the hybrid and interpreted approaches
―analyzed through Córdova, Titanium and NativeScript
technologies―, it should be noted that, even if these
approaches operate in different ways, they do have something
in common: they run JavaScript code. In this sense, the role of
the JavaScript engine responsible for converting the JavaScript
code into optimized code, which will in turn be interpreted by a
WebView, is essential. The tests carried out with these
approaches in Android ―which uses the JavaScript V8
engine― had a similar behavior to that of the web approach,
and better than the native and the cross-compilation
approaches. On the contrary, the results of the tests carried out
in the mobile devices that run iOS ―which uses the
JavaScriptCore engine― were worse than the native, web and
cross-compilation approaches.

In iOS mobile devices, the cross-compilation cases
analyzed with Xamarin and Corona technologies obtained
better results than hybrid and interpreted cases, but performed
worse than native and web approaches. By contrast, in Android
mobile devices, the results obtained when testing the
applications built using the cross-compilation approach were
the worst. The need to run Java code through Android
Runtime, among other factors, explains this result.

VI. CONCLUSIONS

A comparative study of the processing time of software
applications for mobile devices, generated using different
development approaches, was presented.

The test scenarios used included the two dominant
operating systems in the mobile device market, Android and
iOS. Each OS was run on two smartphones (considered to be
medium-end and high-end at the time of writing this article)
and one tablet.

These six devices were used to compare the performance of
applications built using both native and multi-platform
development approaches. To this end, a set of ad-hoc
applications was used:

1) Native application for Android and native application
for iOS

2) Web application (multi-platform)
3) Apache Cordova application (multi-platform, hybrid)
4) Appcelerator Titanium application (multi-platform,

interpreted)
5) NativeScript application (multi-platform, interpreted)
6) Xamarin application (multi-platform, cross-

compilation)
7) Corona application (multi-platform, cross-compilation)

Computing Conference 2017
18-20 July 2017 | London, UK

7 | P a g e
978-1-5090-5443-5/17/$31.00 ©2017 IEEE

Fig. 5. Bar chart of the samples collected (bars show average time expressed in milliseconds)

In all devices with Android operating system, the worst
performer was Corona, followed by the native approach and
Xamarin. This is the complete opposite of the results obtained
with iOS, where the development technologies mentioned
above were always in the top four. In particular, the dominance
of the native approach compared to all others in the case of iOS
devices is remarkable.

As regards the best performers in Android devices, no clear
winner could be identified. Both web applications as well as
Córdova, NativeScript and Titanium achieved good results
compared to the rest. Again, this situation is the opposite to
that obtained with iOS devices, where Córdova, Titanium and
NativeScript obtained the worst measurements among the
technologies used. That was not the case with web applications
in iOS, which also produced good results compared to the rest.

Computing Conference 2017
18-20 July 2017 | London, UK

8 | P a g e
978-1-5090-5443-5/17/$31.00 ©2017 IEEE

In general terms, operating system aside, web applications
showed good performance when considering all of the cases
analyzed.

Nowadays, when a software system is developed, it is
possible to generate the corresponding version for mobile
devices. Oftentimes, this task is not simple, and one of the
most important decisions to be made is choosing the
development method.

Based on the work presented here, a performance indicator
is available that can be useful for Software Engineers who need
to select a software development approach for mobile devices.

On the other hand, no articles by other authors have been
found analyzing the performance of all software development
approaches for mobile devices. This issue, as indicated in the
introduction, is important for the Software Engineering
community, and the articles surveyed so far have focused only
on native and/or hybrid approaches.

VII. FUTURE WORK

As a future line of work, we are planning to expand this
performance assessment to include other development aspects
for mobile devices, such as disk access, battery consumption,
and other functionalities.

REFERENCES

[1] Mona Erfani Joorabchi, Ali Mesbah, Philippe Kruchten. Real
Challenges in Mobile App Development, ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement,
Baltimore, Maryland, US, October 2013.

[2] Florian Rösler, André Nitze, Andreas Schmietendorf. Towards a Mobile
Application Performance Benchmark. ICIW 2014: The Ninth
International Conference on Internet and Web Applications and
Services, At Paris, France.

[3] Spyros Xanthopoulos, Stelios Xinogalos, A Comparative Analysis of
Cross-platform Development Approaches for Mobile Applications, BCI'
2013, Greece, 2013.

[4] Yonathan Aklilu Redda, Cross platform Mobile Applications

Development, Norwegian University of Science and Technology ,
Master in Information Systems, June 2012.

[5] Dalmasso I., Datta S.K., Bonnet C. Nikaein N., Survey, comparison and
evaluation of cross platform mobile application development tools,
Wireless Communications and Mobile Computing Conference
(IWCMC), 2013 9th International.

[6] Henning Heitkötter, Sebastian Hanschke and Tim A. Majchrzak,
Comparing Cross Platform Development approaches For Mobile
Applications, 8th International Conference on Web Information Systems
and Technologies (WEBIST), Porto, Portugal, 2012.

[7] Delia, L.; Galdamez, N.; Thomas, P.; Corbalan, L.; Pesado, P., Multi-
platform mobile application development analysis, Research Challenges
in Information Science (RCIS), 2015 IEEE 9th International Conference
on, Athens, Greece, 2015.

[8] Jung, H.W, Kim, S.G., Chung, C.S. Measuring Software Quality: A
Survey of ISO/IEC 9126. IEEE Software, September/October 2004. pp.
88 – 92. 2004.

[9] Luis Corral, Anton B. Georgiev, Alberto Sillitti, Giancarlo Succi, Can
execution time describe accurately the energy consumption of mobile
apps? An experiment in Android. GREENS 2014 Proceedings of the 3rd
International Workshop on Green and Sustainable Software. Pages 31-
37

[10] Andre Charland, Brian Leroux, Mobile application development: web
vs. native. Magazine Communications of the ACM CACM Homepage
archive Volume 54 Issue 5, May 2011 Pages 49-53 ACM New York,
NY, USA

[11] Luis Corral, Alberto Sillitti, Giancarlo Succi, Mobile multiplatform
development: An experiment for performance analysis, The 9th
International Conference on Mobile Web Information Systems
(MobiWIS), Ontario, Canada, 2012.

[12] Raj R.,Tolety S.B. A study on approaches to build cross-platform mobile
applications and criteria to select appropriate approach. India
Conference (INDICON), 2012 Annual IEEE

[13] Tracy, K.W., Mobile Application Development Experiences on Apple’s
iOS and Android OS, Potentials, IEEE, 2012

[14] http://cordova.apache.org [Accessed 14 Sep 2016]

[15] http://www.appcelerator.com [Accessed 14 Sep 2016]

[16] https://www.nativescript.org/ [Accessed 14 Sep 2016]

[17] http://xamarin.com [Accessed 14 Sep 2016]

[18] https://coronalabs.com/ [Accessed 14 Sep 2016]

[19] https://gitlab.com/iii-lidi/performance-assessment-multiplatform-
mobile-applications/tree/master [Accessed 14 Sep 2016]

