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ABSTRACT

Intracranial electroencephalography (iEEG) can directly record local field potentials (LFPs) from a large set of neurons in the vicinity of the
electrode. To search for possible epileptic biomarkers and to determine the epileptogenic zone that gives rise to seizures, we investigated
the dynamics of basal and preictal signals. For this purpose, we explored the dynamics of the recorded time series for different frequency
bands considering high-frequency oscillations (HFO) up to 240 Hz. We apply a Hilbert transform to study the amplitude and phase of the
signals. The dynamics of the different frequency bands in the time causal entropy-complexity plane, H × C, is characterized by comparing the
dynamical evolution of the basal and preictal time series. As the preictal states evolve closer to the time in which the epileptic seizure starts,
the, H × C, dynamics changes for the higher frequency bands. The complexity evolves to very low values and the entropy becomes nearer
to its maximal value. These quasi-stable states converge to equiprobable states when the entropy is maximal, and the complexity is zero. We
could, therefore, speculate that in this case, it corresponds to the minimization of Gibbs free energy. In this case, the maximum entropy is
equivalent to the principle of minimum consumption of resources in the system. We can interpret this as the nature of the system evolving
temporally in the preictal state in such a way that the consumption of resources by the system is minimal for the amplitude in frequencies
between 220–230 and 230–240 Hz.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0101220

iEEG permits us to describe deep brain electrical activity. In
this work, we investigate the dynamics of preictal and basal
signals in patients with refractory epilepsy using entropy and
complexity quantifiers. Our results show that minutes before the

epileptic seizure, the system evolves from a highly dissipative
chaotic state of the basal period to a state where the entropy
reaches a maximum and the complexity is significantly curtailed,
corresponding to the preictal period.
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I. INTRODUCTION

An oscillatory system is characterized by positive feedback
and the existence of restoring forces on it. Systems with restoring
forces but without feedback can only maintain a transient oscilla-
tion with decreasing amplitude, a phenomenon called “resonance.”1

Neurons and neural networks with these properties preferentially
evaluate inputs whose frequency matches frequencies that coin-
cide with their own resonance. In particular, the neural oscillators
belong to the family of limit cycle or weakly chaotic oscillators.2

The oscillators underpinning brain dynamics can be characterized
by two types: harmonic and relaxation oscillators, which tend to
be exploited individually but also in combination.1 Harmonic oscil-
lators are good long-term predictors because their phase remains
constant, whereas relaxation oscillators can be synchronized quickly
and efficiently. Individual neurons oscillate mainly because voltage-
dependent ion channels with opposite properties depolarize and
hyperpolarize their membranes.3 Due to the differential distribu-
tion of ion channels in soma-dendritic domains, neurons can have
multiple oscillation and resonance properties. These properties can
be dynamically adjusted either by changing the input resistance of
the neuron or by affecting the probability with which a channel
is open. For instance, interneurons are a class of neurons that are
especially prone to resonate, which is why they are the basis for the
construction of oscillatory mechanisms of a network.4 Furthermore,
the collective behavior of neurons is established through synchrony,
which is denoted as the time in which some trace of a previous
event generated by an input is retained, changing then the response
to a subsequent event to other inputs.5–11 Events that can be inte-
grated over time by target neurons are of the synchronous type. The
phenomenon of neuronal population synchronization improves the
effective output of the neuron population, and this phenomenon can
also arise without alternation of the firing rates of the neurons.5–12

Thus, synchronization by oscillation is a metabolically economical
mechanism to achieve a high impact in the network efficiency.8–10

Specifically, we are interested in this specific kind of brain activity
and the mechanisms that generate these phenomenon,1,13–15 which
can be identified as rhythmic electrical activity that takes place in
the neural cortex spontaneously or as response to stimuli. How these
oscillations are related to human perception, cognition, and behav-
ior and how functional failures are related to neuronal deceases
remain still unknown.

The activity of the human brain is extraordinarily
complex;1,16–19 we can safely say that the brain is the most compli-
cated organ created by nature. Indeed, its complexity is due to the
interaction of 100 ×109 nerve cells and much more contact points
between them which provide our brain with capabilities that no
supercomputer can match to this day. In 1926, Hans Berger per-
formed the first ever EEG and discovered that brain activity was
dominated by rhythmic signal fluctuations, a phenomenon known
as brain oscillations.1 Considering that from the time of discovery
of brain oscillation to the current era, the recording and theoret-
ical analysis techniques have been significantly improved, and it
can be expected, therefore, significant breakthroughs in the area.
In addition, intracranial electroencephalography (iEEG) is used to
describe electrical activity in deep parts of the brain. The discovery of
the iEEG signal containing useful information at frequencies higher

than the traditional 100 Hz limit has had a profound impact on the
understanding of brain function.20 This type of oscillatory activity
is commonly referred to as “high-frequency oscillations” (HFOs).
Currently, HFOs are subclassified into ripples (80–250 Hz) and fast
ripples (250–600 Hz).21 Over the years, several studies supported by
improved recording and analysis techniques have provided evidence
that certain brain oscillations associated with HFOs were particu-
larly important and useful in understanding epilepsy by describ-
ing the morphological, clonal, and pathophysiological signatures of
epileptic events.21 How brain oscillations may play a causal role in
neurological disorders and what is its functional relevance is still a
matter of current research.

The hypothetical mechanisms responsible for the generation
of HFO are several. First, we can find the ephaptic interactions,22

then electrotonic coupling through gap junctions,23 and finally, the
fast synaptic transmission.24 At the cellular level, as epilepsy arises
from uncontrollable neuronal excitation, it has been proposed that
HFOs mainly reflect neuronal action potentials and could be gener-
ated by synchronized rapid firing of interconnected hyperexcitable
neurons.25 The discovery of this type of oscillations in epileptogenic
activity was made in 2006 by Jirsch26 who, based on deep electrode
recordings in patients with focal epilepsy by spectral and visual anal-
ysis, was able to detect this type of behavior. This work allowed a
breakthrough in the understanding of epilepsy, regarding the char-
acterization of HFO prior, during, and after the epileptic crisis.
Continuing with this line of research, subsequent studies were able
to observe that during the preictal period exists an increase in HFO
activity, although no systemic change in HFO could be observed.27

On the other hand, further epilepsy studies have observed that dif-
ferent changes in the oscillatory activity of HFO during the preictal
period could be detected only in the instants immediately prior to
the ictal onset.28 In this way, HFO on intraoperative electrocorticog-
raphy (ioECoG) can be recorded over and around the possible lesion
and can be used to delineate the epileptogenic tissue.29 In partic-
ular, it has been demonstrated that in a significant percentage of
patients with refractory epilepsy who underwent surgical interven-
tion, the removal of brain tissue that generates HFO is associated
with a better postoperative outcome compared with the removal
of the zone identified with ictal onset (ZII).30 Epilepsy surgery
shows to be an effective treatment for drug-resistant focal epilepsy31

where the resection of the HFO-rich area has been associated with
good seizure-free outcome and the presence of postoperative rip-
ples could predict seizure recurrence.29,32,33 Nowadays, HFOs are
promising interictal electroencephalographic biomarkers to identify
the epileptogenic tissue29,31,34,35 and may provide information about
the region of the cortex that needs to be eliminated to achieve seizure
control.35

Consistent with the results of research and clinical trials, HFOs
are now being speculated as possible biomarkers for the identi-
fication of epileptic seizure due to the demonstrated increase in
the spectral power of this high frequency band during the pre-
ictal period,36 thus contributing to the information available for
determining the epileptic seizure.37 In the case of pathological HFO
activity, each individual oscillation cycle appears to represent the
ensemble firing of small groups of pathologically interconnected
principal cells.38 Morphological, molecular, and functional changes
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in epileptic tissue cause neurons to respond abnormally to below-
threshold stimuli or to become spontaneously active. In the current
work, we investigate electrical recordings in patients with refractory
epilepsy to discern the underlying oscillatory mechanisms during
the epileptic process. To this end, the neuronal activity is studied
for basal (far from the seizure) and preictal (immediately before
the seizure) periods through recordings of intracerebral electrodes
implanted in patients to achieve a greater resolution of local field
potentials (LFPs). The intrinsic dynamics of the two types of record-
ings is discerned by using a time window analysis and studying the
amplitude and phase for each signal through a Hilbert transform.
The causality of these signals is quantified through information the-
ory tools15,39–41 and a symbolic method of analysis that accounts for
the ordinal structure of them.42–44 Importantly, our findings show
that there is significant enhancing of Shannon entropy and the com-
plexity is significantly curtailed in the range of HFO ripples within
the preictal state in comparison to the basal signal. This allows
us to find the potential biomarkers of the epileptogenic zone (EZ)
characterizing the dynamics of different frequency oscillation bands.

II. RESULTS

A. Intracranial EEG

Epileptic seizure occurs when, due to a dysfunction in the
brain,45 a group of neurons begins to fire in an abnormal, excessive,46

and synchronized way.47 This results in a depolarization wave
known as a “paroxysmal depolarization change.”48 For an epilep-
tic seizure to occur, there must be a structural and/or functional
change in the brain, with a reorganization of brain circuits. This
phenomenon is called “epileptogenesis.”

An epileptic seizure is a transient clinical event, which is char-
acterized by the generation of electromagnetic discharges in the
cerebral cortex. The neuronal electrical discharges of seizures are
generated hypersynchronously and abnormally in the central ner-
vous system.49 These discharges occur suddenly, and their evolution
is transient and short-lived, with a duration of about 2 min (this
period is called “ictal”49). The temporal location of the recordings
occurs approximately 40 min before the ictal onset.

The synchronized electrical activity of the neurons gives rise
to LFPs and such activity can be measured through iEEG. There
are physiological studies in which patients with epilepsy showed
changes cardiovascular, metabolic, and in the LFP patterns a cer-
tain time before the epileptic seizure,50 suggesting the possibility of
seizure prediction. In this period, the rate of occurrence of spike
activity patterns (involving focal and contralateral sites) increases
significantly some time before the seizure originates.51 In addition,
other studies have detected a significant increase in the blood flow
in areas involved in epilepsy that begins 10 min before seizure onset
and 2 min before in lateral areas.52,53 This characteristic time period
prior to epileptic seizure generation is termed “preictal.” The appli-
cation of different methods has shown that abnormal activity in
certain parts of the brain correlates bilaterally 20–30 min before the
seizure.54 In this work, we have considered a preictal period at about
10 min before seizure onset.

In recent years, advances in neurological knowledge and pro-
cedures have greatly improved the process of diagnosing epilepsy,
where EEG continues to play a key role in the determination of

FIG. 1. Schematic drawing of a multi-electrodes array showing an implantation
of them for iEEG recording.

the disease. In particular, interictal spikes are the most important
marker for its diagnosis. While EEG is safe, painless, and noninva-
sive, its spatial limitation results in a restriction in the determination
of EZ, which may lead to incomplete or mistaken removal dur-
ing surgical treatment. Therefore, due to the restrictions of surface
EEG or neuroimaging techniques, it is often necessary to perform
an invasive procedure to record intracranial LFPs in order to more
accurately record neuronal electrical activity. This procedure called
iEEG has its main advantage of being able to directly record the
LFPs coming from a set of neighboring neurons, with respect to
traditional EEG. The experimental setup of the iEEG system is
shown in Fig. 1, where we can observe “deep electrodes” implanted.
These types of electrodes are made of a long and thin polyurethane
rod with a diameter in the order of millimeters and have multiple
contacts positioned equispaced all along them to record the LFP
adjacent to them. This type of electrode is implanted inside the brain
in order to record mainly the electrical activity of subcortical and
cortical structures.

Preictal states have been pointed out as a possible biomarker
of focal epilepsy,50 as evidence suggested that the onset of seizure
may be preceded by a prognostic condition known as preictal state,
which may help to predict seizure. These predictive states can be
interpreted as deviations from the baseline signal. Figure 2 shows
a typical raw signal for one of the channels of intracranial elec-
trodes depicted in Fig. 1 (we refer the reader to Appendix B for
further details of the data). Note that iEEG shows the activity of spe-
cific brain areas; however, the preictal signal does not in principle
show visible deviations from the basal signal with the naked eye. A
deeper analysis is, therefore, required to analyze possible differences
between basal and preictal signals. This would require an appro-
priate theoretical framework to gain a better understanding of the
possible different dynamics between baseline and preictal signals.

B. Quantifying the differences between different

states

To split individual measures, the LFP is generally divided
into distinct frequency bands, each of them characterized by a
time-dependent amplitude and phase. This can be performed using
a Hilbert transform that allows a proper extraction of the amplitude
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FIG. 2. Typical LFP recording made with deep electrodes in a subcortical area,
where the voltage is displayed as a function of time. Note that (a) and (b) show
the basal and preictal signals, respectively.

and phase of the LFPs signal to perform thereafter a more sub-
tle processing. The Hilbert transform for a given signal x(t) is
defined as7,55

x̂(t) = Ȟ(x(t)), (1)

where

Ȟ(x(t)) =
∫ ∞

−∞
x(t)
t−τ

dτ

π
, (2)

which can be rewritten as

Ȟ(x(t)) = x(t) ∗ 1

π t
, (3)

where ∗ denotes the convolution operator.55 The amplitude of the
signal is defined as a(t) =

√
x2 + x̂2, while the phase of the signal

reads as φ = arctan( x̂
x
).

In the current analysis, we consider iEEG recordings from six
patients with refractory epilepsy (three of them are presented in
this section and the other three can be found in the subsec. 2c of
Appendix A). The equipment used for the register had a sampling
frequency of up to 2 KHz and allowed us to acquire the HFO rip-
ples activity. To increase the resolution of the signal and to remove
interference such as 1/f noise, this signal was filtered between 0.5
and 240 Hz using filtering based on “Kaiser windows,” developed by
Belitski.56 The different frequency bands that we consider for anal-
ysis in the present work are composed of Berger bands and HFO
bands up to 240 Hz (see Sec. 2 of Appendix B). The underlying idea
is to study whether it is possible to determine, for different oscilla-
tion bands, possible biomarkers of refractory epilepsy by means of
statistical complexity and entropy estimates of the amplitude and
phase of the signal. For this purpose, we will use these quantifiers
to investigate possible differences between basal and preictal signals
(for further details of the information theoretical quantifiers being

FIG. 3. Absolute value of subtraction for Shannon entropy and statistical com-
plexity between the preictal and basal signals for the 40 channels and each
frequency band, with respect to both amplitude and phase. The figure shows
the results of a specific seizure event for the first subject. (a) Entropy, H, of
the amplitude. (b) Complexity, C, of the amplitude. (c) Entropy, H, of the phase.
(d) Complexity, C, of the phase. We used D = 3 and τ = 1.
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FIG. 4. Same as in Fig. 3 but for the second subject. FIG. 5. Same as in Fig. 3 but for the third subject.
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FIG. 6. Shannon entropy and statistical complexity for entropy and phase, for the
channel number 23, considering basal and preictal signals of the first subject.
(a) Entropy, H, of the amplitude. (b) Complexity, C, of the amplitude. (c) Entropy,
H, of the phase. (d) Complexity, C, of the phase. We used D = 3 and τ = 1.

FIG. 7. Shannon entropy and statistical complexity for entropy and phase, for the
channel number 41, considering basal and preictal signals of the second subject.
(a) Entropy, H, of the amplitude. (b) Complexity, C, of the amplitude. (c) Entropy,
H, of the phase. (d) Complexity, C, of the phase. We used D = 3 and τ = 1.
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FIG. 8. Shannon entropy and statistical complexity for entropy and phase, for
the channel number 4, considering basal and preictal signals of the third subject.
(a) Entropy, H, of the amplitude. (b) Complexity, C, of the amplitude. (c) Entropy,
H, of the phase. (d) Complexity, C, of the phase. We used D = 3 and τ = 1.

used in this work, see Appendix A). Applying information theory
tools, the spatiotemporal characteristics of the phase and ampli-
tude of the basal/preictal signal were examined, for the electrical
recording measured by electrodes implanted in different areas of
the cortex, in terms of different frequency bands studied (from 0.5
to 240 Hz). With respect to the quantifiers of information theory,
the Shannon entropy and the measure of statistical complexity were
calculated for these signals through Bandt–Pompe methodology,42

which builds a discrete probability distribution function (PDF) asso-
ciated with the time series under study. The unique condition for the
applicability of this methodology is that series should satisfy weak
stationarity.42–44

Figures 3(a) and 3(c) show the absolute value of subtraction
between the Shannon entropy of preictal and basal signals consider-
ing the amplitude and phase, respectively, for the total 40 channels
of all intracranial electrodes implanted in the first patient for a spe-
cific seizure event that showed significant differences in both signals.
Figures 3(b) and 3(d) are the same as in (a) and (c) but for the case
of the statistical complexity. In both cases, the HFO-13 and 14 fre-
quency bands show statistically significant differences performing
a T-test for the Shannon entropy and complexity when consider-
ing the amplitude, while the phase shows a small variation for the
theta, beta, and HFO14 bands. A similar behavior for subtraction
between the Shannon entropy of preictal and basal states, for the sec-
ond and third patient, can be observed in Figs. 4(a), 4(c), Figs. 5(a),
and 5(c), respectively. In both patients, the number of total chan-
nels from all the intracranial electrodes implanted is 45. Moreover,
Figs. 4(b), 4(d), 5(b), and 5(d) exhibit similar behavior for subtrac-
tion between the complexity of preictal and basal states in the case
of second and third patients, respectively. For second and third sub-
jects, we have also considered a specific seizure event that showed
significant differences in both signals.

In the following we show results for Shannon entropy and sta-
tistical complexity for three of the six subjects under study, but now
just taking into account a particular channel of the seizure event
considered above that showed the most significant statistical differ-
ences individually in each of the three subjects. Figure 6 shows the
results of Shannon entropy and statistical complexity for amplitude
and phase, for the channel number 23, considering basal and pre-
ictal signals of the first subject (and the same seizure event as the
one selected above). Through bar charts, we compare groups of data
that correspond to the basal and preictal signal for the information
quantifiers. Note that in Fig. 6(a) for the case of the amplitude in
the frequency bands HF0-13 and 14, the Shannon entropy is sig-
nificantly higher for preictal states compared to the basal ones. In
contrast Fig. 6(b) shows the opposite behavior, that is the complexity
being significantly higher in the basal state in comparison to the pre-
ictal state for HF0-13 and 14. For the rest of the bands, no significant
differences are observed in the amplitude, although there is a slight
effect in the theta band where the Shannon Entropy is higher in the
basal signal than the one of the preictal state. Let us note in Figs. 6(c)
and 6(d) that for phase, the Shannon entropy and statistical com-
plexity are higher for the basal state than the preictal state, when
considering the beta band. Moreover, the Shannon entropy of the
phase is significantly higher in the preictal state, for the HFO-14 fre-
quency band, in comparison to the basal signal. There is also a slight
effect in the theta band; however, it is not statistically significant.
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FIG. 9. Basal and preictal signals for HFO 13 and 14.
(a) Entropy, H, and (b) complexity, C, of the amplitude for
the first subject. (c) Entropy, H, and (d) complexity, C, of the
amplitude for the second subject. (e) Entropy, H, and (f) com-
plexity, C, of the amplitude for the third subject. We used D = 3
and τ = 1.

Figures 7(a) and 7(b) depict the Shannon entropy and statistical
complexity of the amplitude for the second patient, with the seizure
event selected above for this subject, considering the channel 41.
Figures 7(c) and 7(d) depict the Shannon Entropy and the Statistical
complexity of the phase for the second patient taking into account

the same seizure event. Figures 8(a)–8(d) are the same as above but
for the third patient, with the same seizure event selected above for
this subject and for channel 4. We can particularly observe in these
cases that there are very significant differences, for both information
quantifiers, between basal and preictal states of the amplitude when
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FIG. 10. H × C-plane of the phase, first subject, taking into account different
frequency bands. We consider D = 3 and τ = 1. (a) Preictal state; (b) basal
state.

taking into account HFO-13 and 14. That is, for second and third
patients, the entropy corresponding to the amplitude is also much
higher for HFO-13 and 14 frequency bands in the basal signal than
for the preictal ones. On the other hand, the behavior of the com-
plexity for the amplitude is such that it is much lower for the preictal
signal than for the basal signal in HFO-13 and 14 frequency bands.
We can also observe for both subjects that the Shannon entropy of
the phase is also higher in the preictal state than the basal one for the
HFO-14 band. We can see from previous figures that entropy and
complexity of the amplitude remain approximately constant for all
bands with the exception of HFO 13 and 14. In contrast, the entropy
and complexity of the phase increase to a maximum at HFO 7 and 8
and then slightly decrease its value. Significant differences in entropy

FIG. 11. H × C-plane of the phase, second subject, taking into account different
frequency bands. We consider D = 3 and τ = 1. (a) Preictal state; (b) basal
state.

and complexity values for the phase between basal and preictal states
for the three subjects shown in this section can be appreciated in the
HFO-14 frequency band. The entropy and complexity estimations
were made for a time series of 10 min taking time windows of 4 s,
which allowed us to have 2000 points for each of them, ensuring a
much smaller embedding dimension (D = 3 in all cases, D = 4 and
5 do not significantly change the results) than the size of the time
series. The values shown correspond to the averages of these time
windows that ensure their robustness. Overall, our findings show
that the ripple bands corresponding to HFO-13 and HFO-14 depict
very significant differences, between basal an preictal states, for both
information quantifiers in the case of the amplitude. This can be fur-
ther appreciated in Figs. 9(a), 9(c), and 9(e) that depict the basal
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FIG. 12. H × C-plane of the phase, third subject, taking into account different
frequency bands. We consider D = 3 and τ = 1. (a) Preictal state; (b) basal
state.

and preictal Shannon entropy for the amplitude of the signal for
first, second, and third subjects, respectively. Notice from Figs. 9(a),
9(c), and 9(e) that Shannon entropy is significantly increased for
HFO13-14, in the case of preictal signals in comparison to the basal
ones, for three subjects under consideration. In contrast Figs. 9(b),
9(d), and 9(f) show that the complexity is significantly curtailed for
the HFO13-14, in the case of preictal signals in comparison to the
basal ones, in all cases being analyzed.

C. Analysis of temporal dynamics considering the

entropy complexity plane

The H × C plane is based only on global features associated
with the time series under study.15,39–41 Investigating the plane H × C

FIG. 13. H × C-plane of the amplitude, first subject, taking into account different
frequency bands. We consider D = 3 and τ = 1. (a) Preictal state; (b) basal
state.

provides information related to the correlated structure between
the components of the system. Since the complexity is defined in
terms of the normalized Shannon entropy H [Eq. (A8), see Sec. 2a of
Appendix A], it can be seen that, for a given value of this magnitude,
the range of possible values of C are determined between a Cmin and a
Cmax curve, which depend only on the number of degrees of freedom
(D) considered for the Bandt and Pompe probability function. This
is due to the fact that the calculation of the complexity depends on
two different PDFs, one corresponding to the system under study
P and the other to the equilibrium distribution Pe, thus restricting
the possible values of the statistical complexity in the H × C plane.57

This type of methodology allows to investigate the non-stationary
behavior of a time series associated with neuronal activity measured
in the LFPs,15 to discover important details concerning the ordinal

Chaos 32, 093151 (2022); doi: 10.1063/5.0101220 32, 093151-10

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 14. H × C-plane of the amplitude, second subject, taking into account differ-
ent frequency bands. We consider D = 3 and τ = 1. (a) Preictal state; (b) basal
state.

structure of the time series,58–61 and also to obtain information about
temporal correlations.62

The complexity planes H × C were constructed from the cor-
responding information theory quantifier. The assessment of the
H × C plane for the phase of the preictal signal can be seen in
Figs. 10(a), 11(a), and 12(a) for first, second, and third patients,
respectively. The H × C plane of the phase for basal signals is shown
in Figs. 10(b), 11(b), and 12(b) for first, second, and third patients,
respectively. Let us notice that there are interesting differences in the
temporal evolution of the LFP time series, for the different time win-
dows, between preictal and basal states for theta, beta, and HF014
bands.

FIG. 15. H × C-plane of the amplitude, third subject, taking into account different
frequency bands. We consider D = 3 and τ = 1. (a) Preictal state; (b) basal
state.

The estimation of the H × C plane for the amplitude of the
preictal signal can be seen in Figs. 13(a), 14(a), and 15(a) for first,
second, and third patients, respectively. In contrast, the H × C
plane of amplitude of basal signals is shown in Figs. 13(b), 14(b),
and 15(b). We have considered as in the figures of Sec. II B, for
each subject, the channels of interest belonging to seizure events that
showed significant differences in information quantifiers between
basal and preictal activities for the three subjects under study with
refractory epilepsy (results for another three subject are presented in
the Sec. 2c of Appendix A). Entropy can be considered as a measure
of how close or not a system is to equilibrium; it can also be consid-
ered as a measure of the disorder (spatial and thermal) of the system.
The second law of thermodynamics states that the entropy, or dis-
order, of an isolated system can never decrease. Therefore, when
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an isolated system reaches a configuration of maximum entropy,
it can no longer undergo changes: it has reached equilibrium. In
such cases, the system seems to “prefer” disorder, and in the case
of refractory epilepsy, the amplitude of the preictal signal for HFO
13-14 frequency bands behave “as if it were an isolated system”
that has reached equilibrium. The H × C planes show that as the
system evolves, becoming closer and closer to the end of the pre-
ictal state and the beginning of the seizure, the complexity of the
amplitude of the preictal signal becomes more and more curtailed
and tends to zero, while in contrast the entropy is approaching
one and, therefore, reaches its maximum value. This can be seen
in Figs. 13(a), 14(a), and 15(a) where the direction of the tempo-
ral evolution of different time windows is in the “orientation” in
which entropy grows and the complexity is curtailed. In Sec. 2c of
Appendix A, we show that the results for the H × C planes of fourth,
fifth, and sixth patients have a similar behavior to the one presented
in the figures above. Thus, as entropy increases and complexity
decreases, for the amplitude in the preictal signal, the system gets
more and more closer to the ictal state where the epileptic seizure
will show the anomalous hypersynchronous discharge. Thus, one
could conclude that the system reaches a thermal state of equilib-
rium in HFO13 and 14 frequency bands, in which all states tend to
be equiprobable with very low complexity, preceding the epileptic
seizure.

D. Discussion and conclusions

For an epileptic seizure to occur, there needs to be a struc-
tural and/or functional change in the brain, with a reorganization
of brain circuits. This particular phenomenon called “epileptogen-
esis” is responsible for facilitating synchronization and discharges
of large neuronal populations during seizures. Thus, epileptogen-
esis is understood as the process by which a particular neuronal
group or circuit becomes hyperexcitable and can spontaneously
generate epileptic seizures.63 This mechanism can be observed in
patients with epilepsy resulting from a lesion in the brain, where
the injured area results in up-regulation of excitatory circuits and
down-regulation of inhibitory circuits.64

The EZ is a theoretical formulation that was initially defined
as the site in the cerebral cortex where epileptic seizures are initi-
ated and where the whole epileptic activity is primarily organised.
In order to completely cease seizures, it is necessary and sufficient
to remove (or disconnect) the area of the cortex corresponding
to the EZ.65 In the last decade, it was found that the EZ corre-
sponded not only to a single brain area but to a neural network
itself.66 This network consists of an arrangement of cortical and
subcortical brain structures that are anatomically and function-
ally connected, where electrical activity in any part of it affects
the activity in the rest of it. The possibility of determining the
location and organization of the neural network involved in the
origin of the epileptic discharge is essential for the definition of
the EZ.67 In the present work, the electrode channels that showed
significant differences between basal and preictal signals for Shan-
non entropy and complexity, which were shown in the Results
section, were located in the left hippocampal body and head and
in the left amygdala. This prediction coincides with determinations
made by the neurologists team. Thus, the current methodology

that characterize the differences between dynamics of the basal
and preictal time series, through information-theory quantifiers,
is a powerful tool for early detection of biomarkers of refractory
epilepsy.

In the human brain, physiological high-frequency ripples
(around 200 Hz) are mainly located in the CA1 region of the hip-
pocampus and in the entorhinal cortex, where they are part of highly
complex sharp-wave oscillation,68 although they have also been
found elsewhere. In particular, mesiotemporal HFOs are involved
in memory formation and evocation of past experiences. As for the
low-amplitude physiological HFO activity in the extratemporal neo-
cortex, it seems to be related to information processing functions,
just as it has been found in the extratemporal neocortex, in the
same way as during somatosensory-evoked potentials.69 HFOs are
generated locally, and the synchronization mechanisms that induce
these oscillations must be fast enough to be able to synchronize all
the electrical activity of the entire spatial area under examination
within 2–5 ms. In such area, the activation of a small neuronal pop-
ulation (or an individual neuron) can result in a fast recruitment
of interconnected cells, resulting in a synchronous activation of the
action potential, which is ultimately sensed in extracellular record-
ings as an HFO. In addition, the region in which HFO synchro-
nization mainly occurs is spatially continuous, although sometimes
this phenomenon can be in contacts separated by large distances.70

Regarding the hypothetical mechanisms that are responsible for the
generation of HFO, we can find first of all ephaptic interactions,22

the electrotonic coupling across junctions23 and finally fast synap-
tic transmission.24 Therefore, each of the billions of neurons in
our brain are elements of communication, where communication
involves information.

The average “surprise” value of a variable is defined by its prob-
ability distribution and is called entropy. In particular, entropy is a
measure of uncertainty. When we reduce our uncertainty, we gain
information, so information and entropy are two sides of the same
coin. The average amount of information shares somehow the same
definition as entropy. If a variable has high entropy, the initial uncer-
tainty about its value is large and, by definition, such systems are
characterized by randomness. If we consider the average value of
that variable, we have an amount of information that equals the
uncertainty (entropy) we had about its value. Consequently, receiv-
ing an amount of information is equivalent to having lost exactly the
same amount of entropy. Neural coding capacity is defined by the
upper limit on entropy and, therefore, the amount of information
transmissible by a neuron. This means that it is impossible to use a
rate of activation of the dendritic spines that transmit more informa-
tion than the coding capacity. In simple terms, entropy tells us how
difficult it is to make predictions about events described by a prob-
ability distribution. The higher the entropy, the harder it is to make
predictions. In addition, the maximum entropy principle states that
the probability distribution that best represents the current state
of knowledge about an isolated system is the one with the highest
entropy, in the context of precisely expressed prior data (such as
a proposition expressing testable information). That is, under this
principle, we know exactly the prior data or we have verifiable infor-
mation about a probability distribution function. Considering the
set of all test probability distributions that would encode the prior
data, according to this principle, the distribution with maximum
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information entropy is the best choice for the system. That is,
entropy in an isolated system never decreases because coupled sys-
tems evolve toward thermodynamic equilibrium that is given by the
principle of maximum entropy. Our results show that as the preictal
condition develops closer to the ictal state, for signal amplitudes of
HFO bands between 220–230 and 230–240 Hz, the H × C dynam-
ics draw nearer to maximum entropy and zero complexity. That is
to say, the quasi-stable states converge to equiprobable states when
the entropy is maximal, and the complexity is zero. We could, there-
fore, speculate that in this case it corresponds to the minimization of
Gibbs free energy. We can say that for these ripple bands the system
behaves as an“isolated system” that seeks to reach its equilibrium
distribution with maximum entropy. The consumption of resources
by the system is minimal, providing that the entropy of the system is
“above some threshold.” Thus, the principle of maximum entropy is
equivalent to the principle of minimum consumption due to lim-
iting resources by the system. This is somehow equivalent to the
model of an ideal gas in which the equilibrium state minimizes the
Gibbs free energy. Although scale-free dynamics generate complex-
ity, neural oscillations exhibit high-order temporal correlations that
are reflected in high complexity values within the basal signals for all
the frequency bands.

The transient order of brain activity, in terms of system com-
plexity, does not emerge from disorder but from an intermediate
state between order and disorder. When necessary, neural networks
are able to rapidly shift from a highly complex state with interme-
diate entropy for the basal signal to a system reaching maximum
entropy and where the complexity is significantly curtailed due to
the random nature in the amplitude of HFO13 and 14 in preic-
tal states. We show using the planes H × C that the dynamics in
the cerebral cortex for the amplitude of the basal signal is in a
highly chaotic dissipative zone, with high complexity and intermedi-
ate entropy values. However, for the preictal state, the consumption
of resources by the system is minimal for the amplitude in fre-
quency bands between 220–230 and 230–240 Hz, as the system is
highly random, and the complexity is significantly curtailed. In this
case, the maximum entropy is analogous to the principle of mini-
mum system resource consumption, which would be equivalent to
Gibbs minimum free energy, because randomness and low complex-
ity seem to be a condition for the preictal system amplitude in the
case of frequency bands between 220–230 and 230–240 Hz. Also, all
neurophysiological processes require energy and particularly brain
energy consumption varies. When in “normal mode” or in basal
state, consumption is lower than during the ictal condition, in the
sense that no specific area of the brain is more activated than others.
But, when the brain suddenly begins to process a preictal state, it
prepares for an electrical storm that occurs due to the brain’s hyper-
synchrony state in which the energy consumption will be enormous.
Thus, the HFO frequency bands 13-14 appear in the preictal state
using minimal system resources to adapt for an event that will trig-
ger high energy expending during the epileptic seizure. Overall, we
can conclude, therefore, that the complexity planes H × C consti-
tute an excellent biomarker that anticipates spatially and temporally
the areas where the epileptic focus is triggered. The current method-
ology could serve, therefore, as the basis for successful fast online
software that would help neurologist to find seizure precursors in
cases of refractory epilepsy.
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APPENDIX A: THEORETICAL METHODS

A signal is usually defined as a convey of information about
a phenomenon, so any given measure that could change over time
or space can be considered as a signal. Based on their statistical
properties, a signal can be considered as non-stationary or station-
ary. The main difference between stationary and non-stationary
signals is that stationary process signals do not change in time,
whereas non-stationary process signals change inconsistently along
time. The activity reflected in neural signals is often non-stationary
and has a broad frequency spectrum. The measurement of differ-
ent non-stationary temporal sequences corresponding to observable
constitutes the most important element of the experimental inves-
tigation of the dynamics of neural systems, i.e., the study of the
temporal evolution of these phenomena. These sequences of data
or measured values at a given time and chronologically ordered are
known as “time series.” That is, a time series is a succession of val-
ues indexed according to a t parameter, which are taken temporally
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equidistant. These series are commonly used to study the causal
relationship between different variables that evolve over time and
influence each other. Information about the dynamics of the sys-
tem under study can be extracted from the time series by means
of various analytical methods.71 If the elements of the time series
form a family of random variables, it becomes a stochastic process,
which is a mathematical model of a process that evolves randomly
over time.72 Each of the random variables in a stochastic process has
its own probability distribution function and may or may not be
correlated to each other. The “probability density function” (PDF)
describes the relative probability of taking a certain value for a
continuous random variable.73 The probability that the variable ran-
domly falls in a specific region of the probabilistic space will be
given by the integral of the density of this variable between one
and another limit of this region. The PDF satisfies being positive
throughout its domain and its integral over all the space corresponds
to the unit value. In the practical case, as in the present work, the
time series tend to take discrete values given by instrumental limita-
tions, the discretization of the evaluated data or by the digitization of
data, among others. By having a discrete time series of random vari-
ables, we can express this as χ(t) = {st; t = 1, . . . , N}, with N being
the total number of values that this series takes. When studying a
discrete time series, the description of the probability about the pos-
sible states of it is given by the “probability function” (PF)73 and in
most cases is not trivial to calculate it. This function P associates
probability p to each point in sample space, which is the set of all
possible outcomes of a random experiment. In the continuous limit,
the PF tends to be the PDF.

1. Bandt and Pompe methodology

To find the PDF corresponding to a given time series under
analysis, the usual techniques assign a specific symbol to each recur-
rent value in this time series, thus constructing a symbolic sequence
of the non-causal coarse-grained type that describes it. In this way,
this type of methodology does not take into account the dynamics
of the temporal scales or the ordering relationships that exist in the
time series since a symbol is assigned to each element, resulting in
the PDF having no temporal information whatsoever. An example
of this type of methodologies are those based on the construction
of histograms. As information about the temporal dynamics of the
system is required in the symbolic sequence, the causal information
must be duly incorporated by assigning these symbols to a portion
of phase space or to a trajectory.

In 2002, Bandt and Pompe42 proposed a very simple and robust
method for analyzing time series, which does take into account the
temporal structure of the time series generated by the process (i.e.,
it is a coarse-grained causal method). The causality of the “Bandt
and Pompe methodology” (BPM) is mainly given by the comparison
that is made between the nearest elements of the time series. Thus,
opposite to most of techniques that are put into practice, the BPM
considers the ordinal structures of the time series instead of just the
time series values. Because of this, it allows us to discover important
details regarding the ordinal structure of the time series58–61 and also
obtain information about the temporal correlations.62,74

The way in which this methodology evaluates the PDF associ-
ated to a scalar time series is based on a symbolization technique that

basically consists of assigning to the series itself different symbolic
sequences associated with the counting of ordinal patterns. As a
result, the relevant symbolic data are made up from the classification
of the elements of a given time series and also from the rearrange-
ment of these integrated data in ascending order. Is because this
ordering of the elements of the time series that the causal temporal
information is obtained from the BPM.

It is worth noting that the appropriate sequence of symboliza-
tion arises naturally from the time series itself, making unnecessary
to carry out any additional procedure. In fact, the partitions emerge
automatically by comparing the neighborhood order of relative
values rather than by assigning amplitudes according to different
recorded levels as is done by conventional rank-based methods that
partition the data (such as, PDFs constructed from histograms). This
is why BPM is considered to be one of the simplest symbolic tech-
niques that also incorporates temporal causality, and there are many
studies describing the advantages that make the BPM as one of the
most convenient74–77

On the other hand, it is clear that this type of analysis leads to
the loss of the detail of time series amplitude information. In spite of
this, by referring to the intrinsic structure of the series by means of
the application of the BPM, only a significant reduction is achieved
with respect to the characterization difficulty of the series. Further-
more, the cost-effectiveness of this methodology is optimal for the
analysis of very long time series.

Another detail that makes the BPM excellent for the analy-
sis of experimental data is that the ordinal patterns associated with
the PDF are invariant with respect to non-linear monotonic trans-
formations of associated distribution. That is, non-linear shifts or
changes in scale introduced by the measuring device do not mod-
ify the estimation of the quantifiers, which is a significant property
when working with experimental data. This implies that artificial
scaling or non-linear changes introduced by the measuring instru-
ment do not modify the calculation of the information quantifier
estimated by this methodology.78

a. Ordinal patterns

The ordinal pattern of an n-tuple (a sequence of n elements)
of real numbers (x0, x1, . . . , xn−1) describes how the elements of
this relate to each other in terms of their positions and values. To
establish an ordinal pattern, each element xi of the n-tuple is des-
ignated with a “symbol” or index ri =∈ {0, 1, . . . ., n − 1}, where the
largest element of this will be assigned the index n − 1, the second
largest will be assigned the index n − 2, and so on until the small-
est of all, which will be assigned the ri = 0. For example, the ordinal
pattern corresponding to the 3-tuple (15, 10, 13) will be (r0, r1, r2)

= (2, 0, 1), which for the sake of simplicity we will denote as [201].
It is evident that only n-tuples of distinct elements can have

an unambiguous ordinal pattern. To avoid ambiguity in the face of
repeated values, one can consider that when two elements are equal,
one is taken to be greater than the other in an arbitrary way. This
arbitrariness can also be justified if the elements xi belong to a con-
tinuous distribution, the probability that two values can be identical
is zero.

Given an n-tuple, each permutation in the array of elements xi

results in a different ordinal pattern. Therefore, there exists an array
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FIG. 16. Schematic representation of six possible ordinal patterns for the order
n = 3.79

of n! ordinal patterns,

� = {51, 52, . . . , 5n!}, (A1)

for a given n-tuple. This is why we call n the order of the ordinal
pattern (with n ≥ 2).

Consider again as an example a generic 3-tuple (x0, x1, x2)

with x0 6= x1 6= x2. For order n = 3, the n! = 3! = 6 possible ordinal
patterns are denoted as

�3 = {012, 021, 102, 120, 201, 210}. (A2)

In Fig. 16, we can observe the different diagrams of the six ordinal
patterns corresponding to �3. It can then be observed that any given
sequence (x0, x1, . . . , xn−1) under the conditions mentioned above
can be be mapped into a sequence of ordinal patterns in space �n.

b. Constructing the ordinal pattern of a time series

Given a scalar and one-dimensional time series χ(t) = {xt;
t = 1, . . . , M}, letting n = D ≥ 2 be the number of immersion
dimension (D ∈ N) and τ be the delay time (τ ∈ N), to each time
s, we assign a D-dimensional vector

(s) → (xs−(D−1)τ , xs−(D−2)τ , . . . , xs−(D−1)τ , xs), (A3)

which results from the evaluation of the time series χ at times
s − (D − 1)τ , s − (D − 2), . . . ., s − τ and s. It can be seen that the
higher the value of D, the more temporal information is embedded
in the patterns about the element’s past.

Then, to the ordinal pattern of order D related to time s is asso-
ciated the permutation π = (r0, r1, . . . , rD − 1), that we simplify as
[0; 1; · · · .; D − 1], whose elements satisfy the relation

xs−rD−1τ ≤ xs−rD−2τ ≤ xs−r1 · · · ≤ xs−r0 . (A4)

Thus, the vector defined in Eq. (A3) is represented by symbol π .
Then, the total number of possible permutations πi will be D! when
the immersion dimension is D.

As clarified above, ri < ri−1 is proposed if xs−riτ = xs−ri−1τ for
unlikely cases where ambiguities exist.

The relative frequency can be simply computed according to
the number of times that this particular order of sequence occurs in
the time series divided by the total number of sequences,

p(πi) = #{s|s ≤ M − (D − 1)τ ; (s) is of type πi}
M − (D − 1)τ

, (A5)

where # denotes cardinality (number of occurrences). In this way,
by applying the BPM to the time series χ , the PDF P = {p(πi),
i = 1, . . . D!} can be obtained by constructing the ordinal patterns.

Finally, for the generation of PDF by means of BPM, it is nec-
essary to order the obtained probabilities in some way. In this work,

we chose to use (among several existing options) the lexicographic
ordering provided by Lehmer’s algorithm due to the optimal distinc-
tion of different dynamics.80,81 This algorithm consists of manipula-
tion and generation of permutations in lexicographic order by using
the factoradic system.

The following example is intended to clarify the methodol-
ogy used. Let χ(t) = {5, 6, 7, 14, 28, 10, 18} be a time series with
M = 7, and the BPM is applied in order to evaluate the PDF for
D = 3 and τ = 1. The vectors (5,6,7), (6,7,14), and (7,14,28) are
represented by the ordinal pattern [012] as they are in strictly
increasing order. On the other hand, (14,28,10) is represented by
the pattern [120] and finally (28,10,18) is represented by [201].
In this case, from the permutation of immersion dimension, the
number of possible states turns out to be D! = 6, which cor-
respond to ordinal patterns seen in Fig. 16. The probabilities
of occurrence associated with each mutually exclusive permuta-
tion are given by p([012]) = 3/5, p([120]) = p([201]) = 1/5, and
p([210]) = p([021]) = p([102]) = 0. These results will end up gen-
erating the PDF P = {p1, p2, p3, p4, p5, p6} associated with the time
series χ . The last step in this process would be to apply Lehmer’s
algorithm to order them lexicographically.

c. General considerations for the calculation of

quantifiers

The BPM can be applied to any type of time series, as long as
a number of assumptions are satisfied. First of all, it is necessary
that the time series possesses weak stationarity, i.e., that for k ≤ D,
the probability that xt < xt+k must be independent of t,42–44 which
could be understood as “local” stationarity so that the calculated P
tends to be exact. Another necessary condition is that the size of
the time series is several orders of magnitude larger than the num-
ber of possible ordinal patterns, i.e., M � D!, in order to be able
to work with reliable statistics and to be able to correctly differ-
entiate deterministic dynamics from stochastic dynamics.82 Besides
conditioning the length of the time series, the immersion dimen-
sion D plays a very important role in the evaluation of appropriate
probability distribution as it determines the number of accessible
D! states. Beyond the selected parameters, BP suggest working with
3 ≤ D ≤ 7 and specifically consider a time delay of τ = 1 (i.e., com-
paring immediate times).42 However, other values of τ may provide
additional information from the system,75,80,81,83 where it has recently
been shown that this parameter is intimately related, when relevant,
to the intrinsic time scales of the system under analysis.84,85

Also, there are a couple of additional advantages of the appli-
cation of BPM. The first is based on the simplicity that this tech-
nique can be employed, as it relies on the determination of only
two parameters: the immersion dimension D and the delay time
τ . The second advantage lies in the extremely fast computational
processing of the algorithm.

In conclusion, the use of BPM to evaluate the PDF associ-
ated with the time series considers a series of partitions of relevant
space of dimension D that reveals the relevant details of the ordinal
structure of the given one-dimensional time series. This is equiva-
lent to reconstructing a phase space with immersion dimension D
and delay time τ . The symbolic representation of the time series by
comparing consecutive (τ = 1) or non consecutive (τ > 1) allows
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an accurate empirical reconstruction of the underlying phase space,
even in the presence of weak noise (both observational and non-
observational).42 The BPM can be applied not only to time series
corresponding to low-dimensional dynamical systems, but also to
any type of time series (regular, chaotic, or noisy).

The application of BPM to time series of electrical records cor-
responding to local potentials has been extensively investigated.86 In
order to be able to characterize the dynamics of neuronal activity at
mesoscopic scale (LFP), it is proposed to use permutation methodol-
ogy for the evaluation of LFP associated to the time series and, thus,
to calculate the information quantifiers.

The BPM provides a prescription for ordinary and global
quantifiers of the entropic type (Shannon entropy and statistical
complexity). Furthermore, having a PDF as P = {pi; i = 1, . . . , N}
makes N! ways of ordering this data. This is why it is important to
apply a sorting technique, such as the lexicographic ordering pro-
posed by Lehmer, which was applied in this work to overcome the
aforementioned problem.

In the present work, all information quantifiers were assessed
using the BPM. When this methodology is used to calculate them,
they are usually referred to as “permutation quantifiers,” thus being
“permutation entropy” and “MPR permutation complexity.”

d. Calculation of the Shannon entropy and the

statistical complexity

In order to characterize the dynamics of neuronal activity at
a mesoscopic scale (LFP), the BPM was used to evaluate the time
series associated with LFP in order to calculate information theory
permutation quantifiers.

First, the causal information was estimated using BPM
with embedding dimension D = 3, which satisfies the condition
requested for having a reliable estimate if M � D! (M length of the
time series) is satisfied. Also, the delay time used was τ = 1, which
gives a convergent statistics and an optimal information quantifiers
measure.83 The estimations in the present work were performed for
a time series of 10 min taking 4 s windows, which allowed us to have
2000 points for each window, ensuring M = 2000 � D! = 6 in all
cases.

Moreover, BPM suggests the use of these setup of parameters,
which are ideal for capturing the causal temporal characteristics of
the signal under study in the current work. By this methodology, we
estimated the PDF associated with each time series (for each channel
of each electrode) from both types of LFP recordings (basal and pre-
ictal signals) and proceeded to construct the PDF corresponding to
each of them. For having chosen D = 3, we had D! = 3! = 6 ordinal
states. This methodology of analysis was repeated in data belonging
to six subjects under study with refractory epilepsy.

Then, it was necessary to “organize” the ordinal pattern data
obtained from the application of the BPM for correct construction
of the PDF. As mentioned above, this was done by using Lehmer’s
algorithm. To apply this algorithm, we used a previously written
computational code.87

The Shannon permutation entropy, H, and the permutation
statistical complexity measure MPR, C, were calculated after find-
ing the corresponding PDF for each channel for both preictal and
basal signals from the Eqs. (A7) and (A8), respectively.

2. Shannon entropy

Information theory quantifiers correspond to measurements
capable of characterizing a given property of the PDF associated to
a time series linked to a physical observable, such as, for example,
the electrical signal of the iEEG. The most paradigmatic example of
this kind of information theory quantifier is the “Shannon entropy.”
Given a time series χ(t) ≡ {xt; t = 1, . . . , M} with M discrete val-
ues corresponding to the dynamics of a measured observable, the
PF associated to it will be given by P ≡ {pi; i = 1, . . . N}, where
∑N

i=1 pi = 1 and N are all the different i possible states of the sys-
tem with associated probability of occurrence pi. Then, the discrete
Shannon entropy measure S88 will be defined as

S[P] = −
N

∑

i=1

piln(pi). (A6)

It can be observed that this functional becomes null when it is pos-
sible to predict with complete certainty when the ith outcome will
take place, that is, when pi = 1 and pj = 0 ∀j 6= i. In such instance,
the knowledge of the resulting process will be maximal. However,
knowledge of the process will be minimal when the distribution
is equiprobable, i.e., pi = 1/N ∀i. Given these observations, it is
possible to define the normalized Shannon entropy H as

H[P] = S[P]/Smax, (A7)

where Smax = ln(N) corresponds to the entropy of uniform distribu-
tion, resulting in 0 ≤ H ≤ 1.

The normalized Shannon entropy H is a “global character” as
information quantifier, since it is not sensitive to small perturbations
in the values or to the rearrangement of PDF components.

a. Statistical complexity

Understanding the dynamics of epileptic seizures requires
characterization of the complex structural dynamics of neuronal
populations, their oscillatory organisation, and their role in the gen-
eration of such seizures. The human brain corresponds to a complex
system on multiple time and space scales that has numerous sub-
components with a large number of interactions between them. This
means that systems such as the human brain exhibit a non-trivial
component-by-component relationship, and in order to understand
its dynamics, it becomes necessary to quantify its complexity.

Complex systems are those that are highly composite and far
from the “perfect order” (e.g., a regular crystal) and also to “complete
disorder” (e.g., an ideal gas). From this outline, it is clear that the
concept of complexity is linked to a possible hidden structure or pat-
terns that characterize the dynamics that emerge from a system. For
this reason, “statistical complexity” is considered as the information
theory quantifier that indicates the “order” that systems possess.

In the various systems described, whether deterministic or of
the random type, complexity will be characterized by the traces in
their spatial and/or temporal correlation structures. It is impor-
tant to note that the ordinal structures present in a process cannot
be evaluated by just any quantifier. This means that a measure of
statistical or structural complexity is necessary for a better character-
ization of the dynamics of the system represented by its time series.89
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A complex system is built by a large number of mutually commu-
nicating elements with different kinds of interactions between its
components, where each of these elements possesses different types
of temporal patterns, and is further characterized by the dynam-
ics that emerge from these different types of interactions. This is
why the brain can be identified as a complex system in which the
dynamical characteristics of the neuronal population emerge from
the interactions of the neural network.

There exists a functional form for complexity, identified as C,
which serves as a measure of the statistical complexity of a system
and also meets the requirement mentioned above.90 This measure
quantifies the fine details of the dynamics of the system under inves-
tigation. In particular, the “statistical complexity” (MPR) can be
expressed as90

C[P] = QJ[P, Pe]H[P], (A8)

where P is the PDF associated with the time series, Pe is the
equiprobable distribution, H[P] is the normalized Shannon entropy,
and QJ[P, Pe] is the measure of non-equilibrium, which is a distance
between P and Pe, and is given by

QJ[P, Pe] = Q0J[P, Pe], (A9)

where

J[P, Pe] = S

[

P + Pe

2

]

− S[P]

2
− S[Pe]

2
(A10)

is the Jensen–Shannon divergence,59,74 with S being the entropy
given by Eq. (A6), and Q0 a normalizing constant.

Since J[P, Pe] reaches the maximum value when one of the com-
ponents of P is equal to unity and the rest cancels, Q0 of the Eq. (A9)
is defined as the inverse of this maximum possible value, i.e.,

Q0 = −2

{

N + 1

N
ln(N + 1) − ln(2N) + ln N

}−1

, (A11)

with N equal to the number of possible states of P. Thus, 0 ≤ QJ ≤ 1.
On the one hand, the use of Jensen–Shannon divergence has

the utility of being able to compare symbolic compositions between
different sequences,91 since this divergence quantifies the differ-
ence between probability distributions. On the other hand, it is
worth noting that the MPR complexity measure depends on only
two different probability distributions, one associated with the sys-
tem under analysis (P) and the other associated with the uniform
distribution (Pe).

b. Causal information plane

Within statistical mechanics, it is interesting to be able to char-
acterize isolated systems by means of their initial and arbitrary PDF.
Also, the main goal of this area is to be able to describe the evolution
of the system toward equilibrium, where without loss of generality
it can be assumed that this state is given by uniform distribution
Pe = {pi = 1/N, ∀i = 1, . . . , N}.

When evaluating information quantifiers and wishing to study
their temporal dynamics, the temporal evolution can be analyzed
using a two-dimensional diagram from the measurement of some
quantifier as a function of time. On the other hand, the second law of
thermodynamics states that for isolated systems, the entropy grows

monotonically with time (dH/dt ≥ 0).92 This implies that the nor-
malized Shannon entropy H can be considered as an arrow of time,
and thus, it is possible to use this measure as a proxy for the time
axis. Consequently, we can define the “causal information plane” for
complexity as a function of entropy (H × C).59,93

The concept of causality is given by the fact that temporal corre-
lations between successive samples are taken into account when cal-
culating the information quantifiers. This can be achieved through
the BPM, which was used for the estimation of permutation entropy
and complexity in this paper.

Indeed, the H × C plane is based only on global characteris-
tics associated with the time series of the PDF. Since the complexity

FIG. 17. H × C-plane of the amplitude, fourth subject, taking into account differ-
ent frequency bands. We consider D = 3 and τ = 1. (a) Preictal state; (b) basal
state.
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FIG. 18. H × C-plane of the amplitude, fifth subject, taking into account different
frequency bands. We consider D = 3 and τ = 1. (a) Preictal state; (b) basal
state.

is defined in terms of normalized Shannon entropy H [Eq. (A8)], it
can be observed that for a given value of this magnitude, the range of
possible values of C is determined between a Cmin and a Cmax. This is
due to the fact that the calculation of complexity depends on two dif-
ferent PDFs: one corresponding to the system under study P and the
other being the uniform PDF Pe, thus restricting the possible values
of the statistical complexity in the plane H × C.57 It can then be seen
that evaluating C provides important additional information that the
entropy measure did not provide, that is, related to the correlation
structure between the components of the physical system.

c. H×C planes of the fourth, fifth, and sixth patients

The estimation of the H × C plane for the amplitude of the pre-
ictal signal is shown in Figs. 17(a), 18(a), and 19(a) for the fourth,

FIG. 19. H × C-plane of the amplitude, sixth subject, taking into account different
frequency bands. We consider D = 3 and τ = 1. (a) Preictal state; (b) basal
state.

fifth, and sixth patients, respectively, while, in contrast, the H × C
plane of amplitude of the basal signals is depicted in Figs. 17(b),
18(b), and 19(b) for fourth, fifth, and sixth patients, respectively. The
results for the H × C planes of the fourth, fifth, and sixth patients
have a similar behavior to the one presented for first, second, and
third subjects.

APPENDIX B: EXPERIMENTAL METHODS

The acquisition of experimental data from the iEEG registry of
patients with refractory epilepsy was performed at the Hospital de
Alta Complejidad “El Cruce,” Florencio Varela, Argentina. The data
acquisition was endorsed by the hospital’s ethics committee, within
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the framework of other work carried out on the patients. For consis-
tency, we decided to use data obtained at the same research center
and using the same data acquisition system. Data consistency may
be critical as we consider that we are developing a novel principle
with novel and important results for the investigation of preictal sig-
nal dynamics as an epileptogenic biomarker (with novel techniques
combining signal phase and amplitude separation for different fre-
quency bands of interest and investigating time series causality with
BP). The purpose behind this decision is to always respect the same
experimental protocol.

1. Data recording

The location and quantity of the electrodes are directly related
to the variety and the number of cortical structures hypothesized as
EZ. The task of intracranial electrode implantation is performed by
the hospital’s neurosurgeon, who does it by means of a stereotactic
surgery. The location coordinates of each electrode are calculated
using the Aimplan software (Micromar), a tool that allows the
neurosurgeon to plan his stereotactic procedures with maximum
precision. During stereotactic surgery, the neurosurgeon inserts the
electrodes in the pre-planned location through the the stereotactic
surgery. The correct implantation of the electrodes is then checked
by imaging techniques, as can be seen in the Fig. 20.

The period of hospitalization will depend on the patient’s pre-
disposition to seizures during this period and usually lasts between
6 and 10 days. The signal obtained by the electrodes is amplified,

FIG. 20. Location of electrodes in reconstruction based on the fusion of com-
puted axial tomography (CT scan) and magnetic resonance imaging (MRI) for
one of the subjects. The electrodes are identified as follows: Am, amygdala; hH,
hippocampal head; bH, hippocampal body (left side and right side).

bandpass filtered between 1 Hz and 2 KHz in order to acquire the
HFO activity.

The iEEG record is continuously and uninterruptedly stored in
a computer intended for the acquisition of these data. These data
are segmented by the measurement equipment approximately every
18 min (the exact time varies on the order of the hundredth of a
second) and are stored in a specific format, which has metadata cor-
responding to the channel label, the sampling rate, the time of the
sampling frequency, the start time of each recording, etc.

In order to analyze the dynamics that emerge in the moments
prior to the epileptic seizure, it was decided to take the data from the
record immediately prior to a seizure (preictal period) and another
record far before the seizure (basal period). For the first one, the
temporal onset of the epileptic seizure was identified from the clin-
ical report drawn up by the neurologists team, which included the
time of occurrence of the seizure. Then, the recording was split up
discarding data after this time of onset. Thus, the data resulting from
this segmentation have only preictal characteristics, from which a
total sample of 10 min of duration was taken, prior to the onset of
the event. For the “basal” record, a period of 10 min that occurred
prior to the “preictal” record was taken as data, being this as close to
the “preictal” record as possible. It should be noted that the temporal
location of the basal recording occurs approximately 40 min before
ictal onset. It is important to mention that this way of choosing the
data to be analyzed is in agreement with the bibliographic findings
regarding the duration of the preictal and basal periods.52,53,94 On the
other hand, the chosen seizure data had the condition that during
the epileptic event at least some clinical manifestation was observed,
i.e., it was not a subclinical seizure. Another important criterion was
that the acquired signals should not be contaminated by high levels
of artifacts in a large part of the recording. The recorded data were
arranged in a matrix, where each column contained the time series
acquired by each of the channels of the respective measurement
electrodes and then processed in MATLAB.

The data used for the analysis of this work were the basal
records (used as a control) and the preictal records of six patients
under the hypotheses and specifications mentioned in Appendix A.
The iEEG measured signal consists basically of the recording activ-
ity from eight active channels (plus a common reference chan-
nel) for each implanted intracranial electrode with a sampling
rate of 2 kHz. We report results from 16 experimental sessions in
six patients with drug-resistant epilepsy who were candidates for
surgery (all right-handed, six males, 19–49 years old). Patients were
implanted with chronic depth electrodes at “Hospital El Cruce” in
Buenos Aires, Argentina. They were monitored 24/7, for seven to
ten days, to determine the epileptogenic region for possible surgi-
cal resection.95,96 A written informed consent was signed by each
patient to participate in this study. All the experimental proce-
dures were carried out in accordance to the Declaration of Helsinki
and approved by “Hospital El Cruce” Medical Institutional Review
Board. In particular, the first patient had implanted five electrodes
(40 channels), and the second to sixth patient had six electrodes (48
channels). Each electrode probe had a total of nine microwires at
its end, eight active recording channels and one (low impedance)
reference (AD-TECH Medical Instrument Corporation, Wiscon-
sin, USA). Electrode locations in hippocampus (11 probes) and
amygdala (eight probes) were based exclusively on clinical criteria
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TABLE I. Frequency bands analyzed. From 90 to 240 Hz, the spectrum was subdi-

vided into consecutive 10 Hz bands, each band being named “HFO” together with the

index associated with its ordinal.

Band F (Hz) Band F (Hz)

Delta [0.5, 4) HFO 5 (140, 150]
Theta [4, 8) HFO 6 (150, 160]
Alpha [8, 12) HFO 7 (160, 170]
Beta [12, 30) HFO 8 (170, 180]
Gamma1 [30, 60) HFO 9 (180, 190]
Gamma2 [60, 90) HFO 10 (190, 200]
HFO 0 [90, 100) HFO 11 (200, 210]
HFO 1 [100, 110] HFO 12 (210, 220]
HFO 2 (110, 120] HFO 13 (220, 230]
HFO 3 (120, 130] HFO 14 (230, 240]
HFO 4 (130, 140] . . . . . .

and were verified by CT co-registered to preoperative MRI. The
signals were recorded using a 128-channel Cervello Elite EEG Sys-
tem (Blackrock Microsystems, UT, USA), with a sampling rate of
2 kHZ.

2. Frequency band filtering

To increase the resolution of the signal and to remove interfer-
ence such as 1/f noise, we filtered the signal between 0.5 and 240 Hz
using filtering based on “Kaiser windows,”developed by Belitski.56

The parameters of this filtering consisted of a sharp transition band-
width of 0.1 Hz, a small passband ripple of 0.05 dB, and a high
band-clearing attenuation of 60 dB. We selected this filter particu-
larly for its versatility, as it is widely used in a vast number of studies
for that reason. It is important to point out that when applied, we
observed how the signal is “smoothed” at its extremes.

In addition to Kaiser filtering, a bandpass filter was also per-
formed, where the filtered bands can be seen in Table I.

The first frequency bands (from 1–90 Hz) correspond to the
traditional Berger’s97 oscillation bands, while the higher bands cor-
respond to HFO ripples, where each of them was subdivided into
consecutive intervals of 10 Hz. Fourier transform was applied to the
filtered signal to visualize and corroborate the correct filtering of
each frequency band for both basal and preictal recordings.
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