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1 Introduction 

In this paper, we consider iterative methods for solving the smooth uncon- 
strained minimization problem: 

min f(z); f:0CR”>R; fECHN), 
for (2 open in IR”. We denote g(x) = V f(x) for all z € N. We will use the 4, 
norm whenever another norm is not indicated. 

Our methods are based on the common notion of choosing a trial step from 
the current iterate x, to the next iterate 14 based on a local quadratic model 

of f(x. + s) — f(x.) of the form: 

q-(s) = gist wot Hes, where g. = Vf(a-) and H, = H?. (1.1) 

Our methods belong to a class often called curvilinear search methods, and 

the curvilinear path we search along is the same one in IR” from which the 
trust-region method based on the same model would choose its step. The 

major difference from trust-region methods is that, even if we eventually choose 

the same trial step, we do our search based on the ‘Levenberg-Marquardt’ 

parameter rather than on the length of the step. Methods based on other 

curvilinear paths have been published, but since none are in general use, we 

omit any comparative discussion. Most relevant is that Schramm and Zowe 

[11] in their B-T algorithm for nonsmooth optimization search the analogous 

curve, 

The key to the practicality of the particular method we test is that we 

build the local model (1.1) in a form that trivializes the linear algebra needed 
to compute any trial step along the search path. For example, standard ap- 

proaches would require a Cholesky factorization at each trial step, but we need 

only solve a tridiagonal system and do two matrix-vector products. 

This paper is organized as follows: Section 2 contains a global convergence 
analysis in which we assume that the sequence of model Hessians is bounded, 

but we do not specify how the Hessians are to be chosen. We define the set 

from which a trial step must be chosen that satisfies an Armijo criterion. We 

show that there are steps in the set that satisfy the sufficient decrease criterion, 

but we do not specify how the step is to be found. 

In Section 3, we assume that V?f is Lipschitz continuous on 2, and we 

present a new least-change secant method for defining H, from H, and apply 

the results of Section 2 to the resulting algorithm. This method is in the spirit 
of [2], [7], [5] in that there is never any need to form H,. Instead, H. is held 
in the form QoT.QÍ, Qo orthogonal, T, tridiagonal, and Hy = QoT,Q? is 

defined by doing a sparse symmetric secant update of T, to get Ty.



In Section 4, we validate the new update by giving a local convergence 

analysis of the corresponding full step quasi-Newton method to stationary 

points of f. In Section 5, we add a convexity assumption on f and prove 

that the particular method from Section 3 that always tries the Newton step 

first when H, is positive definite is globally q-superlinearly convergent. This 

order of convergence result is no better than we could prove if we did not do 

the updates, but the updates cost a low multiple of n, and they are certainly 
worthwhile computationally, as is shown in Section 7.3. Section 6 discusses 
an implementation and Section 7 gives some numerical results for a particular 

method from Section 3. 

2 The General Algorithm: Global Conver- 

gence 

In this section we state a general algorithm of the type studied here. We make 
the algorithm only as specific as necessary to prove a global convergence result. 

Given zt € 2, H asymmetric n x n matrix, A = A(H) the smallest eigen- 

value of H, V, the corresponding eigenspace, we define a curve parameterized 

by mu: 

Ple, H) =(0-(H+ul)"g(2):0<p>-M). 
If g(x) q Vo, or if A > 0, we define T(x, H) = Ti(z,H). Otherwise, we 
choose v € Vj, v # 0 and we define a curve parameterized by mu: 

T(z,H) = Ti(e,H)UTo(2,H), 

where 

Do(2,H) = {2 —(H — AyI)tg(xz) + pu: pe IR]. 

The following lemma, which follows from Gay [4] and Moré-Sorensen [8], gives a 
geometrical meaning to I'(z, H). It shows that if \y < 0 and if g(x) € V;", then 
any v € V, gives the same result for the quadratic. In our implementation, we 

always choose trial steps that stand in the same relation to the current iterate 

that z has to x in the hypotheses of the lemma. However, we have no need to 

be so specific in order to prove global convergence in the next section. 

Lemma 2.1 Letz e O, ze T(z,H). Then z is a minimizer of 

q(w) = 3(w — 2)? H(w — x) + g(x)"(w — x) subject to ||w — all < I|z — gil, 

and the direction from x to z is a descent direction for q. Furthermore, assume 

z €T,(2,H), then z is the unique minimizer. If0<ó< llz — xl], then there 
is a unique w € T(z, H) such that |lw — x|| =6. Also, w € T,(x, A).



Proof: This is just a slight restatement of a standard result of Gay[4] and 
Sorensen. For example, see Lemma 2.3 of Moré and Sorensen [8]. O 

The following algorithm describes the way of obtaining a new approxi- 
mation x4 to the minimizer of f, starting from a current approximation 

to € 2 such that g, # 0 and using a current Hessian approximation H.. 

A large positive number A is used to bound the steplength, and A. and 

A, are constants needed in the convergence proof. The algorithm parame- 

ters a € (0,4),8 € (0,1) are used to guarantee sufficient decrease. We use 
a = 107º and 8 = macheps. 

Algorithm 2.1 

Given H., to; 

If M1 (H.) < 0; Then A¿=A.=A; 

Else sq’ =—H¿"g(2.); Ao = A. = min(A, djs); 
Set Z = 2,; 

While (x = x. or f(Zz) > f(x.) + ag(z.)T(Z — x.)) DO 

Choose z € I'(z,, H.) such that B?A, < ||z — 2,|| < A; 

A, = A,/2; 

ENDO; 

Set 24 = E; 

Remark. 

Obviously, the efficiency of Algorithm 2.1 depends on the way Z is selected. 
“Choose” is a very ambiguous word that we use deliberately to show that many 

strategies are possible. 

Let us now prove that, given z,, H., with g. = g(x.) # 0, Algorithm 2.1 is 

always able to finish by finding a point Z which satisfies the sufficient decrease 
condition 

F(5) S f.+ ag: (t—2.). (2.1) 

Theorem 2.2 After a finite number of DO loop executions, Algorithm 2.1 
obtains a point z =x, that satisfies (2.1). 

Proof:



We only need to prove that, if ||z — x.|| is small enough and Z € T(z., H.), 
then (2.1) is satisfied. Using Lemma 2.1, it is easy to see that 

. LI . E-—- Ze —g(xe) 
lim >—— = lim = —— . (2.2) 
sm E tel ge, lt— zelo lg(xo)] 

BEI (xc,He) EET 1 (re,He) 

since if || — x.|| is small enough, then Z € Ti(zc, H.). Therefore, using (2.2) 

and the Mean Value Theorem, we have 

F(E) = F(ee) _ o(e + €(@ — te))"(# — 20) 
  with £ € (0,1). 
AS [|z — el) 

Hence, 

o Hx)- fx . Z— Le tim LH) go)! lim (28 = o(a) 
zoe, MET Tell zz, NE Tell 

BEV (ae,He) BET 1 (2e,He) 

T — 

Ge (z — Ze) 
< -alg(z:)| < +a-—— 

7 — vel 
for any Z £ x., and the required result follows from this inequality. a 

We now give a result that we need to prove global convergence of Algorithm 

2.1. 

Lemma 2.3 Assume that ||H;|| < B for k = 0,1,2,... and limp. Tk = 
z, with g(r.) 4 0. Let [2;) be any sequence such that 2; € T(zz, Hs), 
limp-,00 [Ex — tel] = 0. Then there exists a subsequence [Ip, — tx,} such 
that, for this subsequence 

Th; Th —g(2,) 
lim; = 
¿00 tp, — Tu) llg(x)]] 

Proof: 

Let {Hi}nex, be a convergent subsequence of {H;,}. Then for some H, 

lim H=H, |H|<B. 

For k € Ky let us write 

Ag = QeDi Qi » (2.3) 

where D; = diag(AM (Hg), ...,AnlHx)), A1(Hk) < +++ < An( He). By the con- 

tinuity property of eigenvalues (see Wilkinson, [12] pg.63 or Ostrowski [9] 
pg.225), we have: 

jim AGH) = AH), ¿=1,...,n



where \;(H), i = 1,...n are the eigenvalues of H in increasing order. Now, 

the matrices [Qx)xex, are contained in a compact set of IR"*". Therefore, 

there exists a convergent subsequence {Qx}xex,, Ko C Ky such that 

lim Q.=Q, 
ke Ka 

and Q is an orthogonal n x n matrix. Hence, taking limits in (2.3) for k € Ko, 

we have: 

H =QDQ’ , 
where D = diag(M(H),...,An(H)), Q = (u1,..-, Un). Now, g(t.) # 0, so 

there exists m € {1,...,n} such that 

ga) om #0. (2.4) 

Therefore, there exists 4 > —A1 such that 

late) Toml 1,1. Slge) "om! wh LS AA. 2.5 
A AA (2.5) 

Hence, taking limits for k € K2, we have, for large enough k € Ko, 
Tok 

Ig(xk) Um | > Y . (2.6) 

Am(Hy) + p 4 

But, 

a, — (Hy + wl)*9(xx) € Ti (ee, He), 

and 

-1 Ig(=;) of, | 
W— (He + ul g(re)l > AH + 

Therefore, for large enough k € K5, by Lemma 2.1 and (2.6) there exists 

2x € Pi(x, H,) such that 

Ite — zel| =f - (2.7) 
Hence, since limg oo |[Z_ — zz|| = 0, Lemma 2.1 and (2.7) imply that Z, € 

T,¡(z;, Hy) for large enough k € K; (say, k € K3). 

We now want to prove that lim,_... uz = 00. We proceed by contradiction. 

Assume that py < po < co for k € Ky C Kz. Then, %, € Ti(2x, Hy) for 

k € Ka, so for Q; = (v¥,..., 0%), a nh 

zx — all? = || — (He t+ wel) * (ve) ||? = | — Qe(De + uel) OF 9 (za) 

= (Di + wel) Qi a(s)? 

(LE
 o (e

 

° (firm) to Ge
) (2.8)



But the limit of the right-hand side of (2.8) when k — oo is clearly a nonzero 
positive number, therefore ||Z, — z,||? is bounded away from zero if k € Ka is 
large enough, contradicting the hypothesis. Hence, limpex, uz, = 00. There- 
fore, we may write 

Tete (Hi ad) ges) 
|Z. — el l| — (Ae + we D)-19( 2x) 

—(He/ pe + D)7*g(ze) 
HH / 1 + DA gal 

and the thesis follows for the subsequence indexed by K3 using boundedness 

of (H,) and limxexk, Mx = 00. O 

    

Now we are able to prove the following global convergence theorem. Note 
that we do not assume that V?f(z;) exists, much less that H;, approximates 
it well. 

Theorem 2.4 Assume that ||H;|| < B for k = 0,1,2,..., to € Q and 
te, k = 0,1,2,... is obtained from Algorithm 2.1. Let x, € N be a limit 

point of [x;). Then g(x,) =0. 

Proof: 

Assume that x, € 9, x, = limpex, x; and g(x.) £ 0. We consider two 
possibilities: 

(a) Some subsequence of {||z.41 — z%||}xex, is bounded away from 0. 

(b) limex, [tira — cu] = 0. 
Using Lemma 3.2 of Powell-Yuan [10], we see that 

lgtes)lllera — tell lloCe)l leas — cel T glx x —tk) < — 
~ (24)" (Be+1 ee) 2|| Hell lzes — zal + glo)! 2BA + ||9(z*)|| 

Hence, if (a) holds, using (2.1) and the continuity of Vf at 2., we see that 
limpsco f(z:) = —oo. This contradicts the assumption x, € 2. 

Therefore, it remains to analyze (b). Since, in Algorithm 2.1, 2441 is set to 

Z which is chosen such that ||z — x,|| > 8º Ay/2, it follows that limzex, Az = 0. 

We consider two possibilities: 

(i) For some K2 C Ky, limgex, Ag = 0. 

(ii) For every K3 C Ky, limpex, Ay F 0.



If (i) holds, then we can assume for k € K2 that A(Hy) > O since otherwise 
A, = A. Thus A, is set in Algorithm 2.1 to be the minimum of A and 

lc! and it follows that limgex, || — Hf g(z;)|| = 0. But 

sE < || Hell (ee) < Bi AE" 9(xe)I|- 

Hence limpex, g(x:) = 0 and so, g(x.) = 0, contradicting the initial assump- 
tion. 

Now consider (ii). It means that the sequence {Ax }xex, is bounded away 
from zero. Therefore the first trial point of the algorithm failed to satisfy 

(2.1). This is so because A, = Ay the first pass through the DO loop at each 
iteration, and our working hypothesis at this point is limzex, A, = 0. Thus, 

for all iterations indexed by Ky, there is at least one failed trial point. Let us 

set the sequence of last failed trials to (Tx Jxex,- We have that each Z; satisfies 

BRA; < l|3; — rel] < 2A, . 

It follows that 

dim lixe — zal = 0 

and 

(34) — f(ek) > —alg(we)’ (Ee — xx)| > —allg(ve)|l |e — wall . 

Hence, using the Mean Value Theorem, 

7 (Th — Th) 
ze RAE (2.9) g(ze — Ex(Zk — 2h) 

Now we are under the hypotheses of Lemma 2.3. So, taking limits on both 

sides of (2.9) for a suitable subsequence, we obtain 

(os)? (E) > alista).   

lg(es)!l 

But this inequality implies that a > 1, contradicting the initial hypothesis. 
Therefore the theorem is proved. a 

3  Updating Hy. 

In Section 2, we used a uniform bound on (|| H,||) to obtain a global conver- 
gence result for Algorithm 2.1. Algorithm 3.1 proposes a way of updating Hy 
that under reasonable conditions preserves uniform boundedness of {|| H,||}



and, in addition, incorporates second-order information using secant approxi- 

mations. 

Algorithm 3.1 

Let H Cc IR"*” be a family of symmetric matrices uniformly bounded in 

norm by M. Let q be a positive integer, 9 € (0, 3) be a small number, and 

Y CIR”*” be the set of tridiagonal symmetric matrices. We now particularize 

Algorithm 2.1 by specifying that if & +1 = 0 (mod q), then we choose Hy+1 € 
H. Otherwise, we assume that H, = Q¿T,QT, Ts € Y, Qx orthogonal, and we 

obtain Hy.1 by the following steps: 

Step 1: Let s = sz = Q?(xu41 — 24). If s does not satisfy 

Vs? t+ sir 2 Olsil < Vsh + 57, (3.1) 
¿=1,...,n—1, replace s by any vector satisfying (3.1) with ||s|| = 

xs, — Tell and 2; + Qs € N. We used s = lla mente in our 

implementation. 

Step 2: Define y = y, = Qilg(z:+Qus)—g(x)]. (Observe that z;+Qus = 
Zk+1 1 s was not replaced at Step 1.) 

Step 3: Obtain 7,41 as the solution of the problem 

min ||T — T;||} 
Ts=y 

Ter 

Step 4: Hui = Qua Tn QE with Qua = Qu. (Of course, neither H; 

nor H,,1 need to be formed.) 

The solution of (3) may be obtained using the least-change theory for 
updates by an algorithm which will be described in Section 5. See for exam- 

ple Dennis-Schnabel [3] Chapter 7. The rest of this section is essentially to 

prove that the sequence of matrices obtained using Algorithms 2.1 and 3.1 
is bounded, and so, that the global convergence Theorem 2.2 holds. Some 

auxiliary lemmas will be necessary. 

Lemma 3.1 Let s be such that s? + s?,, > 0;i=1,...,n—1, Define A € 
IR™* (22-1) as: 

81 s2/v2 

s1/v2 82 s3/v2 

82/V2 s3 salva 

pe
. lI (3.2) 

Sn-2/V2 Sn-1 Sn /v2 

Sn-1/V2 Sn



Then rank A =n. 

Proof: 

Form AA? and note that it is symmetric and strictly diagonally dominant. 
O 

Corollary 3.1 Under condition (3.1), if s #0, rank A=n. 

Proof: 

Trivial using Lemma 3.1. O 

Under condition (3.1) and s # 0, either |s,| > sis! or |s,| > YsllsIl. 

Let us suppose, without loss of generality, that |s,| > 5 Is! (otherwise the 

following lemma may be reformulated in an obvious way). 

Lemma 3.2 Let 8; be the angle between the row i +1 of A and the subspace 

S; spanned by the 2 first rows. Assume s # 0 and (3.1). Then |sinB;| > Fp 

2=1,...,n— 1. 

Proof: 

Consider 5”, the subspace of IR?"-») formed by the vectors of the form: 

(21, Za, ...,22,0,...,0)7 . 

Obviously, S; C S!,2=1,...,n—1. 

Let 8! be the angle between the row i + 1 of Á and s!. Then, [sin 8;| > 

Isin B;]. Now if 1 <n —2, then 

[sin fil = 
  

  

> si + sia a si+ sin Ss 2 

4/82, +8? + 52,, ¡El 2 

| sin B,,_, | = [sal > Ollsll/v2 a , 

a ¡El v2 

10



Lemma 3.3 The product Il = IT! | sin Bi) is invariant under permutations 
of the rows of A. 

Proof: 

Set A= ( ‘ such that A is nonsingular. Suppose further that the rows 

of H are orthogonal and span the orthogonal complement to the rows of A. 

Thus (see [6]) 
_ | det A] 

WwW 
where W is the product of the norms of the rows of A. But the right hand 

side of (3.3) is invariant under permutations of the rows of A (and hence, of 
A), so, the same happens with II. O 

  II (3.3) 

Lemma 3.4 Let y; be the angle between the row i of A and the subspace 
~ i-n 

spanned by the other rows of A. Then | sin y;| > Ul > 07712”, 

Proof: 

Fix the row 7 and permute the rows of A so that row ¿ becomes the last 
n-l 

one. So |sin%| = |sinBn-1|> NH =TlIsinB;]> (+) O 

Lemma 3.5 Lets 40 and Á*t = AT (AAT)1). Then A*t € IRG7-D*". Let 

  

T 
Pi n—1 . . 9 

At=(hry., hn), A= |: |. Then Ih] <——. (34) à os] 

Proof: 

Each column h; of At is a linear combination of T1,..-, Tn. Moreover 

ATr; =1 and h?r; =0 if j #7. Let S be the subspace spanned by ([r,,...,Tn) 
(and hence, by {h1,...,2n}). Each r; may be expressed as 

Ti = Vi + Wi, 

where v; is the projection of r; on the subspace spanned by {r;,7 #2} and w; 

is the projection of r; into the line spanned by h;. So 

At h; h; 
Wi = Pi = . (3.5) 

II A 
    

11



    

  

eal lol. (0 sin y =>, so > (5) . 3.6 
ral? °° Ir 2 AVE (3.6) 

Thus, by (3.5) and (3.6) IAT > (ST and hence, 

i-n 

hill < (5) Atril. 1 — v2 1 

But ||ri|| > Alls||, so 
9 

hi <—— 3.7 li: < q] (3.7) 

Lemma 3.6 If s £ 0, then for any norm |-| fixed in Rer-Dx" there exists 
a constant K, = K,(|-|,0,n) such that |At| < Ky/|{sl. 

Proof: 

Consequence of (3.7). 

The results above are going to be used in a “vector formulation of the 

least-change update.” Let us write 

pa 
rd (3.8) 

L | be an 

Tas by 

od da (3.9) 

L | br ay,   
The least-change update is the solution of 

min ||T — Tell? (3.10) 
Ts=y 

Ter 

By (3.8) and (3.9), (3.10) may be formulated as follows: 

min (aa)? +2by—bh)? + (ao—as)? +. + Abra bra)? + (an — as)? 
a1s1 + b1s2 = Y 

st bis: + agso + b283 = Y2 

br-18n-1 + bn Sn = Yn 

(3.11) 

12



Let us now consider the isomorphism between Y and IR*"~', which maps 

ay 

41 by by 

b b T=[0 00 O RR l= (3.12) 

ba- an ba- 

an 

We write ®(T) =t, ®(T,) =t,, and so on. Therefore, the problem (3.11) may 
be written in IR*"~" as: 

1 

2 

1 

. . 2 

min, |lt — to [4 = (t — t.)? G(t — t,) with G = 1 

2 

1 

st. Azpt=y 

8, $93 

$ $2 8 
where A; = ! . ? o and s;= (sk). 

Sn-1 Sn 

(3.13) 

By Lemma (3.1), the matrix A, = A,G-? has full rank, so by straightforward 
calculations, the solution of (3.13) is 

tis = ty — G7 TAF (Agth — y) (3.14) 

where Ay is defined in (3.2) and 

At = AT(A, AT)" = G77 AT(A,GUAT)“, (3.15) 

So 

tear = ty —G'AL(ApG 1 AP)“ (Ant, — y) - (3.16) 
Therefore 

Italo < II — GU AFA GT AD Ap)tello + 1167 Atyllo - 

But (1 — GI AS(ALGTI AT)! Ay)ty is the solution of 

min |jt— talo 
s.t. Apt =0 

13



so |\(I — G1 AL(AgG7! AT)“ Ay )talle < Iltellg. Therefore 

talo < lItelle + 1G7? Af ylle - (3.17) 

Now, Ve . 

IG-* Atyllo < IG" lellÃtylio 
and 

lÁtyle = Inha ++ yahallo < al halo ++ ty |hnllo 
< lylMhalo ++ Ilhnllo) - 

But |lAillg +--+ + ||Aalle defines a norm in R@"-)*", so by Lemma 3.6, 

i Killy lAfylla < 
é Is] 

and so 

[G-Hátulo < Kae (3.18) 8 

Now we are able to prove the main result of this section. D Let 

Lo = {x: f(x) < f(xo)}- 

Theorem 3.7 Assume that Lo is bounded and contained in Q, f € C?(Q), 2 
convex, and that for some L > 0, 

IV" F(z) — Y? f(w)l] < Lllz — vol] (3.19) 

for all x,w € N. 

Assume that the sequences Lx) and (H;) are generated using Algorithms 
2.1 and 3.1. Then the sequence (H,) is bounded by some constant B. 

Proof: 

Since (x) is generated by Algorithm 2.1 and Algorithm 3.1, ||s]| = {|z.41— 
z,||, and Lemma 2.1 implies that |{s|| = 0 only if {2,} converges to a stationary 
point in finitely many steps. Using (3.19), we have 

L ly — V2F(aa)sIl < lis. 
Since ||V*f(x)|| is bounded uniformly on Lo by continuity, and since {z,} 
contained in Lo implies that |]s|] is uniformly bounded, 

L 
llyll SIV? F(ze)Il Iisll + 5lIs]É < Kells 

14



for a suitable defined constant K3. If k +1 #40 (mod q), then by (3.17) and 

(3.18), 

[tasalo < Malle + Ka ¡2 < Italo + Kok (3.20) 
Hence, by (3.20), 

sal = I Tesall <Tearlle = IMtevallo < lltelle + Kako 

= (vn) M + qJ/nk1K3 . 

O 

Corollary 3.2 Under the hypothesis of Theorem 3.7, the sequence {xx} is 

well defined by Algorithms 2.1 and 3.1, and there is at least one limit point of 

the sequence. Every limit point is a stationary point for f. 

Proof: 

Directly from Theorem 2.4, Theorem 3.7, and the compactness of Lo. 

4 Local Superlinear Convergence 

In Section 3, we proved that Algorithm 2.1, with the approximate Hessian 

matrices { Hj,} chosen by Algorithm 3.1, is globally convergent in the sense that 

every limit point of the sequence {z,} must satisfy the first-order stationary 

condition. In this section, we will do two things at once by doing a local 

analysis of the direct-prediction method associated with the tridiagonal factor 

update method. This means that we will take zm = 7% + s;’. Unhappily, 
the good local behavior of this iteration imposes that H, = V7f(a,) ifk =0 

(mod q). First, we will prove some strong bounded deterioration results for 
{ Hy} which will be crucial to our global convergence result in Section 5. Then, 

almost as a side light to the main theme of this paper, we will prove that the 

direct-prediction method is locally q-superlinearly convergent to stationary 

points at which the Hessian is nonsingular. It will turn out that this result is 

also useful in the global analysis of Section 5. 

Let us define the algorithm under consideration in this section as an inde- 

pendent algorithm. 

Algorithm 4.1 

Assume that zo € IR", Hp = V?f(zo). Given z, € IR”, H, € IR”*”, 

Ay = QeTeQ?, Qx orthogonal, T, € Y, obtain 2441, Hy+1 as follows: 

15



Step 1: 2441 = x, — HE VS (xx) 

Step 2: If k+1=0 (mod q), set Hu = Vºf(x,m). Else, obtain Hm 
using Algorithm 3.1. 

Let us state the assumptions on f which allow us to obtain a local superlinear 

convergence result. 

Assumption 4.1 

Let f € C?(Q), N an open and convex set. We assume that x, € 2 is such 
that V f(x.) is symmetric and nonsingular. Further, we assume that (3.19) 
holds for all z,w € 9. 

Let Py denote the Frobenius norm projection operator onto the subspace 

of symmetric tridiagonal matrices T. 

Lemma 4.1 Assume that k = 0 (mod q) and that x, E N is well defined. 
Then, 

|| Pr (Qk? V7 f(@2)Qe) — QU Vº f(x )Qullr < 21 Les — vo - 

Proof: 

| Pr(Qe7V? f(a.)Qe) — QU VP Fe )Qs lle 
< IPd(Q VP Ha) — Qu VP Ha)Qlr + Qe V7 F(xn)Qe — Qe V7 F (ex) Qulle - 

But Qu Vº f(x,)Q, € T. Therefore, 

[PQ V?f (2.01) — Qe V? f(xe)Qalle 
I| Pr (Qe? V7 f()Qx) — Pr(Qe’ VF (te) Qe) Ile 

<S []Q.7V? f(x)Qu — Qe V7 Ff (ee) Qalle 

Hence, by (3.19), 

IPo(Q V7 F(t) Qu) — Qe V7F(@)Qulle < 2WNQE(V?F(ae) — V7 F(a) Qelle 
< 2Yn IQ; (V?f(21) —- V?F(2.))Q+l 
= 2yn |V? f(x) — V?f(24)l 
= 2 Lien — 2 

O 

From now on, let us use the notation eg = ||re — x, ||, € = 0,1,2,.... 
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Lemma 4.2 Assume that k = 0 (mod q), 0 < j < q-1, and that rp4;, 
Lk+j41, Tk+j + Sez; are well defined and belong toQ. Then, 

1 
Ivers — [Pr(Qe” VF (a+) Qu)] seal] S Ll sersll (eas + 5eerjzr + 27 ex) - 

2 

Proof: 

Ins; — [PQ VV Fm) OQ) ser;|l < Ins — Qu V7? F (ee) Qe si 
+HIIP(Q VP Hz )O)— 0 V lr) ses! (4.1) 

But, by (3.19), and the definition of y;+;, 

Ivers — Qe? V?F (re) Qusessll 

= |lo(tes; + Qesess) — g(a) — V7 F(t) Qnses5l 
L 

< 5 lIsetll max{ex+j, |[ezj + QeSegj — Ze} - (4.2) 

Therefore, by (4.1), (4.2) and Lemma 4.1, 

Ivers — [Pr(Qe' V7 f (24) Qx)]setsll 

< Silsnesllmax{enss liters + Qusee; — ll} + 2V0 Llfseasller 
Now, even if say; É Zk+j+1 — Zk+j, they are equal in norm, so 

Ilza; — Qusk+; — Tel] < ex4; + |l8445]] = n+ 5 + ll lr+rjra — Tras ll S 2Zeegy + Cnt j4s - 

Therefore, 

ly — [Pr(Q V He )Qu)Ises;l 

< SlstsalOerss + eres) +27 Llsisslles 
< Mister; + Denis +2vn e), 

as we wanted to prove. O 

The following lemma states a Bounded Deterioration Principle (see [1]) for 
the matrices Ty. 

Lemma 4.3 Assume that k = 0 (mod q), 0 < j < q— 2, and that rp4,;, 
Lepjt1, Chey + QeSkez; are well-defined and belong toQ. Then, 

Dt 5+1 — PQ Vº fz )Qullr 

> 1 
S Tai — Pr(QiéV?f(0)Qu)llr + KoL(er+; + 3 errita + 2/n ex) - 
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Proof: For matrices T € Y, remember that ||T'||7 = ||9(T)llg, where & is the 
isomorphism which maps Y into IR?"-*. The matrices Ty4j41—Pr(Qz? V7 (2%)Qz) 
and Try; — Pr(Q6iV?f(2.)Q1) belong to Y. So, using the convention t = 
D(T'), we are going to prove the thesis in IR?""* using || + lla. 

By (3.16) we have, writing y = Yk4;, te = O(Pr(Q;V?f(2,)0Q1)), 

thjti = they — GAL, (AntjG Aly ;) (Assiters — y)- So, 

testa —te = tray —te— GAL (Ants@ 1 AL,;) "(Ansiters ~ 9) 
= thy — te — GAT, (Ans jG Ay)" (Antitess — Antite + Antits — Y) 

=[1 - CAR (Ari Ary) Ants] (tats — te) + GAR (A Ar) — Apr 

Hence, 

| ter —t le 

< - CAE As Ape) Acta (teas — tell + [ET Ary ¿(Ari Ar) y — Are! 

< lle; — tallo + 167 Ary (Ar+¿67 Ary) y — Arsta)llo - 

Therefore, using the arguments which lead to (3.18), we have: 

Koally — Ar+jtel| 
Ilse 

But Aga jt. = Pr(Q6éV?f(2,)Q1)58%45. Thus, the desired result follows using 
Lemma 4.2. 

Ite jt1 — talla < llte+; — talla + 

Lemma 4.4 Assume that k = 0 (mod q), 0< 3 < q —2, and that xr; 
This, Lk+j + Qusk+; are well-defined and belong toQ. Then, 

Tesjra — Qe’ V7 f(x«)Qellr 
> K 

< Te; Q6éV*f(2.)Qul|r + MKoem; + ia + 2/n (K+ lex). 

Proof: By Lemmas 4.1 and 4.3, we have: 

| Tarja — Qe V? f (2) Qe lr 

< [[Tasinr — Pr(Qi7V?f (te) Qu)lle + Pr(Qu?V?f(t2)Qe) — Qe? V7 F(a) Qe) Mle 
< 

1 
T+; — Pr(Q Vº Hz )Qp)llr + KoL(er+; + Semis + 2/7 es) + 2Les /n 

2 

and the desired result follows trivially from this inequality. O 

Lemma 4.5 Assume the hypotheses of the previous lemmas. Then, 

[Tk — Qe V7 f(x )Qulle S VnLex , (4.3) 
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and for0 <j <q-2, 

[Deja = Qu V? f(x.) Que 

2 K 
< Vn Leg t+ 35 L(Koengy + een +2J/n (Ke + lex) . 

v=0 

Proof: 

Te — QU V Ha)Qr = Qe" V7 F(we45) Qe — Qe V? F(a) Qulle 

< Vn {V7 f(ees;) — V7 f(a) || < Vr Lens; = vn Le. 

Thus, the desired result follows straightforwardly from the previous inequality 
and Lemma 4.4. 

Lemma 4.6 Assume the hypotheses of the previous lemmas, and remember 

that 

Ay = QQ for £ = 1,2,... 

Then, for some n > 0 

j+l 

[Hera — Vf (2) ll < nO] ex4v)- 
v=0 

Proof: By Lemma 4.5, 

|Hasizr — Vf) = (Qi DTrsjrr — Qi VJ (2 QQ || 

[Deris — Qu Vº Hx. Qu < IT — QU Vº He )Qllr 
7 K 

S Vr Len + Y LKaergo + er + 2/7 (Ko + 1)c1) 
v=0 

IA
 

and the result follows directly. 

a 

Theorem 4.7 There exists e > 0 such that for any zo with |lzo — z,|| < 
€, the sequence {x} generated by Algorithm 4.1 converges q-superlinearly to 
t,. Furthermore, if eqn\|V?fr"|| < 7 < 1, then the sequence [|| H¿* ||) is 
uniformly bounded by the constant By = ||V?f(x.)~'||/(1 — 7) independent of 
the particular choice of xo. 

Proof: Algorithm 4.1 is locally linear convergent and (||H; ||) is uniformly 
bounded if the matrices H, remain in a suitable neighborhood of V?f(z.). 
(See [3] Chapt7). This condition is easily verified using Lemma 4.6 if zo is 
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close enough to z,. The reason this condition and the bound on the inverses 

can be independent of the particular xo is that Algorithm 4.1 always takes 
Ho = Vºf(xo). In particular, 

He — Ve fas) < ean 

and so the bound By follows from the Banach Lemma (See [3]). Now, using 
linear convergence and Lemma 4.6, we see that limg. Hy = V?f(z.). This 
implies that convergence is g-superlinear (see [1]) O. 

5 Global Superlinear Convergence 

In Section 3, we proved that Algorithm 2.1, with the approximate Hessian 

matrices {H,} chosen by Algorithm 3.1, is globally convergent in the sense 
that every limit point of the sequence (x; is a first-order stationary point. In 
Section 4, we proved that if we require the Hessian update method to always 

choose H, = V*f(xx) every q iterations, then the direct-prediction method is 

locally q-superlinearly convergent to stationary points at which the Hessian is 

nonsingular. In this section, we put all this together. We update the Hessians 

approximations as in Section 4, and we modify Algorithm 2.1 to always try 

the full quasi-Newton step first when H; is positive definite. We then prove 

that if f is quasi-convex on Lo and V*f(x,) = V?f(z,) is positive definite for 
some stationary point z,, then from some point on, the Newton steps satisfy 

the sufficient decrease condition (2.1). 

Algorithm 5.1 

Assume that zo € IR”, Ho = V?f(xo). Given x, € IR", Hy € R'*”, 
H, = QkT:QT, Q; orthogonal, T; € Y, obtain (24+1), [Hy+1) as follows: 

Step 1: If H, is positive definite, then in Algorithm 2.1, first try 2441 = 

2: Ho V f(z). 

Step 2: If k+1 = 0 (mod q), set Hu = Vºf(z;n). Else, obtain Hum 
using Algorithm 3.1. Return to Step 1. 

Now we give our main result. We assume that f is quasi-convex, ie, that all 

level sets of f are convex. 

Theorem 5.1 Let f € C*(Q), Q an open and convez set containing Lo, be 

a quasi-convez function on Lo. Assume that Lo is bounded, and that some 

stationary point x, € is such that Vºf(x,) is positive definite. Further, 
assume that the Lipschitz condition on the Hessian given by (3.19) holds for 
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allz,w €Q. Then, there exists some integer ky such that Algorithm 5.1 takes 

Ly = 0 fork > ky, and [x;) converges q-superlinearly to x, which is the global 
minimizer of f. 

Proof: 

Since f is quasi-convex and has a stationary point z, at which V? f(z.) is 

positive definite, x, must be the unique stationary point for f on Lo, and the 

global minimizer of f. 

Since Lg is bounded and V?f is continuous, we can take H = (V? f(x) : 
z € Lo). Thus, from Corollary 3.2, we have that {z,} is well defined and 
some subsequence converges to a stationary point, which must then be z,. 

Furthermore, there is some B > ||H,|| uniformly in k. Since x, is the only 
possible limit point of {z,}, the compactness of Lo ensures that impr, = 

z,. In particular, the subsequence of the iterates indexed by k = 0 (mod q) 

converges to Tx. 

The key to the proof will be to show below that eventually, starting at one 

of the k = 0(mod q) iterates, Algorithm 5.1 reduces to Algorithm 4.1, 1.e., the 

step s’ = —Hy'g;, eventually satisfies (2.1). 

Let € be small enough that Algorithm 4.1 is locally q-linearly convergent to 
£, from any 2) with lle —z.|| < e. Now, let By be as in Theorem 4.7. Choose 
€ even smaller if neccessary to make 1 — 2a > (qn + L)Bne. The standard 

approach to proving Theorem 4.7 makes e be chosen so that if V?f(x,) is 

positive definite then so are all HN for ||x)' — x,|| < e. Choose ky = 0 (mod 

q) so that if k > ky, then ||x, — x,|| <e. 

There are still a couple of small points to deal with before we start to chain 

inequalities. First, since H;, is positive definite, we have gis <0, and 

Li 1 1 1 _ 
Ist’ ||? = (Ag 2 gn)’ He Ag 2 ge < |\(Aa) WCe 2 ge)” He ge < NE) lg sk 

Furthermore, 2,2’ + sf’ are both within € of z,. Thus, any convex combi- 

nation is also, and so for any € € (0,1), || + €s¥ — z,|| < ¢. 

Now the proof that {7} = {z,} for k > ky is by Taylor’s Theorem and 
all these partial results. It can be done by induction, but we give only the 
main step here. Assume that the sequences are identical from the kyth to the 
lth iterate. Then H, = AR uno and 

facts) fe = oho + F(R IWF (ee + ESP — 0.) E VS)? 
1 1 = 508 sh + SP [VIA + Est! — 24) £ V? F(a.) — Hest 
1 1 
59 St + 5[L+ qnjellse' ||? IA
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ge so ¿1 + an]eBnge so” 
1 

2º 

1 rN 1 TAN 
< 59 se — 94 — 20)g; sp = ag? 8; 

since H; is positive definite and so g} s)’ < 0. O 

6 Implementation 

6.1 Implementation of steps 4 and 5 of Algorithm 2.1 

Considering s,(#) = —(Hy + LI) *g(x;) with 

p > jf = max(0, —A; + €) 

where Ay is the least eigenvalue of H, and e = 105 in the computer imple- 

mentation, we choose 

Lht1 = Le + Se( px) 

where |, is an approximate solution to the problem 

(1) argmin f(z, + se(#)) uZA. 

In order to solve this problem it is necessary to follow the curvilinear path 

sx(11), 4 > fi, and therefore to find the solution of the linear system of equations 

(Ay + pl )sk(u) = glee), 2H 

for several trial values of u. These computations are carried out in O(n) 

operations because the decomposition H, = QxT,Q,! is available. This is 

because we can write the equivalent system 

(De + ul)5u(u) = —9( rx) 

where 3;(u) = Qu" su(1), (2x) = Qu’ g(x). 
The least eigenvalue of T, is obtained by means of the IMSL routine 

EQRTIS, and the solution of the tridiagonal systems by the LINPACK routine 

SGTSL. 

For solving (I) we modified the routine GSRCH originally written by M.J.D. 
Powell for MINPACK [10]. 

The new iterate 2,41 is accepted (Step 5 — Algorithm 2.1) only if the 

condition 

F (trai) < f(en) + aglar) (41 — 24) 
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is satisfied with a = 1074. However, we may continue searching even if the 
Newton step satisfies this criterion. 

We decide that T'2(z,, H;,) is not empty if the angle between g, and yl") is 

between 85º and and 95º. 

6.2 Choosing the sequence B; 

For those iterations in which H, = V?f(z,), the decomposition is computed 

with the IMSL routines EHOUSS and EHOBS excepting when the Hessian 

itself is tridiagonal. 

The stopping condition is (7.2.5) page 160 of Dennis-Schnabel [3] 

k (tenim) < o 
max(|f(x«)|, 1) 

(eps = 107! in the computer implementation.) 

max 
1<i<n 

6.3 Efficiency 

The computer program allows the user to compute the full decomposition every 

q iterations (we use q = 3) or to decide when to do so in between automatically 

depending upon the following notion of efficiency of an iteration. We define 

efficiency of the k’” iteration as 

— log r; 

tk 

¿= fim — fe 
fe— fe 

f. being an estimation of f(2.), fey1 = F(Tr+1), t, is the CPU time required 

by the k*" iteration. 

E, =   

where 

Assuming rz, remains constant until convergence (denoted by r hereafter), 

the required number of iterations NITER is approximately given by 

pNITER — eps. 

Therefore, the total CPU time T will be 

log eps log eps 
tp = —— 

log r Ex 

In order to decide what Hy, will be (that is Hig, = V*f(2x41) or Hen = 

QTO) we use Ej as follows. Let ko be the last iteration such that 

By, = V7 f (xx). If ko = k (mod q) or if Ex > Ex then Hey = V2 f(x). 

Otherwise Hu = QT QE. 

T=   
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7 Numerical Experience 

The class of algorithms described in the previous sections form the theoretical 

basis of subroutine TRIDI. 

The decision about when I, is not empty is taken according to a user- 

supplied parameter defining a maximum deviation in degrees with respect to 

orthogonality. This parameter was defined as 5 degrees for the numerical 

experiments. 

7.1 Test Problems 

In order to demonstrate the effectiveness of the new method, numerical results 

were obtained not only for well-known test examples appearing in the litera- 

ture but also for some new functions. For brevity, the full details of the test 

problems are not given here except for the following new ones: 

TEST FUNCTION PRUEBA 

f(x) = a(1)/2(1) + a(2)/2(2) + a(3)/2(3) + 0.5(2, Cz) + (b, 2) 
where b(i) = 1. x 107° « a(z) — (¢ + 4) #1. x 10° for 2=1,...,3, ais as 

defined in Table 1, and 

1/3 1/10 1/10 
C=| 1/10 1/4 1/10 

1/10 1/10 1/5 

The underlying idea is that if a starting point is close to the origin, the 

“wavy behaviour” of the function leads to a very small trust region, a phe- 

nomenon which leads to a rather inefficient performance of the classical method. 

This shortcoming does not exist for the new algorithm because of the curvilin- 

ear search, which can be considered as a way of computing an optimal radius 

in each iteration. 

TEST FUNCTION SNLLSQ I 

Generate data (j, y(j)) for j =1,...,15 from 

y(5) = a(1) x jerzopt(1) + a(2) * jx*xopt(2) + a(3) * 7**ropt(3) 

with a(1) = 3, a(2) = 3.1, a(3) = 0.7, zopt(l) = 1.5, xopt(2) = 

2.5, copt(3) = —2.5. 

Now with the given a, recover z by a least-squares fit to this data. 

TEST FUNCTION SNLLSQ IT 

Generate data (j, y(j)) for j =1,...,15 from 
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y(j) = a(1) *sin(j * zopt(1)) + a(2) *sin(j * zopt(2)) + a(3) +sin(j * zopt(3)) 

with a(3), zopt(i), ¿ =1,...,3 as in SNLLSQ I. Again, recover x by least 

squares. 

TEST FUNCTION SNLLSQ HI 

Generate data (j,y(j)) for 7 =1,...,30 from 

y(j) = a(1) *cos(j * zopt(1)) + a(2) * cos(j + zopt(2)) +a(3) +cos(j * zopt(3)) 

with a(1) = 10, a(2) = 20, a(3) = 30, zopt(1) = 0.1, zopt(2) = 

0.2, zopt(3) = 0.3. 

Recover «x by least squares. 

TEST FUNCTION SNLLSQ IIV 

Generate data (j, y(j)) for j =1,...,45 from 

y(j) = a(1)*exp(j*xopt(1)) +a(2)*exp(j*xopt(2)) +a(3) +exp(j*eopt(3)) 
with a(1) = 1, a(2) = 2, a(3) = 3, zopt(1) = —0.1, xopt(2) = —0.2, zopt(3) = 

—0.3. 

Now recover x by least squares. 

From here on we use the notation tfn.n.cn.sp, where tfn is the test function 

number, n the number of variables, cn the case number and sp the identification 

of the starting point. 

The following table defines the problems: 
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tín Name n cn sp 

1 Prueba 3 l:a(i)=1d—1 : (Ld—3, 1.d—-3, 1.d— 3) 

1 32: a(1)=1.d3 : (0.25, 0.25, 0.25) 
a(2) = a(3) = 1.d0 

1 3 3: a(1) = a(2) = a(3) = 1.d1 

2 Penalty I 4 t(j) =9 

2 13] 8 

3 Variable 4 2(j)=1-3/n 

Dimensioned 

3 [3] 5 
3 8 
3 12 

4  Rosenbrock 4 a(2j — 1) = —1.2, (23) =1 

4 [3] 8 

4 10 
4 12 

5 Chained 25 t(j) =-1 
Rosenbrock 

[3] 

6 Powell 4 : 2(47 - 3) =3, x(4] - 2) =-1 
Extended 

6 [3] 8 2(4j —1) =0, x(47) =1 

6 240 
6 400 

7 Brown-Dennis 4 : (25,5, —5, 1) 

8 Gaussian 3 : (0.4, 1, 0) 

[3] 

(continued) 
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(continued) 

  

  

  

  

  

  

  

  

  

  

  

  

tfn Name n cn sp 

9 Trigonometric 25 1 t(j) =1 

9 [5] 50 
9 100 
9 200 

10 Watson 12 1 z(j) =0 

[3] 

11 Wood 4 1 : (-3,—1,-3,-1) 

[3] 

12 Box 3 1 : (0, 10, 20) 

[3] 

13 Biggs Exp 6 6 1 : (1.2,1,1,1,1,1) 

[3] 

14 Dennis-Marwil I 10 l:rl=l,r2=n z(j)=-1 

[2] kl=k3=1;k2=5 

2:1r1=1;r2=n 

kl=4k2=*3=1 
100 2 

15 Dennis-Marwil II 5 1 (3) =-1 

[2] 

16 Pseudo Penalty 50 1 z(j) =0 

[3] 

17 SNLLSQ I 3 1 x(j) = 3.50 * copt() 

18 SNLLSQ II 3 1 : 2(7)=1.15 x zopt(;) 

19 SNLLSQ III 3 1 : 2(3) = 1.50 * xopt(j) 

20 SNLLSQ IV 3 1 : (7) = 3.00 x zopt(7) 
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7.2 Numerical Results 

The following table gives the obtained numerical results using the notation: 

NIT = number of iterations 

FE = number of function evaluations 

GE = number of gradient evaluations 

HE = number of Hessian evaluations 

T= relative CPU time with respect to the IMSL routines 

FMIN = Computed minimum 

For each problem three sets of results are given; the first row corresponds 

to the routine DUMIAH, (trust region algorithm), the second and third to the 

new method with efficiency and without efficiency respectively. For the last 

four test problems the first row corresponds to the results obtained with the 

routine DUMIDH. Error 6 in DUMIAH means that five consecutive steps have 

been taken with the maximum step length. 

The computational tests were carried out in double precision on a Hewlett- 

Packard 9000 8258 computer using software written in Fortran 77 under the 

HP-UX operating system and on an IBM 4361. The reason for using two 

different computers was mainly that the efficiency idea is quite sensitive to the 

precision with which the CPU time is measured. Due to the fact that timing 

routines like the one provided in the IMSL Library or others available for UNIX 

systems do not fulfill the accuracy requirements in the sense that different runs 

of the same problem may give unacceptable differences for our purposes, some 

of the small size problems were run on an IBM computer for which the staff 

of the University of LaPlata Computer Center wrote a very precise assembler 

routine for measuring CPU time. For several reasons, it was not feasible to 

run all examples on that computer, so most of the results are from the HP 

machine. In order to normalize comparisons, all results are given relative 

to the CPU time required by the IMSL optimization routines except in the 

examples in which they failed to converge properly. All comparisons of the new 

method have been made against the trust regions algorithm as implemented 

in subroutine DUMIAH of the IMSL Library (version 1.0, April 1987), with 

the only exception of the separable nonlinear least squares problems for which 

subroutine DUMIDH was used because a finite-difference Hessian was required. 
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Table 2 

  

Problem NIT FE GE HE T FMIN 

1.3.1.1 18 33 19 18 1.00 —.13e+4 09 

li 12 12 5 0.29 —.13e +09 

13 14 14 4 0.33 —.13e +09 

1.3.1.2 12 14 13 12 1.00 —.13e +09 

5 6 6 2 0.24  —.13e +09 

5 6 6 2 0.22  —.13e +09 

1.3.2.1 error 6 

23 24 24 9 0.09 —.13e +09 

22 23 23 8 0.06 —.13e+4 09 

1.3.2.2 13 26 14 13 1.00 —.13e +09 

8 9 9 3 0.26  —.13e +09 

8 9 9 2 0.24  —.13e +09 

1.3.3.1 23 33 24 23 1.00  —.l3e+ 09 

17 18 18 8 0.45  —.13e +09 

18 19 19 5 0.45 —.138e+09 

1.3.3.2 12 20 13 12 1.00 —.13e +09 

5 6 6 2 0.20 —.13e +09 

5 6 6 2 0.19  —.13e +09 

2.4.1.1 34 48 35 34 1.00 0.23e — 04 

11 12 12 5 0.50 0.24e — 04 

12 13 13 4 0.33 0.24e — 04 

2.8.1.1 34 43 39 34 1.00 0.54e — 04 

15 16 16 5 0.88 0.57e — 04 

17 21 21 6 1.09 0.57e — 04 

3.4.1.1 10 11 11 10 1.00 0.24e — 27 
12 13 13 5 1.10 0.21e — 30 

12 13 13 4 1.88 0.78e — 12 

3.9.1.1 11 12 12 11 1.00 0.13e — 28 

14 15 15 6 3.79 0.27e — 19 

14 34 34 4 3.74 0.61e — 17 

(continued) 
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(continued) 

  

Problem NIT FE GE HE T FMIN 

3.8.1.1 13 14 14 13 1.00 0.53e — 26 

17 18 18 5 4.75 0.22e — 24 

16 18 18 6 4.75 0.19e — 16 

3.10.1.1 14 15 15 14 1.00 0.18e — 25 

18 21 21 5 7.07 0.15e — 14 

18 19 19 6 6.13 0.46e — 19 

4.4.1.1 23 34 24 23 1.00 0.55e — 20 

31 50 49 14 1.16 0.39e — 31 

39 72 71 10 1.45 0.77e — 21 

4.8.1.1 23 34 24 23 1.00 0.11e — 19 

35 63 61 16 1.85 0.29e — 27 

42 91 88 11 2.21 0.34e — 23 

4.10.1.1 23 34 24 23 1.00 0.14e — 19 

36 15 73 12 1.68 0.28e — 11 

36 75 73 12 1.46 0.23e — 11 

4.12.1.1 23 34 24 23 1.00 0.16e — 19 

38 87 84 13 1.80 0.18e — 15 

38 87 84 13 1.78 0.18e — 15 

5.25.1.1 15 19 16 15 1.00 0.14e — 13 

19 51 49 7 0.62 0.13e — 15 

19 51 49 7 0.56 0.13e — 15 

6.4.1.1 15 17 16 15 1.00 0.46e — 08 

19 20 20 7 1.10 0.46e — 08 
19 20 20 7 1.00 0.47e — 08 

6.8.1.1 15 17 16 15 1.00 0.92e — 08 
22 27 27 8 1.58 0.63e — 08 

22 27 27 8 1.68 0.68e — 08 

6.240.1.1 15 17 16 15 1.00 0.27e — 06 

23 38 39 6 0.39 0.93e — 06 

20 39 40 7 0.47 0.19e — 05 

6.400.1.1 15 17 16 15 1.00 0.45e — 06 

23 36 37 6 0.33 0.16e — 05 

(continued) 
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(continued) 

  

Problem NIT FE GE HE T FMIN 

7.4.1.1 8 10 9 8 1.00 0.86e + 05 

9 16 16 5 1.26 0.86e + 05 

13 19 19 4 1.39 0.86e + 05 

8.3.1.1 1 4 2 1 1.00 0.11e — 07 

2 3 3 1 0.41 0.11e — 07 

2 3 3 1 0.47 0.11e — 07 

9.25.1.1 6 20 7 6 1.00 —0.75e + 04 

9 22 22 3 0.94 —0.75e + 04 

9 22 22 3 0.94 —0.75e + 04 

9.50.1.1 8 26 9 8 1.00 —0.3le + 05 

13 16 15 6 0.90 —0.31e + 05 

17 28 27 5 0.91 —0.31e +05 

9.100.1.1 17 39 18 17 1.00 —0.12e + 06 

20 45 45 7 0.68 —0.12e + 06 

20 45 45 7 0.58 —0.12e + 06 

9.200.1.1 23 43 64 35 1.00 —0.50e + 06 

22 43 43 8 0.70 —0.50e + 06 

22 43 43 8 0.72 —0.50e + 06 

10.12.1.1 12 26 13 12 1.00 0.22e — 07 

22 52 48 8 0.97 0.23e — 07 

22 52 48 8 0.85 0.22e — 07 

11.411 12 26 13 12 1.00 0.47e — 09 

12 59 56 7 0.76 0.49e — 07 

12 61 57 8 1.03 0.15e — 07 

12.3.1.1 7 14 8 7 1.00 0.54e — 16 

10 14 14 4 1.00 0.14e — 11 

10 14 14 4 0.94 0.14e — 11 

13.6.1.1 29 60 30 29 1.00 0.1le — 11 

33 52 46 13 0.77 0.13e — 12 

53 85 17 14 1.19 0.36e — 12 
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(continued) 

  

Problem NIT FE GE HE T FMIN 

14.10.1.1 12 23 13 12 1.00 0.29e — 15 

1 7 6 1 0.76 0.23e — 21 

1 7 6 1 0.76 0.23e — 21 

14.100.2.1 17 37 18 17 1.00 0.81e — 15 

1 6 6 1 0.16 0.71e — 25 

1 6 6 1 0.16 0.71e — 25 

15.10.2.1 12 23 13 12 0.52 0.17e — 15 

1 10 10 1 0.19 0.38e — 22 

1 10 10 1 0.15 0.38e — 22 

15.5.1.1 4 6 5 4 1.00 0.24e — 13 

5 6 6 2 1.00 0.67e — 12 

5 6 6 2 1.01 0.67e — 12 

16.50.1.1 100 111 101 100 1.00 0.23e — 03 

27 73 70 8 0.20 0.23e — 03 

35 87 86 9 0.20 0.23e — 03 

In the following nonlinear least squares problems the absolute CPU time 

is given because of the poor performance of the trust region algorithm which 

led to divergence in one example, a large number of function evaluations in 

another, and to a very high functional value in the third. 
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Problem NIT FE GE HE T FMIN 
  

17.3.1.1 7 78 29 0 1.73 0.70e + 02 

64 182 237 0 5.91 0.33e — 18 

56 140 194 0 4.45 0.35e — 12 

18.3.1.1 divergence 

13 35 46 0 0.72 0.15e — 21 

16 36 54 

19.3.1.1 26 84 105 

31 37 64 

31 39 72 

20.3.1.1 4 19 17 

31 59 90 

29 59 88 

0.87 0.92e — 25 

2.97 0.42e — 18 

1.61 0.33e — 18 

1.54 0.42e — 22 

0.92 0.17e — 01 

3.08 0.33e — 09 

2.93 0.93e — 07 o
o
o
 
o
o
 

Oo 
O
 

The test examples show the new algorithm to be more robust (in fact, 
no example of divergence has been found) than the trust region method, and 

that its efficiency tends to increase with the number of variables. This is so 

because of the savings in Hessian evaluations, and in spite of the CPU time 

spent on the computation of the least eigenvalue of the tridiagonal factor, 

which is relatively more important in small size problems. 

7.3 Comparisons with not Updating 

The following are some examples to show that our update is better than if 

we kept the Hessian constant for q iterations. In particular, we compare not 

updating (we'll call this method HC) against the method obtained updating 

the Hessian but without the test of Section 6.3. (WE = without efficiency). 

The results of these tests seem convincing to us that our updating scheme 

is worthwhile. This is true despite the fact that no stronger convergence result 
holds for our updating scheme than for not updating. 
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Table 3 

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

Problem NIT FE GE HE T FMIN q Method 
13.21 22 23 23 8 100 —013e+9 4 WE 

40 41 41 14 139 -0.13e+9 4 HC 
21 22 22 4 1.00 -Olje+9 6 WE 
63 64 64 11 1.73 -0.13e+9 6 HC 
31 32 32 4 100 —0.13e+9 10 WE 
91 92 92 10 1.62 -0.13e+9 10 HC 

2.8.1.1 17 21 21 6 100 +057e-4 4 WE 
21 22 21 7 120 +057e-4 4 HC 
15 33 32 3 1.00 +057e-4 6 WE 
31 35 34 6 140 +057e-4 6 HC 
16 33 32 2 1.00 +057e-4 10 WE 

41 43 42 5 151 +057e-4 10 HO 
10.12.1.1 22 52 48 8 1.00 +0.22e-7 4 WE 

51 61 58 17 231 +043e-7 4 HC 
37 98 92 7 100 +0.24e-7 6 WE 
72 177. 159 12 166 +042e-7 6 HC 
51 108 102 6 1.00 +043e-7 10 WE 
96 260 232 10 1.69 +043e-7 10 HC 

16.50.1.1 35 87 86 9 100 +0.23e+3 4 WE 
30 127 124 8 0.88 +0.23e+3 4 HC 
31 66 63 6 100 +0.23e+3 6 WE 
51 184 183 9 147 +0.23e+3 6 HC 
25 52 49 3 100 +0.23e+3 10 HC 
49 162 161 5 147 +40.23e+3 10 HC 
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