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Heterogeneity across neural populations: Its significance for the dynamics
and functions of neural circuits
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Neural populations show patterns of synchronous activity, as they share common correlated inputs. Neurons
in the cortex that are connected by strong synapses cause rapid firing explosions. In addition, areas that are
connected by weaker synapses have a slower dynamics and they can contribute to asymmetries in the input
distributions. The aim of this work is to develop a neural model to investigate how the heterogeneities in the
synaptic input distributions affect different levels of organizational activity in the brain dynamics. We analytically
show how small changes in the correlation inputs can cause large changes in the interactions of the outputs that
lead to a phase transition, demonstrating that a simple variation in the direction of a biased skewed distribution
in the neuronal inputs can generate a transition of states in the firing rate, passing from spontaneous silence
(“down state”) to an absolute spiking activity (“up state”). We present an exact quantification of the dynamics
of the output variables, showing that when considering a biased skewed distribution in the inputs of neuronal
population, the critical point is not in an asynchronous or synchronous state but rather at an intermediate value.
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I. INTRODUCTION

Modern experimental methodologies provide exceptional
insights into the shape and features of neural circuits in the
brain [1–4]. Recent advances such as neuropixels open the
possibility of reading the statistical behavior of the neural
activity by studying large populations of neurons [5–10].
However, to understand the complex statistics contained
within these data, challenging research using new methodolo-
gies of complex systems needs to be carried out [11].

Complex systems in neuroscience are one of the fastest
growing fields as new analysis and modeling techniques are
required to extract meaning from the vast amount of data
produced by recent brain measurement technologies [2–10].
Investigating how neurons process information from sensory
inputs and complete computations to perform direct cognitive
tasks is one of the main objectives of researchers working in
neuroscience. Understanding how information is transmitted
in the brain is of fundamental importance for gaining further
insights into how the brain works [12–16]. However, infor-
mation processing is susceptible to the brain states and the
dynamics of the functional circuits [17,18].

Many properties of cortical circuits, such as recurrent
excitation loops as well as feedback and forward inhibi-
tion, redundancy, and degeneracy, create substrates for a
wide dynamic range of nonlinear and skewed distributions
in the neuronal inputs [18–23]. Importantly, we still lack a
proper theoretical framework, when considering the hetero-
geneities of the neuronal inputs, to investigate the nonlinear
statistical emergent properties of the neural populations. In
neuroscience, we usually investigate the dynamic activity of
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archetypal ensembles of neurons and their functional connec-
tivity. It is generally assumed that functional and structural
brain variables, such as the firing rates of individual neurons
or the synchronous discharge of neural populations, have a
bell-shaped input distribution [24–26]. That is, the variables
describing functional and structural parameters of the brain
are assumed to follow a normal distribution. This kind of
statistic is based on the symmetry and normality; however,
cognitive tasks, for example, can provide an important reshap-
ing of the neural inputs.

At many physiological and anatomical levels, the distribu-
tions of the parameters follow arithmetic distributions, to a
greater or lesser extent. The main issue is that most neuro-
physiological features of the brain are identified by strongly
skewed distributions with heavy tails [18–23]. The skewed
statistic is manifested through neural inputs that follow a
non-Gaussian statistic as found in the olfactory bulb of flies
[20] and also in the auditory cortex of mice [19]. This skewed
statistic is also manifested in the response to a sensory stim-
ulus such as light, touch, or sound that has been found to be
proportional to the logarithm of stimulus amplitude [27–32].
Moreover the perception time and reaction time also change
as the logarithm of the distance length, time interval, and even
the decision-making and short-term memories follow this
kind of statistic [33–35]. Thus, skewed distribution suggests
a systematic general organization that allows the functional
diversity within assemblies of neurons even if they are the
same type of cell. That is to say, a neuronal population can be
highly homogeneous, but for some particular conditions just a
given subset of neurons could be activated by the meaningful
inputs, causing skewed distributions [18–23].

Brain sensitivity to external inputs incorporates synaptic
versatility so that neuronal reactions rely not only on synaptic
plasticity but also on the behavioral states and the specific
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cognitive process, leading to skewed distributions [18–23].
Thus, the nonlinearity of input and output neural relation-
ships can also transform the huge variability of the synaptic
input into skewed distribution of firing rates [23]. This sug-
gests that asymmetric distributions are fundamental to the
structural and functional organization of the brain. Power-
law and log-normal distributions are examples of asymmetric
distributions. Both distributions are just a subset of heavily
right skewed distributions. The justification for the use of the
former is the appearance of scale-free phenomena, and the
justification for the latter is the fact that such a distribution is
the limit according to the central limit theorem for multiplica-
tive processes, i.e., for the product of independent random
variables [18,36].

Both types of distributions look very similar in a log-log
graph, particularly in the tail zone. Thus, many times using
one or the other to adjust the experimental data ends up
being related to the measurement resolution of the specific
section of the data, where both distributions have very dif-
ferent conformations, and to the previous hypothesis about
the phenomenon under study following a skewed distribution
[18–23]. Beyond the extensive experimental evidence about
asymmetric distributions in sensory and other mental phe-
nomena [18–23], very little is known about the process that
gives rise to such distributions and the effect they have on
a population of neurons. As is well known in physics, the
appearance or disappearance of symmetries is related to the
phase transitions in a system [37].

The main purpose of this work is to develop a neuronal
modeling in order to investigate how skewed distributions
affect the different levels of organizational activity in the brain
dynamics. In the functional networks of the brain, the neurons
in the cortex that are connected by strong synapses give rise
to rapid firing bursts. Moreover, areas that are interconnected
by weaker synapses have slower dynamics and they can con-
tribute to produce a significant skewness in the distribution of
inputs [18–23]. Thus, brain computations depend upon how
neurons remodel inputs to spike outputs [37,38].

To decipher input-output transformation in cortical net-
works, we have to take into account that neuronal inputs can
be characterized by strongly skewed distributions [18–23].
These skewed distributions have asymmetric alterations and
heavy tails that cannot be modeled by bell-shaped distribu-
tions. Information in neural populations is often encoded in
the activity of highly interconnected neural inputs that follow
skewed statistics, so neural populations show higher order
correlations in both their inputs and outputs due to intrinsic
mechanisms of the neural circuits [18–22]. Despite extensive
evidence of skewed distributions in the brain, very little is
known about the origin of the cortical circuits and brain mech-
anisms that give rise to such distributions.

In this paper, we provide a complex system approach to
understand the theoretical basis of the brain skewed distribu-
tions, in order to identify their implications for information
processing. We introduce a model capable of generating spike
trains by thresholding a multivariate skew distribution in their
inputs. In order to do it, we use a recent extension of a
multivariate distribution that has a parameter corresponding
to the asymmetry of a skewed distribution [39–44] to take into
account the heterogeneity of the neuronal synaptic inputs. The
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FIG. 1. Univariate closed skew-normal distribution for mean
μ = 0, standard deviation σ = 1, and three values of skew parameter
γ = −2, 0, 2.

aim of this work is to investigate, at the analytical level, how
the effect of an asymmetry in the neuronal input distributions
could establish the transition from a spontaneous silence to
synchronous states in a population of neurons, improving the
neural systems’ ability to powerfully encode data over differ-
ent scales.

II. MULTIVARIATE SKEW-NORMAL DISTRIBUTIONS

The multivariate skew distribution used here is the one
introduced in Refs. [39–44]. This distribution was conceived
as a multidimensional extension of the skew-normal distribu-
tion [40], with the desirable property of closure under linear
transformation. A continuous random vector Z is said to have
a closed skew Gaussian distribution if its probability density
function (PDF) is given by [39]

fn(z; μ,6,0) = φn(z; μ,6)

8n(0; I + 0 6 0t )
8n(0(z − μ)). (1)

Here μ ∈ Rn×1, I is the identity matrix, 6 is a positive
definite matrix, 0 ∈ Rn×n, φn(·; μ,6), and 8n(·; 6) denote
the PDF and cumulative density function (CDF) of an n-
dimensional normal distribution with mean μ and covariance
matrix 6 [39]. The superscript t denotes matrix transposi-
tion. In order to alleviate notation, we write φn(·; 0, I ) as
φn(·), and 8n(·; 0, 6) as 8n(·; 6). Thus, we denote the vector
Z having the closed skew-normal (CSN) distribution: Z ∼
CSNn(Eμ,6,0). Examples of univariate and bivariate distri-
butions are plotted in Figs. 1 and 2, respectively.

There are two important properties of this distribution that
we use. First, if we have a collection of n independent random
variables with skew-normal distribution, then the joint distri-
bution of the n random variables is CSN. Hence, the mutually
independent case (i.i.d.) is given by 6 = σ 2I and 0 = γ I .
Second, if Y ∼ CSNn(Eμ,6,0), A is a constant nonsingular
matrix of size n × n and b ∈ Rn is a constant vector, then
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FIG. 2. Bivariate closed skew-normal distribution for mean Eμ = [0, 0], standard deviation 6 = [0.3, 0; 0, 0.3], and four values of skew
matrix: (a) 0 = [0, 0; 0, 0], (b) 0 = [3, 0; 0, −1], (c) 0 = [0, 3; 3, 0], and (d) 0 = [1, −1; −1, −1].

AY + b ∼ CSNn(b + AEμ, A6At , 0A). This last property is
the closure under linear transformations [39–44].

III. SKEWED DICHOTOMIZED MODEL

Based on the recent findings in Refs. [18–23], we assume
that the inputs Z are CSN distributions. Thus, we define a la-
tent variable Z that obeys the closed skew-normal distribution
[39–44] that would be considered the common inputs to all
neurons in the population. The variable Z satisfies Z ∈ Rn×1.
Let us consider an n-dimensional binary random variable
X ² {0, 1}n, we set the spiking outputs (X = 1) if and only
if Z > 0, and silent (X = 0) otherwise. Following the defi-
nition and properties of the closed skew-normal distribution
[39,41–44], we can approximate Z as

Z ∼ CSNn(Eμ,6,0), (2)

where the subscript n means that the dimensions of the vari-
able Z are equal to the number of neurons in the pool, n. In
addition, Eμ is the vector of means, μ ∈ Rn×1, 6 is the matrix
related to the covariance of the normal distribution, and 0 is a
matrix related to the asymmetry of the distribution. If we have
a collection of n independent random variables with skew-
normal distribution, then the joint distribution of the n random
variables is a closed skew-normal distribution [39,41–44].
Thus, 6 = σ 2I and 0 = γ I give us the i.i.d. case, where I
is the n × n identity matrix and σ, γ ∈ R. By the property of
closure under linear transformations of the CSN, we can write

the variable Z as a sum as follows:

Z = Eμ + √
1 − λ ϒ +

√
λ S en, (3)

where ϒ ∼ CSNn(0, σ 2
1 I, γ1I ) ∈ Rn×1, so every ϒi ∼

CSN1(0, σ 2
1 , γ1), and S ∼ CSN1(σ 2

2 , γ2) ∈ R. en is a vector
in Rn×1, and σ1, σ2, γ1, γ2, λ ∈ R. The variable

√
λ S follows

the distribution CSN1(0, λ σ 2
2 ,

γ2√
λ

).
For simplicity, but without losing generality, we choose

σ1 = σ2 = 1.
Here, ϒi is a closed skew Gaussian random variable (with

unit variance) which is independent for each neuron (i.e.,
the independent input), S is a closed skew Gaussian random
variable that is the common input to all neurons, and Eμ is a
constant term giving the mean input. So, by controlling the
parameters λ and γ of our model, we are balancing the terms
corresponding to the independent [second term in Eq. (3)] or
dependent [third term in Eq. (3)] inputs to the neurons. It is
important to emphasize that the correlations in the activity
of these neurons are due to the common input rather than
due to physical connections between them. In some sense,
we are modeling a layer of neurons that are receiving some
common input from another layer or area. Despite that ap-
parent simplicity, a recent study, analytically and numerically
demonstrated the strong connection between the collective dy-
namics produced by the integrate-and-fire neuronal network
and dichotomized models, and showed that the latter is an
accurate model of the former, when modeling the effect of
inputs on the firing statistics of these models [45].
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Let us start with the calculation of the asymptotic firing rate
distribution [24,25,46]. To do this, let us consider the proba-
bility PSDG(X = x) of having a population binary vector X =
x, where SDG stands for skew dichotomized Gaussian (SDG).
Because we are considering a neuron pool, PSDG(X = x) is
only dependent on the number of firing neurons, i.e., kxk =Pn

i=1 xi, where n is the number of neurons. In the case of finite
n, we have

PSDG(X = x) =
Z

z
P(X = x|z)p(z)dz (4)

=
Z ∞

−∞
p√

λS (s0)
nY

i=1

P(Xi = xi|s0)ds0 (5)

=
Z ∞

−∞
p√

λS (s0)
nY

i=1

[1 − L(s0)]1−xi L(s0)xi ds0, (6)

where L(s0) = P(Zi > 0|s0) = P(ϒi > − s0+μ√
1−λ

) = 1 −
P(ϒi < − s0+μ√

1−λ
) = 1 − CDFϒi (− s0+μ√

1−λ
). Here CDFϒi (·)

means the cumulative density function for the random
variable ϒi, and p√

λS means the PDF for the unidimensional

random variable
√

λS in Eq. (3). The first line, Eq. (4), is
obtained using the chain rule for probabilities. Equation (5)
is obtained by replacing Eq. (3) and considering that ϒ is
composed by independent variables ϒi, and the last line,
Eq. (6), comes from the fact that xi are binary variables
[24,25,46].

In this case, the CSN1 reduces to the Azzallini and Dalla
Valle’s skew normal SN [40]. In order to keep all the asym-
metry effects in only one parameter γ , we fix γ1 = 0. In such
case ϒi ∼ N (0, 1). Remembering that the population behavior
is determined by the number of spiking neurons k = kxk =Pn

i=1 xi and that we are dealing with a pool of neurons (i.e.,
all are identical [24]), we can find the distribution of spikes:

PSDG(K = k) = (7)

=
µ

n

k

¶
PSDG(X = x, where kxk = k) (8)

=
µ

n

k

¶Z ∞

−∞
p√

λS (s0)[1 − L(s0)]n−kL(s0)kds0 (9)

=
µ

n

k

¶
QSDG(k). (10)

By defining the normalized firing rate r = k
n , we could put

U (s0) = r log L(s0) + (1 − r) log (1 − L(s0)), in order to have

QSDG(k) =
Z ∞

−∞
p√

λS (s0) exp (nU (s0))ds0. (11)

Thus, in the limit of large n, we can make a saddle-point
approximation [47] and obtain

QSDG(k) ≈
s

2π

−nU 00(s0
0)

p√
λS (s0

0) exp (nU (s0
0)). (12)

Here, L(s0
0) = r is the maximum of the function

L(s0). So, 1 − 8(− s0
0+μ√
1−λ

) = r, with 8 being the cumu-
lative of the standard normal distribution. From here,
we can obtain the value s0

0 = −√
1 − λ 8−1(1 − r) − μ =√

1 − λ8−1(r) − μ. Also, we have U 00(s0
0) = − L0(s0

0 )2

r(1−r) , and
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FIG. 3. Spiking probability for λ = 0.2, γ = −2 (blue dashed
line), γ = 0 (light blue line), γ = 2 (yellow dashed line), and μ =
0.2. We can observe that the skewness parameter, as expected, favors
the states with more or less firing, depending on the sign of γ .

exp (nU (s0
0)) = [rr (1 − r)1−r]n. Moreover, we can determine

that L0(s0
0) = 1√

1−λ
φ(− s0

0+μ√
1−λ

), with φ being the PDF of a
standard normal distribution. Putting all together, we have

QSDG(k) =
r

2πr(r − 1)(1 − λ)

n

p√
λS (s0

0)

φ
¡− s0

0+μ√
1−λ

¢ . (13)

Recalling that
√

λ S ∼ CSN1(0, λ,
γ2√
λ

), we have

p√
λS (s0

0) = 2√
λ

φ( s0
0√
λ

)8( γ2 s0
0√

λ
), where φ and 8 are the PDF

and CDF of the standard normal distribution respectively.
Now we can calculate the spike distribution PSDG(K =

k) = (n
k)QSDG(k). Considering Stirling’s approximation of

the binomial coefficient, (n
k) ≈ √

2πn( n
e )n, we arrive at the

asymptotic spike count distribution f (r) = P(k)/n, with
r = k/n:

f (r) = 2

r
1 − λ

λ

φ(s0
0/

√
λ)

φ(ν)
8

µ
γ2

s0
0√
λ

¶
, (14)

with ν = 8−1(r) and s0
0 = √

1 − λ ν − μ. Let us remark that
although broadly speaking this result has some similarity to
the one obtained for the nonskewed model [24–26,46], we
have, however, included an important factor that takes into
account the biased skewed distribution of the neuronal in-
puts and its asymmetric variations through the parameter γ .
This factor considerably changes the behavior of the spik-
ing probability, as depicted in Figs. 3 and 4. It can be seen
that the skewness parameter favors the states of resting or
synchronized firing, depending on its sign, positive or nega-
tive, respectively. In the case of a bimodal distribution, as in
Fig. 4, the skewness parameter can widely favor one of the
two possible states of the system, modifying the nonskewed
model (light blue curve) and generating a more synchronized
population, both for the simultaneous firing (dark blue curve)
and for the silence (yellow dashed curve).
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FIG. 4. Spiking probability for λ = 0.8, γ = −2 (blue line), γ =
0 (light blue line), γ = 2 (yellow dashed line), and μ = 0.2. We can
observe that the skewness parameter, as expected, favors the states of
rest or firing, depending on the sign of γ .

We can also observe the firing behavior of the population
on the raster plots in Fig. 5. Thus, we directly simulate the
model by sampling n values of a skew-Gaussian distribution,
and we threshold them. If the sampled values are greater than
zero, the neuron fires, and it is plotted as a point on the
corresponding row. This procedure is repeated for each time
step, which corresponds to each column on the raster plot. It
is observed that the increase in γ causes the population to
move from a state in which many neurons are inactive, for
γ = −1.9, to a pattern where the neurons fire synchronously,
for γ = 1.9. Let us remark from Fig. 4 that in the nonskewed
model (i.e., with γ = 0), this distribution is bimodal as in
Refs. [25,26,46]. However, if γ 6= 0 it can greatly favor one
of the system states, either firing or silence, depending on the
sign of the skewness parameter.

IV. TEMPERATURE DEPENDENCE OF THE MODEL

First of all, let us rewrite the asymptotic spike count distri-
bution f (r) as

f (r) = 1

ZSDG
exp

Ã
−1

2

(1 − 2λ)
¡
ν − μ

√
1−λ

1−2λ

¢2

λ

!
, (15)

with ZSDG = 1
28( γ2√

λ
(ν

√
1−λ−μ))

exp (− μ2

2(1−2λ) )
q

λ
1−λ

. Here, ν =
8−1(r).

Let us write the distribution for any model as P(x)
with the temperature dependence T = 1/β as Pβ (x) = P(x)β

Zβ

[25,26,48]. Considering that P(x) = P(k)
(n

k)
= f (r) n

(n
k)

, for large n

the asymptotic distribution of firing at the temperature T =
1/β is fβ (r) = n

Zβ
exp (n(1 − β )η(r))P(rn)β , with Zβ being a

normalization factor and η(r) = −r log(r) − (1 − r) log(1 −
r). The temperature here acts as a way of testing a direction
in the parameter space of the possible models and is not a
physical temperature; the aim is to see if there is anything
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FIG. 5. Raster plot for (a) γ = −1.9 and (b) γ = 1.9, with λ =
0.8, μ = 0.2. Each row represents a neuron, and each point repre-
sents a spike of the neuron. The effect of γ on the model is to modify
the correlations.

special about the model (for T = 1, which would correspond
to the critical one [25,26,48,49]). Figures 6 and 7 depict the
spiking probabilities as a function of the firing rate r and there
we can see the effect of the parameter β for two values of
the input parameter, λ = 0.2 and λ = 0.8, respectively. The
temperature parameter then represents a global modification
to correlations, and we need to explore the behavior of the
model in relation to the λ and γ parameters.

The parameter γ acts as a control parameter. In the case of
β < 1, from Figs. 6(a) and 7(a), we observe wide unimodal
probability distributions. In this phase, we could say that the
system is in a “disordered phase” when the temperature is near
criticality with β < 1. In this case, it is very unlikely that the
system is in extreme cases of synchronous firing or silence
for the ensemble of neurons. Notice that Fig. 6(b) depicts uni-
modal probability distributions, when considering any value
of γ . Figure 7(b) shows unimodals probability distributions
for γ 6= 0 and a bimodal distribution if γ = 0. We can see
from Figs. 6(c) and 7(c) that at a temperature near criticality
with β > 1 and γ = 0, the probability distribution is bimodal
with equal probability for the state of silence or synchronous
firing, then there is a symmetry between these states. We can
relate this region to an “ordered phase,” in which the system
has a high probability of being in a state with all neurons in
the same spiking condition. In addition, in the ordered phase,
the skewness parameter γ breaks the symmetry between the
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FIG. 6. Spiking probability versus the firing rate r considering
the model with temperature dependence for λ = 0.2, γ = −2, 0, 2,
and μ = 0.2. (a) Corresponds to a point near criticality with β < 1.
(b) Considering the critical point β = 1. (c) Corresponds to a point
near criticality with β > 1.

synchronous firing and quiescent state when the temperature
is near criticality with β > 1 and when considering a change
in the skewness from γ < 0 to γ > 0.

We can characterize the behavior of the system as a func-
tion of temperature and the number of neurons by calculating
the entropy rate and the specific heat [25]:

sβ =
Z 1

0
fβ (r)η(r)dr, (16)

cβ = n
Z 1

0
fβ (r)[η(r) − sβ]2dr. (17)
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FIG. 7. Spiking probability vs the firing rate r considering the
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Figures 8 and 9 show the entropy rates as a func-
tion of β, for λ = 0.2 and λ = 0.8, respectively. The
entropy rates are shown for three different values of γ =
−2, γ = 0, γ = 2, and for several population sizes (N =
100, 1000, 10 000, 100 000). It can be seen that for very large
population sizes, the effect of the skewness parameter γ on
the entropy rate is not significant; however, a transition point
can be appreciated as the temperature approaches the critical
one (β = 1).

Specific heat as a function of β is shown in Figs. 10 and 11.
Figure 10 shows that the effect of the skewness parameter is to
slightly shift its maximum. It is observed from Figs. 10 and 11
that the effect of the parameter becomes more significant over
the critical temperature and with a smaller number of neurons.
When considering β = 1 and γ = 0, our current formalism
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FIG. 10. Specific heat as a function of β for λ = 0.2, μ = 0.2,
and considering N = 100, 1000, 10 000, 100 000 neurons. (a) Cor-
responds to a skewness parameter γ = 0. (b) Setting the skewness
γ = −2. (c) Corresponds to γ = 2.

reduces to the one proposed in Refs. [24–26], and the system
is at a critical point as in Refs. [24–26].

It is interesting to calculate the behavior with γ and β

for the average firing rate hriβ = R 1
0 fβ (r)rdr. The average

firing rate versus the deformation parameter γ is presented in
Figs. 12 and 13. Figures 12(a) and 13(a) show that when the
temperature is near criticality with β < 1, the average firing
rate is just slightly dependent on the skewness parameter. Let
us point out, as depicted in Figs. 12(b) and 13(b), that at
the critical temperature β = 1 the system is not in a state of
silence or full synchronous firing, but instead is more likely
to be at an intermediate value. The current results are in
agreement with the recent findings reported in Refs. [37,50].
Next, in order to show a more appropriate comparison with
the findings of Refs. [37,50], we characterize the changes in
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FIG. 11. Specific heat as a function of β for λ = 0.8, μ = 0.2,
and considering N = 100, 1000, 10 000, 100 000 neurons. (a) Cor-
responds to a skewness parameter γ = 0. (b) Setting the skewness
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

M
ea

n 
F

iri
ng

 R
at

e  = 0.2,  = 0.2  < 1 N = 1000
 = 0.2,  = 0.2  < 1 N = 10000
 = 0.2,  = 0.2  < 1 N = 100000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

M
ea

n 
F

iri
ng

 R
at

e  = 0.2,  = 0.2  = 1 N = 1000
 = 0.2,  = 0.2  = 1 N = 10000
 = 0.2,  = 0.2  = 1 N = 100000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

M
ea

n 
F

iri
ng

 R
at

e

 = 0.2,  = 0.2  > 1 N = 1000
 = 0.2,  = 0.2  > 1 N = 10000
 = 0.2,  = 0.2  > 1 N = 100000

(c)

(b)

(a)

FIG. 12. Mean firing rate as a function of γ and considering
N = 1000, 10 000, 100 000 neurons, μ = 0.2 and λ = 0.2. (a) Cor-
responds to a point near criticality with β < 1. (b) Considering the
critical point β = 1. (c) Corresponds to a point near criticality with
β > 1.

the dynamics of the population states by using the standard
deviation (Std) of the population firing rate. We choose to
estimate standard deviations instead of calculating the coef-
ficient of variation (CV) as in our current study we are not
averaging over trials. It is important to emphasize that the Std
is an accurate measure of synchronization. The Std of the pop-
ulation firing rate is calculated as Std = R 1

0 (r − hriβ )2 fβ (r).
Figure 14 and 15 depict Std versus γ , which shows the effect
of the parameter γ for two values of the inputs parameter λ =
0.2 and λ = 0.8, respectively. Larger values of Std correspond
to more variability in the firing rate, showing that the system
has more possibility of being in some synchronized or desyn-
chronized state and highlighting that it is in an intermediate
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FIG. 13. Mean firing rate as a function of γ , considering N =
1000, 10 000, 100 000 neurons, μ = 0.2 and λ = 0.8. (a) Corre-
sponds to a point near criticality with β < 1. (b) Considering the
critical point β = 1. (c) Corresponds to a point near criticality with
β > 1.
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FIG. 14. The standard deviation (Std) as a function of γ and con-
sidering N = 1000, 10 000, 100 000 neurons, μ = 0.2 and λ = 0.2.
(a) Corresponds to a point near criticality with β < 1. (b) Consider-
ing the critical point β = 1. (c) Corresponds to a point near criticality
with β > 1.

state between full synchronization and full desynchronization,
as in Refs. [37,50]. Figures 14(a) and 15(a) show that as the
temperature is below the critical one the synchronized states
are significantly curtailed. Figures 14(b) and 15(b) allow us to
determine that at the critical temperature β = 1 the system is
more likely to be at an intermediate value, instead of being at
full synchronous firing (in agreement with the recent findings
reported in Refs. [37,50]). That is, Figs. 14(c) and 15(c) show
that the value of the Std peak increases by approximately a
factor of 2 as the temperature goes from β = 1 to β > 1.
For the sake of completeness, we refer to the Appendix for
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FIG. 15. The standard deviation (Std) as a function of γ , con-
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FIG. 16. Mean firing rate as a function of the temperature con-
sidering γ = −2 and γ = 2, with μ = 0.2.

details of the calculations of avalanche size distributions for
parameters that present a power-law distribution (we use re-
cent advanced tools developed in Ref. [51]).

In addition, as depicted in Figs. 12(c) and 13(c), when the
temperature is near criticality with β > 1, we find that γ can
highly enhance or weaken the firing of neurons, depending on
the sign of γ . That is, for γ < 0 the population is in a state of
rest, while for γ > 0 the system is in a synchronous state, with
the majority of neurons firing, as seen in Figs. 12(c) and 13(c).
That is, the effect of the skewness parameter is to change the
dynamics of the population states by favoring one particular
population state, either “fully excited” (with an average rate of
firing close to one) or “fully inhibited” (with an average rate
close to zero). Importantly, Figs. 12(c) and 13(c) depict that
the effect of the parameter γ becomes more significant when
considering a point near criticality with β > 1.

Summarizing, the effect of increasing the skewness param-
eter γ is to increase or decrease the firing rate. When β < 1,
we observe that the average firing rate is quite independent
of the skewness parameter. When β = 1, the system is much
more likely to be at an intermediate firing state. But when
β > 1, we find that γ can favor or impair the firing of neurons,
depending on the sign of γ . For γ < 0, the population is
in absolute silence, while for γ > 0 the system is in a syn-
chronous firing state, with the majority of neurons firing, as
seen in Figs. 12(c) and 13(c). Note that the validity of these
findings is confirmed through the Std estimations depicted in
Figs. 14 and 15, as we showed that a phase transition occurs
at an intermediate level of synchronization (in agreement with
Refs. [37,50]).

Finally, Fig. 16 depicts the mean firing rate as a function
of the temperature for two different skewness values, γ = −2
and γ = 2, enhancing the behavior of the two states for the
deformation parameter considered in the neuronal inputs and
emphasizing that when the system is at critically (β = 1) it
is much more likely to be at an intermediate firing state as
reported in Refs. [37,50].
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V. DISCUSSION AND CONCLUSIONS

Power-law and log-normal distributions are of fundamental
importance in complex systems and neuroscience when inves-
tigating the statistical structure of the brain [18,21,22,37,52–
55]. However, they are just a subset of heavily skewed distri-
butions [41], and a more general framework may be desirable
to accurately describe the dynamics of the brain.

In this work, we construct a formalism based on a model
considering a biased skewed distribution in the inputs of a
population of neurons to investigate the emergent properties
of the neural ensembles. The model presented here can pro-
vide us with the neurocomputational basis to gain a better
understanding of how the skewness in the inputs can change
the dynamics at the output level. This can be useful for
describing the nonlinear dynamics of neuronal populations
more broadly.

Our results suggest that the asymmetry of the skewed dis-
tribution can induce a shift in the phase transition and we
show how small changes in the neuron inputs due to the multi-
layer structure of the neural networks, which follow a skewed
distribution due to the slow activity of some neurons, can pro-
vide more plastic properties to the network dynamics, giving
greater flexibility to the coding of neuronal information. That
is, instead of simply reporting the mean parameter changes
with a dichotomized Gaussian model [25,26,46], through the
parameter γ related to the asymmetry of the distribution we
can obtain accurate information that allows us to understand
structural changes dependent on the synaptic plasticity of the
inputs [18–23]. Input synapses can give rise to statistical de-
pendences between groups of neurons larger than two, known
as higher order interactions (HOIs) [37,52,53]. Importantly,
higher order connection structures in the inputs have an es-
sential role in understanding how neuronal avalanches process
information in the brain [37,52,53].

Recent findings have shown substantial markers of critical-
ity in the spiking activity in the mammalian cerebral cortex,
and the critical point is not in the asynchronous ends or in
the synchronous part of the system but rather at an interme-
diate value [37,50]. That is, although HOIs are ubiquitous in
neuronal activity, the main dynamic characteristics of HOIs
remain unknown.

Neuronal circuits can depict abrupt changes in their corti-
cal states from period of sustained activity to quiescence states
and the mechanisms behinds these transitions remains still
unclear [56–58]. Conduction delay can induce “up and down
states” in spiking neuronal systems [38,59] and also the slow
activity of the neurons along with the simultaneous silences
(“down states”), for specific time windows in the assemblies,
help us understand the dynamics in higher order interactions
in a simple way [60]. Simultaneous silences are related to
weaker synapses that have slower dynamics and contribute to
build the skewness in the input distributions [18–23]. Thus,
weaker or stronger synapses give rise to different dynamics in
the neuronal outputs [18–23]. Brain computations depend on
how neurons transform inputs into spike outputs, and we take
into account that the heterogeneity of neuronal inputs can be
characterized by strongly skewed distributions.

The current formalism enables us to gain a better under-
standing of the role of inhibitory neurons in nonlinear network

rhythmic activity and in spontaneous activity between the “up
state” and “down state” observed simultaneously in groups
of neurons, a phenomenon of critical importance for working
memory and attention [59]. Moreover, our current findings are
in agreement with those of Refs. [37,50], as we show that
when considering a biased skewed distribution in the inputs
of a neural population, the critical point is not in the asyn-
chronous ends or at the synchronous part of the system, but
rather in an intermediate state. These findings are reinforced
by Std estimations showing that at the critical point system is
more likely to be at an intermediate state, and the Std peak
increases by approximately twice its value as the temperature
is above the critical temperature. This suggests that a phase
transition occurs at an intermediate level of synchronization
(as reported in Refs. [37,50]).

In this paper, we show that a simple change in the direc-
tion of bias of the skewed distribution in the neuronal inputs
can induce a transition of states in the firing rate, passing
spontaneously from silence (“down state”) to an absolute ac-
tivity of action potentials (“up state”). This type of cortical
dynamics between the up and down states occurs during slow-
wave sleep, and therefore sleep is believed to be a mediator
of mnemonic and homeostatic functions [61]. However, the
mechanism by which this brain state can implement both
the “selective” plasticity needed to consolidate new memory
traces and the “general” plasticity needed to maintain a prop-
erly functioning neuronal system is not clear [62]. Recent
findings suggest that both functions affect neurons differently
based on their intrinsic speed of firing, so there is ubiquitous
neuronal heterogeneity that generates skewed distributions in
the neuronal inputs [61].

Our formalism considering a skewed distribution in neu-
ronal inputs allows us to explain the intrinsic mechanisms
that can lead to the consolidation of memory traces through
a simple change in the bias of the distribution of neuronal
inputs, which results in a transition from down state to up
state. This type of formalism will allow us to capture the
effects of the nonlinearity of the multiple dendritic spines, and
in the near future this will be of help for understanding their
possible implications on the temporal dependence of plasticity
(STDP) when considering an assembly of neurons [63].

In this work, we investigate the neurocomputational mech-
anisms by which increased activity during slow oscillation
acts to maintain network statistics, promoting a skewed distri-
bution in the inputs and in neuronal firing rates and generating
a transition from quiescent states to synchronous firing of the
entire population of neurons [61]. This permits us to develop
a theoretical framework to investigate the process by which
spike activity during slow oscillation acts to maintain network
statistics by promoting a skewed distribution of neuronal fir-
ing rates, and how a simple “perturbation” of that activity,
which could occur, for example, by spike repetition, helps
to integrate new memory traces through a transition between
down state and up state in the existing cortical network.

Networks with skewed statistical properties have a wide
dynamic range and provide stability, strength, and fault tol-
erance, and their energy efficiency can be very useful for
brain circuits [64]. This is of particular interest as the synap-
tic inputs and spiking outputs follow skewed distributions,
suggesting a systematic general organization that allows
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FIG. 17. The frequency of occurrence versus the branching ra-
tio taking the same parameters as the ones taken in Fig. 5(a)
with N = 50.

functional diversity within the assemblies of neurons even if
they are the same type of cells [18–23]. This generates a way
of understanding the applications of brain-machine interfaces,
as a very robust synaptic force can produce disproportionately
strong excitation across synapses, with high firing rates, while
weak additional activity is more flexible in most synapses and
can be crucial in improving the fidelity of spike transmission
[18–23].

We think that the combination of the theoretical framework
presented here, which takes into account a biased skewed
distribution in the inputs of a neural population, and the recent
experimental recording advances such as neuropixels [5–10]
opens up a range of possibilities that would allow us to gain a
better understanding of how information is transmitted in the
brain.
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FIG. 18. Size distribution. p(s) vs neurons that fired. We take the
same parameters as the ones taken in Fig. 5(a) with N = 50.
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FIG. 19. Duration distribution. p(T ) vs time bin (N = 50). We
take the same parameters as the ones taken in Fig. 5(a) with N = 50.
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APPENDIX: POWER LAW FITTING

In this Appendix, we use improved power-law fitting
methodologies developed in Ref. [51] based upon previous ad-
vances [65,66] by utilizing an automated maximum likelihood
estimation (MLE) technique to detect power law portions

100 101

Duration, T (bins)

101

102

A
ve

ra
ge

 #
 o

f N
eu

ro
ns

 F
ire

d,
 <

s>
(t

,T
)

Average Size Given Duration
1/(sigma nu z) = 1.138 +/- 0.068

(2<= d <=8 )

T1.138
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tion time (bins). We take the same parameters as the ones taken in
Fig. 5(a) with N = 50.
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of data histograms. Let us remark that the current approach
can automatically control for data sets with subsampling
bias in the tail of a power-law distribution. As the neural
avalanches are usually highly subsampled, this improvement
is particularly important in power law determination of neural
avalanches. We perform then calculations of avalanche size
distributions for parameters at the critical temperature (β = 1
and γ < 0) that presents a power law distribution. We deter-
mine avalanches using raster plots similar to the one presented
in Fig. 5 of the main text.

Figure 17 depicts the histogram of the avalanche branching
ratio, that is, the frequency of occurrence versus the branching

ratio. Note that Fig. 18 shows the estimation of avalanche size
distributions versus the neurons that fired. Figure 19 shows the
estimation of avalanches duration distributions versus the time
bins. Finally, Fig. 20 present the averaged number of neurons
that fired versus the duration time (bins). We can conclude
that they present power law distribution at the critical temper-
ature.

As part of a future work, we plan to investigate ex-
haustively the parameter space for the different power law
distributions and log-like distributions around the critical
point (β 6= 1) that form the different subsets of heavily right
skewed distributions.
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