
Parallel GPU implementations of

numerical methods for �uid dynamics

Pablo Ezzatti1 and Sergio Nesmachnow1

Centro de Cálculo, Facultad de Ingeniería, Universidad de la República
Montevideo, Uruguay, {pezzatti,sergion}@fing.edu.uy

Abstract. This article presents the application of parallel computing
techniques using Graphic Processing Unit (GPU) in order to improve the
computational e�ciency of numerical methods applied to �uid dynamics
problems. In the last ten years, GPUs have emerged as a major paradigm
for solving complex problems using parallel computing techniques. Fluid
dynamics problems usually requires large execution times to perform si-
mulations for realistic scenarios. In this work, two numerical models for
�uid dynamics are presented, and parallel implementations on GPU for
the Strongly Implicit Procedure and the Cyclic Reduction methods for
solving linear systems are introduced. The experimental evaluation of
the proposed methods demonstrates that a signi�cant reduction on the
computing times can be attained when solving linear systems with re-
presentative dimensions, and preliminary results show that the e�ciency
gains also propagate to the numerical models for �uid dynamics.

Keywords: GPU computing, linear system solvers, �uid dynamics models.

1 Introduction

Numerical models have been widely used for the simulation of water �ows and
tides in the last forty years. The research at Universidad de la República has
been focused in e�cient implementations of numerical methods for computa-
tional �uid dynamics using high performance computing techniques, mainly for
studying the hydrodynamic of the Río de la Plata.

Two of the main numerical models used for studying the Río de la Plata are
MOHID [7] and caffa3d.MB [17]. These are powerful models that allow to simulate
many features and hydrodynamic properties. However, the main drawback of
these models is the large amount of time required to perform simulations for
realistic scenarios. Traditional high performance computing techniques, such as
parallel domain decomposition in clusters, have been applied to improve the e�-
ciency of these numerical models. A second line of work, which often requires
less economic investment, consist in applying high performance computing tech-
niques using Graphic Processor Units (GPU) to perform the computations. The
GPU hardware has shown an excellent relationship between cost and computing
power, achieving more FLOPS per dollar than the traditional parallel architec-
tures in many application areas [26].

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3181

This article presents the analysis of parallel numerical algorithms developed
in GPU, applied to the MOHID and caffa3d.MB models for computational �uid
dynamics. An analysis of the computational performance of the two models is
performed just before introducing the parallel versions proposed for speeding-up
the computation using GPUs. The preliminary results demonstrate that large
values of the acceleration factor (up to 8.7×) are obtained when using a GPU
card that costs less than 30% of a standard multicore computer, such as the one
used in the computational e�ciency analysis.

The content of the manuscript is structured as follows. Next section presents
the studied numerical models for computational �uid dynamics. A brief intro-
duction to GPU computing and the review of the related work is presented in
Section 3. Section 4 describes the GPU implementations of two methods for
solving linear systems. The experimental evaluation of the proposed methods is
reported in Section 5, where the e�ciency results are also analyzed. Last, Section
6 formulates the conclusions of the research and the main lines for future work.

2 Numerical models for computational �uid dynamics

This section introduces the main features of the MOHID and caffa3d.MB models,
and it also highlights the importance of the methods for solving linear systems
of equations in order to achieve e�cient simulations.

2.1 The caffa3d.MB model

The caffa3d.MB model implements the �nite element method, applied to the
3D numerical simulation of viscous and/or turbulent �uids with generic scalars
transport. The domain geometry is represented by block-structured curvilinear
grids, which allow to describe complex scenarios. The interface between blocks
is fully implicit, in order to avoid downgrading both the performance and the
numerical results of the method. The model allows incorporating rigid objects
in the domain to study their interactions with the �uid.

The mathematical model used in caffa3d.MB considers the Navier-Stokes
equations for mass balance (1) and momentum balance (2) for a non-compressible
Newtonian �ow, and the conservation equation for a generic passive scalar φ (of-
ten the temperature) (3). ∫

S

(v · n̂S) dS = 0 (1)

∫
Ω

ρ
∂u

∂t
∂Ω +

∫
S

ρu(v · n̂S) dS =
∫
Ω

ρβ (T − Tref) g ∂Ω+∫
S

(−pn̂S) dS +
∫
S

(2µD · n̂S) dS
(2)

∫
Ω

ρ
∂φ

∂t
∂Ω +

∫
S

ρφ(v · n̂S) dS =
∫
S

Γ (∇φ n̂S) dS (3)

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3182

The caffa3d.MB model was implemented using the original 2D caffa model
by Ferziger and Peric [17] as a baseline. The source code of caffa3d.MB is publicly
available at the website www.fing.edu.uy/imfia/caffa3d.MB .

Solving the equations in the caffa3d.MB model implies the resolution of band
linear systems: pentadiagonal matrices are used in 2D scenarios and heptadia-
gonal matrices are used in 3D scenarios, regarding the neighboring points in
the discretization. The Strongly Implicit Procedure (SIP) solver by Stone [30] is
used for solving the linear systems. The SIP solver is an iterative method that
splits the linear system resolution in two stages. The �rst stage calculates an
incomplete LU factorization and computes an initial solution. The second stage
re�nes the previous result taking into account the residual and the matrices L̃
and Ũ previously computed in the factorization.

2.2 The MOHID model

The MOHID model implements a �nite volume discretization to solve the 3D
Navier-Stokes equations using a direct hydrostatic approximation of the pre-
ssure �elds. This method has been used to study the hydrodinamics and the
sediments in the Río de la Plata [18], by considering many variables such as
velocity, elevation of the free surface, water salinity, sediment concentration, etc.

By using nested grids with increasing resolution, the MOHID model allows
studying speci�c areas in the domain, obtaining high precision in the results by
including as boundary conditions the results obtained using a higher level grid.

In order to perform large-scale simulations over the Río de la Plata and
South Atlantic Ocean, MOHID is able to include accurate atmospheric models to
propagate the meteorological conditions. A large amount of computing power is
needed to perform these simulations, mainly due to the computations required
to solve the huge linear systems involved.

MOHID uses the Alternating Direction Implicit (ADI) method to solve the
partial di�erence equations, by dividing the time step into several substeps and
solving the equations for each space direction. The ADI method requires to solve
tridiagonal linear systems. In the MOHID model, this task is performed using the
tridiagonal matrix algorithm, also known as the Thomas algorithm [11], a special
case of the Gaussian elimination method applied to tridiagonal systems.

2.3 E�ciency of the linear system resolution

The time required to perform the linear system resolution strongly impacts in
the computational e�ciency of both the caffa3d.MB and the MOHID models. In
the caffa3d.MB model, 40% of the total execution time is required to perform the
SIP method in the linear system resolution [31], while in the MOHID model, 50% of
the total execution time is required to solve the linear systems using the Thomas
algorithm [5]. This fact suggests that improved versions of the models can be
developed by including high performance computing techniques into the linear
system resolution. These improved models would help to tackle large problem
cases and solving more complex simulations in realistic large-scale scenarios.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3183

3 GPU computing

The GPUs were originally designed to exclusively perform the graphic process-
ing in computers, allowing the Central Process Unit (CPU) to concentrate in
the remaining computations. Nowadays, the GPUs have a considerably large
computing power, provided by dozens or even hundreds of processing units with
reasonable fast clock frequencies. So, in the last ten years, GPUs have been used
as a powerful intrinsically parallel hardware architecture to achieve e�ciency in
the execution of applications.

This section presents the main concepts about GPU programming and a su-
mmary of the related works that have proposed applying GPU-based algorithms
to speed-up the e�ciency of numerical methods.

3.1 GPU programming

Ten years ago, when GPUs were �rst used to perform general-purpose computa-
tion, they were programmed using low-level mechanism such as the interruption
services of the BIOS, or by using graphic APIs such as OpenGL and DirectX
[16]. Later, the programs for GPU were developed in assembly language for each
card model, and they had very limited portability. So, high-level languages were
developed to fully exploit the capabilities of the GPUs. In 2007, NVIDIA intro-
duced CUDA [25], a software architecture for managing the GPU as a parallel
computing device without requiring to map the data and the computation into
a graphic API.

CUDA is based in an extension of the C language, and it is available for
graphic cards GeForce 8 Series and superior, using the 32 and 64 bits versions of
the Linux and Windows (XP and successors) operating systems. Three software
layers are used in CUDA to communicate with the GPU (see Figure 1): a low-
level hardware driver that performs the data communications between the CPU
and the GPU, a high-level API, and a set of libraries that includes CUBLAS for
linear algebra calculations and CUFFT for Fourier transforms calculation.

For the CUDA programmer, the GPU is a computing device which is able to
execute a large number of threads in parallel. A speci�c procedure to be executed
many times over di�erent data can be isolated in a GPU-function using many
execution threads. The function is compiled using a speci�c set of instructions
and the resulting program �named kernel� is loaded in the GPU. The GPU has
its own DRAM, and the data are copied from the DRAM of the GPU to the
RAM of the host (and viceversa) using optimized calls to the CUDA API.

The CUDA architecture is built around a scalable array of multiprocessors,
each one of them having eight scalar processors, one multithreading unit, and
a shared memory chip. The multiprocessors are able to create, manage, and
execute parallel threads, with reduced overhead. The threads are grouped in
blocks (with up to 512 threads), which are executed in a single multiprocessor of
the graphic card, and the blocks are grouped in grids. Each time that a CUDA
program calls a grid to be executed in the GPU, each one of the blocks in the
grid is numbered and distributed to an available multiprocessor.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3184

Fig. 1. CUDA architecture.

When a multiprocessor receives one (or more) blocks to execute, it splits the
threads in warps �a set of 32 consecutive threads�. Each warp executes a single
instruction at a time, so the best e�ciency is achieved when the 32 threads in the
warp executes the same instruction. Otherwise, the warp serializes the threads.
Each time that a block �nishes its execution, a new block is assigned to the
available multiprocessor.

The threads are able to access the data using three memory spaces: the
shared memory of the block, which can be used by the threads in the block; the
local memory of the thread; and the global memory of the GPU. Minimizing the
access to the slower memory spaces (the local memory of the thread and the
global memory of the GPU) is a very important feature to achieve e�ciency in
GPU programming. On the other side, the shared memory is placed within the
GPU chip, thus it provides a faster way to store the data.

3.2 Related work: numerical methods in GPU

In the �rst years of the 2000s decade, the pioneering works on applying GPU
programming to numerical models proposed GPU implementations of the tradi-
tional algorithms for linear system resolution. Rumpf and Strzodka [27] solved
linear systems related to �nite element models using 8-bits numbers and a GPU
implementation of the Jacobi method. Bolz et al. [6] presented GPU implementa-
tions of a multigrid method and the Conjugate Gradient (CG) method for sparse
and full matrices, respectively. The CG implementation was based in the mul-
tiplication of sparse matrices and vectors in the GPU. Another implementation
of the multigrid method in GPU was presented by Goodnight et al. [22] to solve
boundary problems. Bajaj et al. [2] applied GPUs for solving di�erential equa-
tions using the fourth-order Runge-Kutta method and the Gauss-Seidel solver.
A speci�c Poisson equation derived from the Navier-Stokes equations was solved
using a Jacobi method on a grid with 256000 points. GPU-based implementa-
tions emerged from these �rst proposals as promising methods for improving the
e�ciency of numerical algorithms.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3185

In a second stage, several researchers developed its own numerical applica-
tions using speci�c tools for GPU programming, often providing low portability
to other systems. Sorensen and Mosegaard [29] focused on �nite element simu-
lations in GPU, addressing the resolution of the sti�ness linear systems using
CG for full, band, and non-structured sparse matrices. The �rst proposal of a
GPU-based implementation for direct methods applied to sparse linear systems
was presented by Christen et al. [10], who evaluated di�erent options to extend
the PARDISO library for parallel matrix algorithms [28] using the GPU. Buatois
et al. [8] implemented the GC method with a Jacobi preconditioner for sparse
matrices by using a block compressing strategy and a reordering technique.

After the release of CUDA, several works have tackled numerical applications
following a high-level approach. Göddeke et al. [19, 21] developed GPU imple-
mentations of the multigrid and the Gauss-Jordan methods for solving �nite
element problems, and studied the impact of using single precision and native
and emulated double precision arithmetics. Later [20], the authors presented a
two-level parallel model combining domain decomposition in a cluster and the
GPU-multigrid within each processor, applied to a generic framework for solving
�nite element problems. Baboulin et al. [1] implemented the LU and Choleski
factorizations and the iterative FGMRES-GMRES method in a set or Cell pro-
cessors, and studied the iterative re�nement techniques to improve the results.
Barrachina et al. [4] compared the performance of CUBLAS �the implementa-
tion of the BLAS library from NVIDIA� with the GotoBLAS implementation,
for solving linear systems using padding techniques and mixed strategies for
CPU-GPU calculation. Several methods were considered in the comparison, as
well as working with single and double precision and using iterative re�nement
techniques. The framework for solving linear system by Feng and Li [15] used a
multigrid method and an hybrid GPU-CPU computation strategy applied to a
power grid problem. The authors analyzed the �speedup� for the parallel GPU
implementation (i.e. the acceleration factor in the computing times between an
execution in CPU and an execution in GPU), and they reported acceleration
values up to 15× when compared with a CPU multigrid solver.

Following a di�erent line of work, Michalakes and Vachharajani [23] analyzed
the transformation of a �uid numerical model for atmospheric simulations to exe-
cute in GPUs, by using the automatic code translator tools from FORTRAN to
CUDA. Promising results were achieved for realistic scenarios. Recently, Zhang et
al. [32] studied strategies for the e�cient resolution of tridiagonal systems using
GPUs. The cyclic reduction and the recursive doubling methods were evaluated,
obtaining �speedup� values up to 12.5× for small-sized matrices.

Summarizing, many works have recently applied GPUs in order to improve
the computational e�ciency of numerical methods for linear system resolution.
However, there have been few works proposing generic implementations that can
be used as black boxes inside complex numerical models. So, there is still room
to contribute in this line of research, by proposing e�cient implementations of
numerical methods applied to generic models in �uid dynamics, such as the ones
studied in this work.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3186

4 Speeding-up the e�ciency of MOHID and caffa3d.MB using

GPUs

This section introduces the proposals oriented to speed-up the computational
e�ciency of the studied models for �uid dynamics by using GPU computing.

It was already commented in Section 2 that the crucial step to diminish the
execution time of the studied models is the linear system resolution. So, the
methodology used in this work involves:

1. to isolate the linear system resolution stage in the numerical model.
2. to develop and/or to adapt numerical methods that allow to take advantage

of the GPU hardware available.
3. to evaluate the proposed parallel methods.
4. to incorporate the improved methods to the numerical models.

Our group of work has successfully applied the previously described metho-
dology to other numerical models for �uid dynamics, such as the RMA-10 [14]
and the RMA-10 [13]. For the RMA-10, e�ciency improvements up to 4.14× were
obtained in the linear system resolution, and the impact in the e�ciency of the
whole model was 3.50×. On the other side, e�ciency improvements up to 2.76×
were obtained in the linear system resolution of the RMA-11 model, and the impact
in the e�ciency of the whole model was 2.22×. In addition, a shared memory
parallel approach applied to caffa3d.MB was able to obtain speedup values up to
1.6× when executing in multiprocessors.

The previous results demonstrate that signi�cant improvements in the com-
putational e�ciency of the numerical models for �uid dynamics can be achieved
when using e�cient solvers for the linear system resolution. Next sections de-
scribe the speci�c proposals to integrate GPU computing techniques to the MOHID

and caffa3d.MB models.

4.1 GPU-parallel SIP in caffa3d.MB

The caffa3d.MB uses the SIP solver to solve pentadiagonal and heptadiagonal
linear systems. No proposals for a GPU-parallel SIP solver were found in the
review of the related work, so a parallel SIP implementation was developed
following the methodology previously used in the parallel versions on traditional
shared memory hardware. In addition, some ideas from the work by Deserno
et al. [12] were adapted to use the GPU as the execution platform for the 2D
version of the SIP solver.

The algorithm receives the �ve diagonals (Aw, As, Ap, An y Ae, following
the geographic nomenclature by Ferziger and Peric [17]), the parameter α, the
independent term, and the number of re�ning iterations. Analyzing the data
dependencies, in order to process a certain point (i, j) of the grid, the values
of (i, j − 1) and (i − 1, j) are needed. So, the processing can be concurrently
performed by grouping the points of the grid in diagonals (see Figure 2).

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3187

Fig. 2. Processing in the GPU-parallel SIP solver.

The implementation of the SIP solver in the GPU uses the following strategy:

� the method iterates for each diagonal, calling the kernel of the function that
performs the parallel computation (including the routines to compute the
LU factorization, to compute the residual, and to perform the forward and
backward substitutions).

� for each diagonal, the method calculates the threads and the number of
blocks needed, given a �xed block size.

� the point (i, j), associated to the thread identi�cation, is computed inside
each kernel function,

4.2 Thomas and GPU-parallel CR in MOHID

The MOHID model uses the Thomas method for solving tridiagonal linear systems.
Since the Thomas method is intrinsecally sequential due to the data dependen-
cies, a parallel version of the Cyclic Reduction (CR) method was implemented
to improve the MOHID e�ciency. The CR algorithm performs more arithmetic
operations than the Thomas method, but the parallel structure of the data �ow
makes the method useful for achieve e�ciency gains in parallel computers.

Two phases are clearly identi�ed in the CR method: the forward substitution
or elimination phase and the backward substitution. The elimination phase per-
forms a reduction process that recombines the equations in triplets, grouping the
unknowns and eliminating the equations with odd indexes, so the transformed
system has half of the number of equations in the original system. This phase
is applied until having a single equation. The second phase solves this unique
equation and applies the backward substitution for solving the original system.

The elimination phase executes log n times, applying the forward substitution
process in each step. In the GPU implementation, one kernel is used for each
equation. The backward substitution phase computes in parallel the unknowns
with even indexes, also using one kernel for each equation.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3188

5 Experimental analysis

This section presents the experimental evaluation of the proposed GPU imple-
mentations for the linear system solvers studied.

5.1 Development and execution platform

The algorithms were developed using CUDA. The experimental evaluation was
performed in a Pentium Dual Core E5200 with a NVIDIA 9800 GTX+ graphic
card, whose details are presented in Table 1. The matrices used in the experi-
mental evaluation were obtained from representative scenarios for each numerical
model. In order to avoid possible distortions on the execution times due to the
non-deterministic nature of the parallel programs, the tables in this section re-
port the average execution times obtained in �ve executions of the algorithms
for each problem instance.

processor/
cores

clock frequency L2 cache memory

graphic card (MHz) (MB) (MB)

Pentium DualCore E5200 2 2500 2 2048
Nvidia 9800 GTX+ 128 738 - 512

Table 1. Details of the computing platform.

5.2 SIP solver in the caffa3d.MB model

Table 2 presents the execution times (in seconds) for the CPU and the GPU
implementations of the SIP solver and the acceleration factor obtained when
using the new parallel implementation, for representative matrices with several
dimensions. The acceleration factor values are simply computed as the quotient
between the execution times of the CPU-version and the GPU-version of the SIP
solver. Figure 3 summarizes the acceleration factor variation for each problem
dimension faced.

matrix dimension
SIP in SIP in acceleration

CPU (s) GPU (s) factor

1156×1156 0.01 0.11 0.10
16900×16900 0.62 0.51 1.21
264196×264196 3.70 3.18 1.16
1052676×1052676 9.99 4.54 2.20

Table 2. Execution times: SIP in CPU and in GPU.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3189

Fig. 3. Speedup of the GPU implementation of the SIP solver.

The results in Table 2 and Figure 3 demonstrate that signi�cant acceleration
factor values can be achieved for the largest problem instances using the GPU
implementation of the SIP solver. As a reference baseline, the application of
shared memory techniques in caffa3d.MB obtained a maximum acceleration fac-
tor value of 1.6 using two processors [31]. The acceleration factor values reported
in Table 2 should increase to larger values when addressing the 3D version of
the caffa3d.MB model.

5.3 Thomas and CR in the MOHID model

Regarding the MOHID model, the new parallel CR method was compared against
the best solver among the ones implemented in CPU (i.e., the Thomas method).
Table 3 presents the execution times for the CPU implementation of the Thomas
method and the GPU implementation of the CR solver (in seconds), and the
acceleration factor obtained when using the new parallel implementation, for
representative matrices with several dimensions. Figure 4 summarizes the acce-
leration factor variation for each problem dimension faced.

matrix dimension
Thomas in CR in acceleration

CPU (s) GPU (s) factor

65536×65536 0.008 0.003 2.66
4194304×4194304 0.229 0.066 3.47
16777216×16777216 0.919 0.212 4.34
33554432×33554432 1.832 0.211 8.68

Table 3. Execution times: Thomas in CPU and CR in GPU.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3190

Fig. 4. Speedup of the GPU implementation of the CR solver.

The results in Table 3 demonstrate that large acceleration factor values can
be obtained when using the parallel GPU implementation of the CR method. The
acceleration factor values linearly increase, achieving up to 8.7× for the largest
matrix dimension studied, such as the ones used to model realistic scenarios in
the Río de la Plata.

In addition, very large problem instances were also studied, and the results
con�rmed the advantage of using the parallel GPU implementation of the CR
method for solving large scenarios (obtaining acceleration factor values up to
38×). However, the analysis demonstrated that the computational e�ciency of
the sequential Thomas algorithm in CPU are largely a�ected by hardware limi-
tations, such as the available amount of RAM.

5.4 Summary and impact in the numerical models

The experimental evaluation has shown that signi�cant improvements on the
computational e�ciency are attainable when using the GPU-based implementa-
tions of the studied linear system solvers. For the SIP solver, a sub-linear growing
behavior of the acceleration factor was detected, while linear increasings were
obtained when using the CR method. These results are somehow consistent with
the complexity order of each method: the SIP solver has linear complexity, so a
linear growing behavior in the acceleration factor of the GPU-parallel implemen-
tation is expected at most. On the other side, the CR method has logarithmic
complexity while the Thomas method has linear complexity, so a linear growing
behavior of the acceleration factor values is expected at least.

Preliminary experiments, which have been not formalized yet, have shown
that the e�ciency gains obtained in the linear system resolution propagate to the
numerical models for �uid dynamics. These results, and the previous experiences
with other numerical models suggest that including the GPU implementations
of the proposed solvers allows to design more powerful and e�cient versions of
the MOHID and the caffa3d.MB models, able to tackle large scenarios and perform
large simulations in reduced execution times.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3191

Improved e�ciency results are expected when developing parallel solvers
using a more powerful GPU architecture, such as the new Tesla server recently
available in our research group.

6 Conclusions and future work

This work has presented the initial studies on applying GPU computing in order
to speed up the execution of numerical models for �uid dynamics. Two methods
for solving band linear systems were implemented in GPU using CUDA. The
implementations of the SIP and the CR methods were evaluated using matrices
obtained from representative scenarios for each numerical method. The experi-
mental analysis demonstrated that the GPU implementations signi�cantly im-
proves over the execution times of the traditional CPU implementations. The
GPU implementation of the SIP solver obtained acceleration factor values up to
2.2× when compared with the CPU implementation. The CR method attained
signi�cantly large acceleration factor values, up to 8.7× for the largest problem
faced. Both methods were able to improve their computational e�ciency values
when solving the largest problem instances, showing a good scalability behavior.
A preliminary analysis suggested that the e�ciency improvements in the linear
system resolution propagate to the numerical model for �uid dynamics.

The main lines for current and future work focus on implementing other me-
thods for the linear system resolution as well as integrating the GPU implementa-
tions with the numerical models. Regarding the �rst issue, a three-dimensional
version of the SIP solver is currently been implemented on GPU, in order to
fully exploit the capabilities of the caffa3d.MB model. Several alternatives to the
CR algorithm, such as the Parallel Cyclic Reduction and Recursive Doubling
methods, should also be implemented on GPU, to provide even more e�cient
strategies for the linear system resolution. In addition, the development of hy-
brid methods that combine GPU and CPU computation should be addressed
in order to increase the e�ciency of the proposed methods, possibly by using
modern infrastructures that incorporate several GPUs able to work in parallel.
Regarding the second line for future work, a more general mechanism for inte-
grating the proposed GPU implementations to the numerical models has to be
developed, by designing an independent set of modules that make possible the
extension of the proposed approach to other numerical models.

References

1. M. Baboulin, J. Dongarra, and S. Tomov. Some issues in dense linear algebra
for multicore and special purpose architectures. MIMS EPrint 2009.2, Manchester
Institute for Mathematical Sciences, University of Manchester, UK, 2009.

2. Ch. Bajaj, I. Ihm, J. Min, and J. Oh. SIMD optimization of linear expressions
for programmable graphics hardware. Computer Graphics Forum, 23(4):697�714,
2004.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3192

3. S. Barrachina, M. Castillo, F. Igual, R. Mayo, and E. Quintana-Ortí. Solving dense
linear systems on graphics processors. In Proceedings of the 14th International
Euro-Par Conference on Parallel Processing , pages 739�748, Berlin, Heidelberg,
2008. Springer-Verlag.

4. S. Barrachina, M. Castillo, F. Igual, R. Mayo, E. Quintana-Ortí, and G. Quintana-
Ortí. Evaluation and tuning of the level 3 CUBLAS for graphics processors. Tech-
nical report, Departamento de Ingeniería y Ciencia de Computadores, Universidad
Jaime I, Castellón, España, 2008.

5. I. Barreto, P. Ezzatti, and M. Fossati. Estudio inicial del modelo MOHID. Technical
report, Universidad de la República, Uruguay, 2009.

6. J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse matrix solvers on
the GPU: conjugate gradients and multigrid. ACM Transaction on Graphics,
22(3):917�924, 2003.

7. F. Braunschweig, P. Leitao, L. Fernandes, P. Pina, and R. Neves. The object
oriented design of the integrated water modelling system mohid. In Computational
Methods in Water Resources, 2004.

8. L. Buatois, G. Caumon, and B. Levy. Concurrent number cruncher: An e�cient
sparse linear solver o n the GPU. In High Performance Computation Conference ,
volume 4782 of Lecture Notes in Computer Science . Springer, 2007.

9. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanra-
han. Brook for GPUs: Stream computing on graphics hardware. ACM Transaction
on Graphics, 23:777�786, 2004.

10. M. Christen, O. Schenk, and H. Burkhart. General-purpose sparse matrix building
blocks using the NVIDIA CUDA technology platform. Technical report, University
of Basel, 2007.

11. S. Conte and C. De Boor. Elementary Numerical Analysis: An Algorithmic
Approach. McGraw-Hill Higher Education, 1980.

12. F. Deserno, G. Hager, F. Brechtefeld, and G. Wellein. Basic optimization strategies
for cfd-codes. Technical report, Regionales Rechenzentrum Erlangen, 2002.

13. P. Ezzatti and M. Fossati. Mejora del desempeño computacional del modelo RMA-
11. Technical report, Universidad de la República, Uruguay, 2009.

14. P. Ezzatti and I. Piedra-Cueva. Mejora del desempeño computacional del RMA-10.
In Proceedings of VIII Congreso Argentino de Mecánica Computacional, Argentina ,
2005.

15. Z. Feng and P. Li. Multigrid on GPU: tackling power grid analysis on parallel SIMT
platforms. In Proceedings of the 2008 IEEE/ACM International Conference on
Computer-Aided Design, pages 647�654, Piscataway, NJ, USA, 2008. IEEE Press.

16. R. Fernando, editor. GPU gems. Addision-Wesley, Boston, 2004.
17. J. Ferziger and M. Peric. Computational Methods for Fluid Dynamics . Springer,

Berlin, 1999.
18. M. Fossati and I. Piedra-Cueva. Modelación tridimensional de la circulación en el

Río de la Plata. In Proceedings of XXII Congreso Latinoamericano de Hidráulica,
Ciudad Guayana, Venezuela, 2006.

19. D. Göddeke and R. Strzodka. Performance and accuracy of hardware-oriented na-
tive, emulated- and mixed-precision solvers in FEM simulations (part 2: Double
precision GPUs). Technical report, Fakultät für Mathematik, Technische Univer-
sität Dortmund, 2008.

20. D. Goddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, H. Wobker, C. Becker,
and S. Turek. Using GPUs to improve multigrid solver performance on a cluster.
International Journal of Computer Systems Science and Engineering , 4(1):36�55,
2008.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3193

21. D. Göddeke, R. Strzodka, and S. Turek. Performance and accuracy of hardware-
oriented native-, emulated-and mixed-precision solvers in FEM simulations. Int.
J. Parallel Emerg. Distrib. Syst., 22(4):221�256, 2007.

22. N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G. Humphreys. A multigrid
solver for boundary value problems using programmable graphics hardware. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, pages 102�111, Aire-la-Ville, Switzerland, 2003. Eurographics Associa-
tion.

23. J. Michalakes and M. Vachharajani. GPU acceleration of numerical weather pre-
diction. In Proceedings of the 22nd IEEE International Symposium on Parallel and
Distributed Processing, Miami, Florida, USA , pages 1�7, 2008.

24. J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming
with cuda. Queue, 6(2):40�53, 2008.

25. nVidia. CUDA website. http://www.nvidia.com/object/cuda_home.html , 2010.
Accessed on January 2010.

26. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips. GPU
computing. Proceedings of the IEEE, 96(5):879�899, May 2008.

27. M. Rumpf and R. Strzodka. Using graphics cards for quantized FEM computations.
In Proceedings of the IASTED International Conference on Visualization, Imaging
and Image Processing, Marbella, Spain , pages 193�202, 2001.

28. O. Schenk and K. Gärtner. Sparse factorization with two level scheduling in PAR-
DISO. In Proceedings of the Tenth SIAM Conference on Parallel Processing for
Scienti�c Computing, Portsmouth, Virginia, 2001.

29. T. S. Sørensen and J. Mosegaard. An introduction to GPU accelerated surgical
simulation. In M. Harders and G. Szekely, editors, Third International Symposium
on Biomedical Simulation, volume 4072 of Lecture Notes in Computer Science ,
pages 93�104. Springer, 2006.

30. H. Stone. Iterative solution of implicit approximations of multidimensional partial
di�erential equations. SIAM Journal of Numerical Analysis , 1(5):530�558, 1968.

31. G Usera, A. Vernet, and J. Ferré. A parallel block-structured �nite volume method
for �ows in complex geometry with sliding interfaces. Flow, Turbulence and Com-
bustion, 80(3):346�350, 2008.

32. Y. Zhang, J. Cohen, and J. Owens. Fast tridiagonal solvers on the GPU. In
Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 127�136, New York, NY, USA, 2010. ACM.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3194

