
Experiences in processing MPI applications in
Condor environments

Paula Martínez1,2, Jorge Ruben Santos2,3, Emmanuel Millán Kujtiuk1,2, Carlos
Catania2, Javier Díaz5 y Carlos García Garino2,4

1- Instituto Tecnológico Universitario, Universidad Nacional de Cuyo, Mendoza,
Argentina, pmart@uncu.edu.ar

2- ITIC, Instituto Universitario para las Tecnologías de la Información y las
Comunicaciones, Universidad Nacional de Cuyo, Mendoza, Argentina, {emillan,

ccatania, cgarcia}@itu.uncu.edu.ar
3- ICB, Instituto de Ciencias Básicas, Universidad Nacional de Cuyo, Mendoza,

Argentina, jrsantos@itu.uncu.edu.ar
4- Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina.

5- Facultad de Informática, Universidad Nacional de La Plata, La Plata, Buenos
Aires, Argentina, jdiaz@unlp.edu.ar

Abstract. Condor is a middleware specially design to manage job queues
in dedicated and non-dedicated infrastructure. Condor seems to be a
suitable tool to be used when the lack of available dedicated resources
represent an impediment to run large application problems.
This paper discusses the use of Condor in processing MPI applications
problems in homogeneous and heterogeneous pools of nodes.
In particular several experiments with different computing and network
usage have been performed. From these tests it is concluded that Condor
introduces a negligible overhead and also allows to conform scalable pools
of nodes with a good cost-benefit ratio.

1 Introduction

Distributed Computing is a rather mature technology in USA, Europe and
Japan. Different degree of development can be found in South America: Brazil
and Venezuela have pioneered this area. Different conferences and workshops
about High Perfomance Computing have been carried out in those countries
since many years ago. More recentely, Grid Computing has become an inten-
sive area of research in our countries. In particular, the Argentine Ministry for
Science and Technology has recently launched the National Grid Initiative and
High Performance Computing National System (SiNCAD) among other actions.
In Argentina different scientific meetings take place such as The Parallel and Dis-
tributed Processing Workshop (WPPD), of the Argentinian Congress on Com-
puter Sciences (CACIC) and more recently the High Performance Computing
Symposia that is organized in context of the Argentinian Conference of Infor-
matics (JAIIO).

There are many models and applications available for Distributed Computing
which are discussed in section 2 of this paper. In this context the authors have

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3325

been working with the Condor middleware [1,2]. The first author Master Thesis
[3] deals with this middleware and its applications has been reported in previous
works [4,5,6,7,8]

Condor middleware is very well known due to its capacity to collect idle
resources in order to configure a distributed computing infrastructure. Condor
can manage and process a large quantity of batch jobs as well. However Condor
has another attractive features such as Matchmaking and Scheduling modules,
ClassAds submit files, interaction with Globus, possibility to process different
jobs (old style vanilla applications, java codes, condor compiled applications,
parallel programs and so on), etc.

This paper discusses the MPI application processing over partially dedicated
resources managed and collected with Condor (for instance overnight idle cy-
cles of teaching labs). MPI applications naturally would be executed on High
Performance Computing installations like dedicated clusters, but it is not al-
ways possible to have this kind of resources and auxiliary installations (cooling
systems, power, etc.) available. Then, partially dedicated resources can be a
valuable alternative for many institutions in our country.

Different issues have to be addressed in order to process successfully MPI ap-
plications on Condor environments like administration of partially dedicated re-
sources; MPI setup (configuration files; library installation, NFS protocol, etc.).
Once these requisites are solved, Condor’s overhead has to be considered.

The paper is organized in the following sections: an overview of distributed
computing applications and models is included in section 2. Processing of MPI
applications over Condor environments is discussed in section 3 where a short
Condor overview is included as well. In section 4 the available infrastructure for
testing and preliminary results are presented. The results of some applications
problems are discussed in section 5. Finally, conclusions are provided in section
6.

2 Distributed Computing Models and Applications

In the context of distributed computing, the following paradigms can be distin-
guished:

High Performance Computing (HPC): In this paradigm prevails the execution
of tasks, as efficiently as possible. Concepts such as parallelization and multi-
thread fall within this area, and whose direct application is to make calculations
that can last several weeks running on a single node, can be divided among
several nodes, sharing the work to be done.

High Throughput Computing (HTC): In this paradigm prevails the execution
of as many tasks as possible. Concepts such as queues and nodes managements
are part of this area and its direct application goes through the completion of
as much work as possible over time, sometimes a very large ones.

Grid Computing: The paradigm proposed access to different types of nodes:
computing, storage, instruments, etc. This is based on the formation of virtual

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3326

organizations that share nodes. The name comes from an analogy with the Elec-
tricity Network (Power Grid) since this technology allows access to compute
nodes in a similar manner that the energy is obtained by plugging in a node to
the network.

Cloud Computing: is a way to share computers resources available on de-
mand. Software requirements are provided as a service, which are located in data
centers (cloud or clouds), allowing access to these services without the need to
have the required infrastructure locally (power computing, storage, etc..) and
usually also without requiring the user to have the knowledge or experience to
use their services.

Although the HPC paradigm is well known in our country, there is no much
experience in the case of HTC. The paradigm of HTC can be easily implemented
when one has a multitude of medium / small sized calculations, and you want
to speed up the management of all of them.[1]

Condor[2] is a distributed environment especially designed for HTC that
makes use of idle nodes. The main idea behind Condor is to enable the manage-
ment of high-cost calculations to be executed quickly and efficiently [4].

The evaluation and selection of the more convenient model for different appli-
cations that can be processed in Distributed Computing infrastructure requires
a relationship between architecture and applications [9]. In order to do that,
granularity and parallelism are the chosen variables. Granularity is defined as
the ratio of Computing vs Communications time. Figure 1 illustrates the idea.
For instance, embarrassingly parallel applications can be processed on a typical
HTC middleware like Condor while for parallel applications based on a MPI
library [10,11,12] a Cluster is suitable.

Fig. 1. Distributed computing taxonomy in terms of Granularity versus parallelism [9]

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3327

3 Processing MPI Applications Over Condor
Infrastructure

This section discusses the processing of MPI applications over Condor Infras-
tructure. In subsection 3.1 a brief overview of Condor is provided in order to
present some background material necessary for the cited discussion.

3.1 Condor Overview

The middleware Condor [1,2,13] is a versatile distributed computing tool. Among
other features its main advantage is the capability to manage and execute a large
quantity of batch jobs on partially dedicated resources. However Condor presents
another interesting characteristics like the interaction with Globus [14] through
Condor-G and G-RAM protocols, and matchmaking and scheduling possibilities
to manage the submitted jobs.

Different kinds of applications can be processed with Condor: vanilla codes,
java applications, Condor linked applications, parallel programs and so on. This
can be accomplished by using different universes that are invoked in the ClassAds
files.

Embarrassingly parallel applications are naturally managed by Condor. Ap-
plications related to Artificial Intelligence and Intrusion Detection Systems has
been discussed in the work of Martínez et al. [5] and parametric studies of Solid
Mechanics problems have been carried out with SOGDE-Condor application [6,7]

MPI applications can be processed in Condor environments as well, but dif-
ferent configuration and administrative tasks have to be done. In next subsection
a detailed discussion is provided.

3.2 MPI Applications and Condor Middleware

The execution of MPI [10,11] jobs over Condor requires to do some previous
configuration tasks. The next list shows the steps necessary to make Condor
work with MPI:

1. Install the MPI library in the master and slaves nodes.
2. Exchange SSH keys between nodes, MPI needs to access all nodes without

password.
3. Configure NFS in the master and slaves nodes, almost every MPI application

needs to read input files and write output files from / to a common filesystem.
4. Tell Condor which node is the Dedicated Scheduler.
5. Parametrize the bash script mp2script [15] in accordance with the execution

environment.
6. Edit the bash script that sets the environment variables and necessary in-

structions for the execution of the application (script.sh).
7. Write the ClassAds for Condor.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3328

In the case of dedicated clusters, a Linux distribution like Rocks [16] solves the
first three configuration steps. The dedicated clusters used in the experiments
reported in this paper have this distribution. Consequently the installation and
configuration process are easier and faster. In this case, Rocks offers an environ-
ment where is not necessary to exchange keys between nodes, since it already
does the exchange during the installation process. Also includes various MPI
libraries such as OpenMPI [17] and MPICH2 [11], and provides NFS shared di-
rectories between all the slaves nodes. In the case of partially dedicated resources,
Rocks can not be installed and the cited facilities are not available. Then all the
listed tasks have to be executed manually.

In the Condor pools available in this paper (see the infrastructure section),
MPICH2 library is used and the installation was performed via NFS in the slaves
nodes. MPICH is installed in a local directory of the master node. This directory
is exported via NFS and mounted to each slave node.

It was necessary to exchange the SSH keys between the partial dedicated
slave nodes and the master. In order to simplify this task, the home directory
of the condor user was exported via NFS from the master node and mounted
on the slave nodes. All slave nodes share the same SSH key and the same home
directory. In this way, item 2 and 3 from the above tasks are solved.

When Condor is configured in the pool, one of the nodes has be selected as a
dedicated scheduler. The MPI jobs are to submitted from this scheduler. When
the dedicated scheduler claims for a node, it will try to use it immediately, and
if for some reason this can not be done during a certain amount of time that
node will be left, and will be available for opportunistic use.

Once MPI is invoked from Condor, MPI daemons will start on all the nodes
previously assigned for the job execution. Then Condor is no longer involved in
the execution of the MPI job. The middleware waits until the jobs finishes and
returns the control. At that time, a Condor file reports the total execution time
and, if for some reason the execution was not successful, it indicates the errors
occurred. Each resource is controlled by the dedicated scheduler, and must have
its name included in the local configuration file. [18]

Briefly, Condor is only involved at the matchmaking point, when the job is
submitted and at the end of the process, once the MPI daemons have finished
theirs jobs. A notification to the user is sent through pre-configured files. During
the configuration of the Condor submit file, a script called mp2script must be
specified as the executable script. This script contains the path from where the
MPI daemons are launched on each node and the number of MPI daemons to
be launched. This script receives from Condor the list of nodes which will run
the parallel job, and executes the MPI daemon in each node chosen by Condor.
Once the job has finished normally or abnormally, the script notifies Condor
and generate the corresponding outputs. Depending on the parallel application
that will be executed, another script must be configured, which is sent as part of
the arguments, called script.sh. This file contains some environment variables in
order to specify some tasks that are necessary preconditions for the job to run.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3329

Then this script performs the execution of the application. Table 1 shows this
script.

Table 1. Script.sh example

#!/bin/bash -x
EXECDIR="/home/condor/mc2tst"
export rep_from_which_model_is_launched=‘pwd‘
export AFSISIO=$EXECDIR/./mc2/data/
export F_UFMTENDIAN=big
ulimit -s unlimited
cd $EXECDIR
mkdir $EXECDIR/tmp
export TMPDIR=${EXECDIR}/tmp
$EXECDIR/mc2dm.Abs > $EXECDIR/salida_mc2.out

3.3 Advantages of Using Condor to Run MPI Jobs on partially
dedicated resources

The advantage of launching an MPI job with Condor resides in the fact that is
not necessary to configure a file with all the available resources (which may or
may not be dedicated). If jobs are launched with native MPI, this file must be
manually configured, which is commonly called machinefile or mpd.hosts. This
file should contain the names of machines and number of MPI processes to run
per node.

Besides assembling this file with the nodes to run the job, Condor allows
to specify any restrictions or requirements that the nodes have to have to run
the job. For example, the node must have an especific load average, below an
spcified number, a minimum amount of RAM memory or a minimum of free disk
space. These requirements can not be specified when using MPI alone, without
Condor or another batch schedulers like PBS [19], LFS [20], Torque [21] and
so on. See for instance “mpiexec” commands for additional information [22].
However Condor can manage heterogeneous and non dedicated resources while
the other schedulers are used for clusters only.

Condor will submit jobs only to those nodes, leaving the others for oppor-
tunistic use.

In Table 2 an example of a Condor submit description file (ClassAd) for a
parallel job is shown. This ClassAd was configured to submit the meteorological
application Mesoscale Compressible community model (MC2)[25]

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3330

Table 2. Condor ClassAd

Requirements= (machine == labredes01.labredes.ryt.itu.uncu.edu.ar)||
machine == labredes02.labredes.ryt.itu.uncu.edu.ar)||
machine == labredes03.labredes.ryt.itu.uncu.edu.ar)||
machine == labredes04.labredes.ryt.itu.uncu.edu.ar)||
machine == labredes05labredes.ryt.itu.uncu.edu.ar)||
machine == labredes06.labredes.ryt.itu.uncu.edu.ar)||
machine == labredes07.labredes.ryt.itu.uncu.edu.ar)||
machine == labredes08.labredes.ryt.itu.uncu.edu.ar)||
machine == labredes09.labredes.ryt.itu.uncu.edu.ar))
log = logfile
output = outfile.$(NODE)
error = errfile.$(NODE)
arguments = script.sh
machine_count = 8
should_transfer_files = yes
when_to_transfer_output = on_exit
queue

4 Infrastructure and Preliminary Examples

4.1 Infrastructure

In order to process the jobs for the experiments carried out for this paper,
three dedicated clusters are available. These ones Twister, Storm and Opteron,
respectively. There are also two part-time teaching laboratories. These pool are
interconnected through a node called Tesla which acts as a router, as can be
seen in figure 2.

Storm has a master workstation serving as front end, and 12 slaves nodes.
All have a 3.0 GHz Intel P4 processor, 1GB of RAM memory, SATA HDD of 80
GB, and a Gigabit Ethernet network adapter. In this cluster was installed the
Rocks 5.3[16] distribution, Condor 7.4.1 as middleware Condor and MPICH2
version 2[11].

Twister has a master workstation serving as front end and 8 slaves nodes. All
have a Core 2 Duo 3.0 Ghz processor, 4 GB of RAM memory, 160GB of HDD
and a Gigabit Ethernet network adapter. In this cluster was installed the Rocks
5.0 distribution, Condor 7.4.1 as middleware and MPICH version 2.

Opteron has 4 nodes consisting of 242 AMD Opteron processor of 1.6 GHz
and 2.0 GB of RAM memory each one. The distribution Debian Lenny 2.6.18skas
kernel was installed as operating system and Condor 7.4.1 as middleware. This
cluster has MPICH version 2.

Two teaching laboratories, called Operating Systems and Networking, have
20 and 9 nodes respectively, with similar characteristics. These nodes have a
Pentium 4 2.8 GHz processor, 80 GB HDD,1 GB of RAM memory and Fast
Ethernet NIC. Both laboratories have CentOS 5.4 as operating system, Condor
7.4.1 as middleware and MPICH version 2.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3331

Fig. 2. Infrastructure used to process preliminary and application examples

4.2 Preliminary Examples

First, a serial program to integrate a function by the method of trapezoids
[12], was run in one node of each pool. The results are shown in Table 3. This
experiment was performed to obtain performance indexes of the available pool

These results allowed to calculate the performance index to measure the com-
puting power of individual nodes of the pool in relation to the cluster front end
Twister, and the performance cumulative index, which is useful for applications
with scanning parameters for load balancing. The results of these experiments
are shown in Table 4.

In order to obtain another measurement of the performance index of the
pool, a serial algorithm of matrix multiplication was run on one node of each
pool. The results can be observed in table 5. A matrix dimension of 4096 has
been considered.

Table 3. Trapezoids method

Pool Time (seconds)

Twister 18

Opteron 46

Storm 61

Laboratories 65

Table 4 shows the performance index obtained for each pool.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3332

Table 4. Performance index

Pool
Hardware

characteristics
Number of

nodes
Number of

cores
Processing

time

Relative
Performance

Index

Cumulative
Performance

Index

Twister
Core 2 duo 3.0GHz

4 GB RAM
16 32 18 1 32

Opteron
Opteron 1.6 GHz

2GB RAM
4 8 46 2,55 3

Storm
Pentium 4, 3.0 GHz

1GB RAM
12 12 61 3,39 3,5

Networking
Laboratory

Pentium 4, 2.8 GHz
1GB RAM

9 9 65 3,61 2,5

Operating
Systems

Laboratory

Pentium 4, 2.8 GHz
1GB RAM

20 20 65 3,61 5,5

Some conclusions drawn from table 4. Twister cluster performance is markedly
superior to the rest of the nodes. Note that all nodes have a estimated combined
computing power of 14 cores of the Twister cluster. This performance differ-
ence is not important if all nodes are used for parameter sweeping problems or
validation statistics in Artificial Intelligence.

However, the reality is very different for simulation application problems
governed by differential equations which usually divide the spatial domain of
interest. In this case, the iteration “n+1” can not be processed until all the
calculations of the “n” iteration have been calculated. If the domain of interest
is evenly divided by all nodes (in other words assigning the same number of
finite element, finite difference nodes or equivalent in other codes), then some
nodes will delay up to 3.5 times the cluster Twister. Then in this case does not
make sense to add a node to the cluster Twister, because the execution will be
delayed.

Table 5. Serial execution time

Pool Time (seconds) Relative Performance Index

Twister 1248 1

Opteron 3646 2,78

Storm 3341 2,68

Laboratories 4678 3,75

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3333

5 Application Examples

5.1 Matrix Multiplication

The matrix calculation is one of the most used tools in the context of numerical
methods in general and in the simulation of engineering problems in particular.
One of the most commonly used operations in the matrix calculation is the
product of matrices. This operation is very suitable for parallelization.

The Cartesian[23] and Fox[12] parallel algorithms implement the matrix mul-
tiplication in parallel environments through matrix decomposition into blocks
or submatrices. The Cartesian algorithm is characterized by requiring large
amounts of RAM memory during its execution and does not make a signifi-
cant use of network communications. Fox algorithm requires small RAM mem-
ory but increases communication times. For a detailed explanation of how these
algorithms work is recommended to consult the work of Costa et al. [24] and
references therein.

The experiments were performed on the teaching laboratories, Opteron and
Storm pools. In the case of the Twister cluster, the experiments were performed
with a single core on 4 nodes. The experiments with 16 cores, were carried out
by using two cores of the 8 nodes of Twister.

The matrix multiplication was performed with native MPI and MPI over
Condor in order to measure the Condor’s overhead that is added on the execution
of parallel applications with MPI.

Table 6 presents the results of computational experiments for matrix multi-
plication with cartesian and Fox parallel algorithms. It is worth noting that in
table 6, MPI means that the job has been executed with native MPI only, and
Condor with MPI over Condor.

Table 6 shows that the implementation of the Cartesian algorithm for matrix
multiplication is the one that offers the lowest execution time. Fox’s algorithm
for matrix multiplication is characterized by requiring intensive network com-
munication during its execution and does not make a significant use of the RAM
memory of the nodes. The Twister and Storm clusters are connected through a
Gigabit Ethernet switch, so in this case where the primary bottleneck is com-
munication, these clusters have the best performance, as shown in Table 6.

When these algorithms are run on 4 cores, it is observed that increasing the
matrix dimension, implies increasing the runtime. When these algorithms are
run on 16 cores, as in the case of the Twister cluster or in the 16 cores of the
teaching laboratories pool, a significant decrease in execution time is achieved for
matrices of dimension 2048 and 4096, in comparison with the implementation of
algorithms for the same dimensions in 4 cores. Note, the execution time increases
notoriously for matrices order higher than 2048, possibly by the communication
time between nodes.

Briefly, if memory usage is not a limitation, the Cartesian is preferred over
the the Fox algorithm, because the former offers better performance and lower
execution time with respect to the later. From Table 6 is clear that the overhead
that Condor adds, concerning the execution of algorithms with native MPI, is

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3334

Table 6. Parallel execution time (seconds)

4 cores - Networking
laboratory

4 cores - Storm

Cartesian Fox Cartesian Fox

Matrix dimension MPI Condor MPI Condor MPI Condor MPI Condor

2048 35 45 137 148 25 33 112 119

4096 242 261 1130 1141 197 208 897 928

4 cores - Opteron’s cluster 4 cores - Twister
Cartesian Fox Cartesian Fox

Matrix dimension MPI Condor MPI Condor MPI Condor MPI Condor

2048 52 61 310 330 15 22 70 85

4096 368 379 2709 2760 113 133 871 908

16 cores - Operating System
and Networking Laboratories

16 cores - Twister

Cartesian Fox Cartesian Fox

Matrix dimension MPI Condor MPI Condor MPI Condor MPI Condor

2048 21 35 49 60 6 14 8 16

4096 133 169 314 350 39 50 130 139

negligible, except in the case that the runtime of the application itself is very
small.

5.2 MC2 Meteorological Model

In order to test the mixed heterogeneous infrastructure built up with partially
and/or fully dedicated infrastructures a research/production code is used. In
this way one of the the main objectives of this paper can be discussed. For this
purpose the the Canadian Mesoscale Compressible Community Model (MC2)is
chosen.

The MC2 is a fully-compressible, nonhydrostatic, limited-area model capable
of one-way self-nesting. MC2 equations are formulated based on the Euler equa-
tions (EQ) for a gas on a sphere. These equations are complemented by another
set which incorporates the model physics that are processes not resolved explic-
itly such as: cumulus parametrization, boundary layer, land-surface interactions,
radiation and microphysics.

The numerical model is based on a finite-difference scheme with semi-implicit
and semi-Lagrangian approach. MC2 code has been parallelized to improve its
performance. This is accomplished by subdiving the computational domain in
the horizontal while keeping the vertical domain dimension unchanged. Each
computational subdomain is distributed among different processors with a halo
region (ghost nodes) containing information of the boundary subdomains of each
neighbour processor. It is worth noting that the halo region extent in the vertical
since no vertical subdivision has been made in the global computational domain,
so that we could identify them as ghost fronts or slabs instead of ghost nodes. The

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3335

halo is updated every timestep by exchanging information between neighbour
computational processors creating heavy network traffic.

As the computational domain can be divided in many ways (topology), dif-
ferent domain decompositions has been explored for a given amount of available
CPUs. For instance given 12 nodes, different horizontal domain decompositions
are possible namely: 12x1,2x6 and 3x4. All of these possibilities were tested and
no major differences in the total integration time has been found. Interested
readers are referred to [25] for a complete description of the MC2 dynamics and
[26] for a complete description of the MC2 physics.

Only the results from the 600 m run are analyzed to understand the storm
scale features. Following the initiation of convection, two storm systems devel-
oped. One system corresponds to a right moving supercell while the other is a
left mover [27].

These systems are depicted as S1 and S2 in figure 3. S1 intensifies into a
supercell and will be the focus of this study, whereas S2 fails to intensify and
propagates toward the left of the mean wind (Fig. 3). The mechanisms leading
to the formation of S1 and S2 are explained in [27].

Briefly, the development of vertical rotation in S1 and S2 occurs through
the vertical tilting of the environmental horizontal vorticity, resulting in a pair
of vortices. The presence of the downdraft splits the storm system into a cy-
clonic and an anticyclonic rotating pair. The interaction of the updrafts with
the counter-clockwise rotating winds of the environment (see Fig. 3) favors the
development of S1 and leads to the weakening of S2. A tornado forms at the tip
of the hook-echo shape of storm S1.

MC2 application due to its inherent characteristics usually presents im-
portant communication times in comparison with total execution time. Con-
sequentely the perfomance of Data Network affects the results. The experiments
conducted discuss this issue.

The problem presented have been processed with dedicated clusters, par-
tially dedicated Condor pool collected at teaching labs and mixed installations
conformed by dedicated and no dedicated nodes. Clusters Twister, Opteron and
Storm provides the resources for dedicated nodes and Teaching Labs infrastruc-
ture was chosen for non-dedicated nodes. A mixed infrastructure was built up
adding resources from Storm cluster and Teaching Labs as well.

In Figure 4 a log-log graph of the computation times required to process the
problem defined in Figure 3 can be observed. All the curves shows MPI over
Condor CPU times, except for the case of mixed dedicated and non-dedicated
resources where both plain MPI and MPI over condor CPU times are shown.

The results obtained using dedicated results are discussed in first place. From
figure 4 can be observed that CPU times reduces as the number of nodes in-
creases. Due to the number of nodes available from clusters a minimum of CPU
time has not been reached in the different processes carried out for dedicated re-
sources. While Storm and Opteron clusters have similar CPU capacity (see table
5) Opteron CPU time required to process the simulation is almost 3 times larger
than the Storm’s one. This result can be explained because Opteron cluster is

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3336

Fig. 3. The domains of the simulation. D1, D2, D3 and D4 correspond respectively to
domains with grid size of 600 m, 200 m, 70 m and 30 m respectively. S1 (S2) is the
right (left) moving storm.

 400

 600

 800

 1200

 1500

 3000
 3400

 4500
 5400

 9000

 1 2 4 8 12 16 20 32 36

Ti
m

e(
Se

c)

Number of cores

Condor execution time for MC2 metheorological model

Twister
Storm

Opteron
Labs_Storm_Condor

Labs_Storm_MPI

Fig. 4. Condor execution time for MC2 meteorological model

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3337

linked using a Fast Ethernet network and Storm is based on a Gigabit Ethernet
one. Moreover, from the comparison of Twister and Storm results a difference of
performance, according table 5, is not reached. Again in this case communication
times are hiding the difference of CPU performance of these clusters. Condor’s
overhead has neither been shown in the graphics nor reported in tables, but no
important values have been found.

The same problem has been processed using a mixed infrastructure collecting
nodes from the teaching labs (non dedicated resources) and Storm cluster (dedi-
cated ones. The obtained results are denoted like Labs_Storm_Condor for MPI
over Condor and Labs_Storm_MPI for plain MPI studies respectively. The first
12 nodes were chosen from the labs pool in order to compare with storm results
discussed in the paragraph above. The difference of CPU time shown in figure 4
in favor of Storm can be explained in this case in terms of network performance.
It is important to note that in this case no practical difference can be observed
from MPI results and MPI over Condor ones for the first 12 nodes. The remain-
ing nodes have 12 to 36 cores chosen in a random way by Condor, so a true
heterogeneous infrastructure is built up in this case. The minimum CPU time is
reached for 16 nodes approximately. For a larger quantity of nodes CPU times
increases because communication times are larger than processing ones. In this
case overhead shows larger values than the above discussed results. A possible
reason can be found in figure 2 that shows the infrastructure. Different VLAN
has to be routed when resources from labs and Storm are mixed and latency
is greater in this case. On the other hand resources are linked using different
speed network, then it is expected that the slower network will degrade the total
communication time.

6 Conclusions

In the paper the execution of MPI applications over a Condor environment has
been studied.

In this sense different installation and configuration tasks required in order
to execute the MPI applications with Condor over partially dedicated resources
have been discussed. Some advantages of Condor in comparison with plain MPI
processes at installation and configuration level have been pointed out as well.

From the results of the different examples processed both on dedicated (clus-
ters), partially dedicated resources or mixed infrastructure can be said than
Condor overhead does not represent a significant increase in execution times of
parallel MPI applications with MPI. From the processed experiments can be
observed that overhead is smaller for dedicated resources and remains bounded
in this case. For partially dedicated resources the same conclusion can be stated.
However for mixed heterogeneous infrastructure the overhead found is slightly
larger. A possible explanation can be found in the different networks used (Fast
Ethernet for Labs and Gigabit Ethernet for Storm). On the other hand different
VLANs have to be routed and unavoidable latency is added as well.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3338

It is important to point out that a production code like MC2 has been able to
run in Condor managed infrastructure without important overhead. The larger
CPU times obtained for MC2 in this case can be explained for the performance
of the network for similar hardware.

The experiments carried out shown that besides other well known features
of Condor MPI applications can be processed as well. In this way Distributed
Computing infrastructure based on partially dedicated infrastructure like teach-
ing labs or similar equipment can be a valuable tool in order to enhance ded-
icated clusters or even more important provide entry level High Performance
Computing infrastructure.

7 Acknowledgments

The first author acknowledges the scholarship granted by the National Univer-
sity of Cuyo. The financial support provided by SECTyP projects 06/B194 and
06/M023 at National University of Cuyo and project PAE-PICT 2312 granted
by the National Agency for Scientific and Technological Promotion is gratefully
acknowledged.

References

[1] Thain D., Tannenbaum T., and Livny M.: Distributed Computing in Practice:
The Condor Experience. Computer Sciences Department, University of Wisconsin-
Madison, http://www.cs.wisc.edu/condor/publications.html, 2002.

[2] Livny M., Basney J., Raman R. and Tannenbaum T.: Mechanisms for High
Throughput Computing. Computer Sciences Department, University of Wisconsin-
Madison, http://www.cs.wisc.edu/condor/publications.html, 1997.

[3] Martínez P., Infraestructura para computacion de alta disponibilidad y adminis-
tracion de recursos mediante Condor, Tesis de Maestría (en curso), Carrera de
Maestría en Redes de Datos, Facultad de Informática, Universidad Nacional de La
Plata.

[4] Martínez P., García Garino C., Catania C. and Monetti J.: Experiencias en com-
putación de alta disponibilidad con el entorno Condor. In: II Encuentro de In-
vestigadores y Docentes de Ingeniería. Desarrollos e Investigaciones Científico-
Tecnológicos en Ingeniería. Maldonado, G., Veca, A. and Cremades, H. (eds.),
Facultad Regional Mendoza, Universidad Tecnológica Nacional , Mendoza, pp.
157-163, 2007.

[5] Martínez P., Catania C., García Garino C. and Díaz J.: Reconocimiento de patrones
de tráfico de red en un ambiente Condor. In: VIII Workshop de Procesamiento
Distribuido y Paralelo, XIII Congreso Argentino de Ciencias de la Computación,
Universidad del Nordeste, Corrientes, pp.1288-1299, 2007.

[6] C. A. Catania, C. Careglio, D. Monge, P. Martínez, A. Mirasso y C. García Garino:
Estudios Paramétricos de Mecánica de Sólidos en Entornos de Computación Dis-
tribuida, Mecánica Computacional, Vol. 27, A. Cardona et al. (compiladores),
AMCA, Santa Fe. Argentina, ISSN 1666-6070, pp. 1063-1084, 2008.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3339

[7] Careglio C., Monge D., García Garino C. y Mirasso A.: Simulación numérica del
ensayo de tracción simple en entornos de computación distribuida. In: V Encuentro
de Investigadores y Docentes de Ingeniería. Desarrollos e Investigaciones Científico-
Tecnológicos en Ingeniería. Facultad Regional Mendoza, Universidad Tecnológica
Nacional, Los Reyunos, San Rafael, Mendoza, 2009.

[8] Martínez P., Catania C., Millán E., García Garino C. and Díaz J.: Procesamiento
distribuido mediante el entorno Condor. Gestión de recursos total y parcialmente
disponibles. In: V Encuentro de Investigadores y Docentes de Ingenieria. Desar-
rollos e Investigaciones Científico-Tecnológicos en Ingeniería. Facultad Regional
Mendoza, Universidad Tecnológica Nacional, Los Reyunos, San Rafael, Mendoza,
2009.

[9] Lumb I., HPC Grid, Cap. 7 en Grid Computing: A practical Guide to Technology
and Applications, Ahmar Abbas, Charles River Media, 2003.

[10] MPI Forum, http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
[11] MPICH, http://www.mcs.anl.gov/research/projects/mpich2/
[12] Pacheco P. S.:Parallel Programming with MPI. Morgan Kaufmann D., Publishers,

Inc. 1997
[13] Sanz A.: Condor. Manual de usuario para el cluster HERMES. Insti-

tuto de Investigación en ingeniería de Aragón, Universidad de Zaragoza,
http://i3a.unizar.es/hermes/manual_hermes.pdf, 2006.

[14] The Globus Toolkit, Globus Toolkit 4.0.4, http://www.globus.org/toolkit/, 2010
[15] Mp2script, http://www.escience.cam.ac.uk/ mcal00/condor/mp2script.asc
[16] Rocks, http://www.rocksclusters.org/wordpress/
[17] OpenMPI, http://www.open-mpi.org/, 2010.
[18] Running MPICH jobs in Condor:

http://www.cs.wisc.edu/condor/manual/v6.1/2_9Running_MPICH.html
[19] PBS, Portable Batch System: http://www.pbsworks.com
[20] LSF, Load Sharing Facility :

http://www.platform.com/workload-management/high-perfomance-computing/lp
[21] Torque:

http://www.clusterresources.com/products/torque-resource-manager.php
[22] Mpiexec command, Ohio Supercomputer Center:

http://www.osc.edu/ djohnson/mpiexec/index.php
[23] Grama A., Karypis, G., Kumar V. and Gupta A., et.al.: Introduction to Parallel

Computing. Addison-Wesley, 2003.
[24] Costa N., Catania C., García Garino C.,León O. and Silva M.: Cálculo de Pro-

ductos Matriciales en Cluster Beowulf. II Encuentro de Investigadores y Docentes
de Ingenieria. Desarrollos e Investigaciones Científico-Tecnológicos en Ingeniería.
Rivera, S. and Núñez Mc Leod J. (eds.) Facultad de Ingeniería, Universidad Na-
cional de Cuyo, pp. 37-44, 2006.

[25] Benoit R., Desgagné M., Pellerin P., Pellerin S., Chartier Y. and Desjardins S.: The
Canadian MC2: A semi-implicit semi-Lagrangian wide-band atmospheric model
suited for fine-scale process studies and simulation. MWR, vol. 125, pp 2382-2415,
1997.

[26] Mailhot J., Belair S., Benoit R., Bilodeau B., Delage Y., Fillion L., Garand L.,
Girard C., and Tremblay A.: Scientific description of the RPN physics library -
Version 3.6, Recherche en Prevision Numerique, Atmospheric Environment Service,
Dorval, Quebec, pp. 188, 1998.

[27] Klemp, J. B. and Rotunno R.: Dynamics of tornadic thunderstorms. ARFM, vol.
19, pp 369-402, 1987.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3340

