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A B S T R A C T   

Background: Previous work showed that elderly with excess in theta activity in their resting state electroen
cephalogram (EEG) are at higher risk of cognitive decline than those with a normal EEG. By using event-related 
potentials (ERP) during a counting Stroop task, our prior work showed that elderly with theta excess have a large 
P300 component compared with normal EEG group. This increased activity could be related to a higher EEG 
signal energy used during this task. 
New method: By wavelet analysis applied to ERP obtained during a counting Stroop task we quantified the energy 
in the different frequency bands of a group of elderly with altered EEG. 
Results: In theta and alpha bands, the total energy was higher in elderly subjects with theta excess, specifically in 
the stimulus categorization window (258–516 ms). Both groups solved the task with similar efficiency. 
Comparison with existing methods: The traditional ERP analysis in elderly compares voltage among conditions and 
groups for a given time window, while the frequency composition is not usually examined. We complemented 
our previous ERP analysis using a wavelet methodology. Furthermore, we showed the advantages of wavelet 
analysis over Short Time Fourier Transform when exploring EEG signal during this task. 
Conclusions: The higher EEG signal energy in ERP might reflect undergoing neurobiological mechanisms that 
allow the elderly with theta excess to cope with the cognitive task with similar behavioral results as the normal 
EEG group. This increased energy could promote a metabolic and cellular dysregulation causing a greater decline 
in cognitive function.   

1. Introduction 

Healthy aging is accompanied by a natural detriment of physical and 
cognitive abilities (Román Lapuente and Sánchez Navarro, 1998). In 
particular, inhibitory control (Rey-Mermet and Gade, 2018; Thomas 
et al., 2010) and attention (Diamond, 2020; Thomas et al., 2010) are 
importantly affected. Changes in brain electrical activity, which can be 
measured noninvasively by the EEG, are tightly related to the afore
mentioned cognitive processes (Buzsáki, 2006; Lopes da Silva, 2011). 
Some authors have proposed that changes in the EEG of the elderly, 
obtained under resting conditions, are not only the result of normal 

aging but can contain signs of undergoing subclinical pathologic pro
cesses (Chang et al., 2011). Moreover, excess in delta and theta fre
quency bands of resting EEG from the healthy elderly, compared to a 
normative base according to age, is an excellent predictor of cognitive 
detriment in the following seven years (Prichep et al., 2006; van der 
Hiele et al., 2008). We recently showed that the healthy elderly with an 
excess of theta EEG activity have impairments in inhibitory control 
processing at the electrophysiological level (Sánchez-Moguel et al., 
2018). 

Stroop tasks have been used during event-related potentials (ERP) 
and functional magnetic resonance imaging (fMRI) to study the decrease 
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in the efficiency of inhibitory processing during healthy and patholog
ical aging (Amieva, 2004; Kaufmann et al., 2008; Ramos-Goicoa et al., 
2016; Sánchez-Moguel et al., 2018; West and Alain, 2000). An 
over-recruitment of neuronal activity during aging was observed using 
fMRI during the performance of Stroop tasks; this enhanced neuronal 
activity is proposed to have a compensatory function (Cabeza, 2002; 
Cabeza et al., 2004; Langenecker et al., 2004; Mathis et al., 2009; Mil
ham et al., 2002; Zysset et al., 2007). Furthermore, fMRI studies showed 
a higher brain activity in older people with mild cognitive impairment 
(MCI) compared to the healthy elderly (Kaufmann et al., 2008). 

In our earlier work, we showed that the elderly with theta excess 
have a larger P300 component associated with stimulus categorization 
than the elderly with a normal EEG (Sánchez-Moguel et al., 2018). A 
higher voltage in ERP is related to higher synchronized neuronal activity 
that would be associated with a greater amount of energy. However, the 
changes in EEG signal energy associated with any cognitive process in 
the elderly with excess in theta activity have not been yet properly 
quantified. As the elderly with excess in theta activity are probably in a 
previous stage of MCI, we hypothesize that they might already be having 
a dysregulation in EEG signal energy during the performance of an 
inhibitory control task (Mattson and Arumugam, 2018). 

Wavelet transform (WT) can help us to compare the EEG signal en
ergy across bands during the performance of Stroop tasks. The main 
advantage of wavelet analysis over Fourier analysis is the flexible (and 
optimal) time-frequency resolution (Daubechies, 1992; Mallat, 2008). 
Thus, we can follow the brain frequency dynamics over time (Daube
chies, 1992; Mallat, 2008; Rosso et al., 2006). The wavelet analysis al
lows us to have a standard frequency decomposition of EEG signals over 
time (Daubechies, 1992; Goupillaud et al., 1984; Mallat, 2008; Rosso 
et al., 2006, 2005). This is a desirable property, because we can track the 
frequency variations of the EEG signal over time and detect at which 
time window of the Stroop task changes in signal energy occur. 

The general objective of this study was to explore, using WT, whether 
there were differences in EEG signal energy across frequency bands in 
ERP during the performance of a counting Stroop task between a group 
of elderly subjects with an excess of theta activity in their resting state 
EEG and another one with normal EEG. The specific objective was to 
evaluate the EEG signal energy between groups for each of the frequency 
bands (i.e., delta, theta, alpha, beta, and gamma) across different time 
windows of the ERP. We expected to provide a precise quantification of 
EEG signal changes in the group with theta excess, specifically in the 
time window associated with the stimuli categorization. 

2. Materials and methods 

2.1. Participants 

Forty-six healthy older adults aged over 60 years were recruited to 
participate in the study (26 females). The inclusion criteria were to be 
right-handed, to have more than nine years of schooling, to have an 
average level of intelligence (Wechsler Intelligence Scale for adults 
90–190, (Wechsler, 2003)), and not to have any psychiatric disorder 
according to their age (NEUROPSI, (Ostrosky-Solís et al., 1999)); 
Q-LES-Q questionnaire, > 70% (Endicott et al., 1993); Mini-Mental State 
Examination, > 27 (Reisberg et al., 2008, 1982); Global Deterioration 
Scale, 1–2 (Reisberg et al., 2008, 1982); Alcohol Use Disorders Identi
fication Test, < 5 (Babor et al., 2001); Beck Depression Inventory, < 4 
(Beck et al., 1961); Geriatric Depression Scale, < 5 (Yesavage et al., 
1982). Furthermore, subjects had no signs of chronic diseases such as 
diabetes or hypercholesterolemia. The subjects were classified into two 
groups according to the characteristics of their EEG. Subjects in the 
Normal-EEG group presented normal EEGs, from both the quantitative 
and qualitative points of view, and subjects in the Theta-EEG group 
presented an excess of theta activity for their age in at least one elec
trode, which is further described below. Each group was formed by 23 
participants. The project was approved by the bioethics committee of 

the Neurobiology Institute of the National Autonomous University of 
Mexico (UNAM). ERP analyses of the participants were published by 
Sánchez-Moguel et al. (2018) and are further analyzed here using 
wavelets. 

2.2. EEG analysis in resting condition 

Based on the next analysis, participants were classified as with a 
normal EEG (Normal-EEG group) or with excess in the theta band 
(Theta-EEG group); 23 subjects made up each group (13 females in each 
group). 

The EEG from 19 tin electrodes (10–20 International System, Elec
troCap™, International Inc., Eaton, Ohio) referenced to linked earlobes 
was recorded from each subject in the resting condition with eyes closed 
using a MEDICID™ IV system (Neuronic Mexicana, S.A., Mexico) and 
Track Walker™ v5.0 data system for 15 min. The EEG was digitized 
using the MEDICID IV System (Neuronic A.C.) with a sampling rate of 
200 Hz using a band-pass filter of 0.5 – 50 Hz, and the impedance was 
kept below 5 kΩ. Twenty-four artifact-free segments of 2.56 s each were 
selected, and the quantitative EEG analysis was performed offline using 
the fast Fourier transform to obtain the power spectrum every 0.39 Hz; 
also the geometric power correction (Hernández et al., 1994) was 
applied, and absolute (AP) and relative power (RP) in each of the four 
classic frequency bands were obtained: Delta (1.5–3.5 Hz), theta 
(3.6–7.5 Hz), alpha (7.6–12.5 Hz), and beta (12.6–19 Hz). These fre
quency ranges were the same as those used for the normative database 
(Valdés et al., 1990) provided by MEDICID IV. Z-values were obtained 
for AP and RP, comparing the subject’s values with values of the 
normative database [Z = (x - μ) ∕σ, where μ and σ are the mean value 
and the standard deviation of the normative sample of the same age as 
the subject, respectively]. Z-values > 1.96 in the theta band were 
considered abnormal (p < 0.05) and therefore this was the criteria for 
inclusion in the Theta-EEG group. 

2.3. Counting stroop task 

In the counting Stroop task, subjects are asked to answer how many 
words are presented in a slide, regardless of the meaning of the word 
itself (Bush et al., 2006). Subjects increase their response times and tend 
to make more mistakes when the meaning of the word does not match 
the number of times that the word appears; this phenomenon is known 
as the Stroop or interference effect (MacLeod, 1991). 

2.3.1. Behavioral task 
Series of one, two, three, or four words that denote numbers (“one”, 

“two”, “three”, “four”) were presented in the center of a 17-inch com
puter screen. Time presentation of the stimuli was 500 ms, and the 
interstimulus interval was 1500 ms. An incongruent condition, herein 
referred to as Interference stimulus, consisted of a trial where the 
number of presented words did not correspond with the meaning of the 
word. The congruent condition, further referred to as No Interference 
stimulus, consisted of a trial in which the number of presented words 
and the meaning of the word that was presented matched. A total of 120 
Interference and 120 No Interference stimuli were randomly presented. 

Subjects were asked to indicate the number of times that the word 
appeared in each trial, using a response pad held in their hands. One-half 
of the participants used their left thumbs to answer “one” or “two” and 
their right thumbs to indicate “three” or “four”; the other half of the 
participants used their opposite hand to counterbalance the motor re
sponses. The participants were asked to answer as quickly and accu
rately as possible. We ensured that the participants understood the 
instructions by presenting a brief practice task before the experimental 
session. 
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2.4. ERP acquisition and analysis 

The EEGs were recorded with 32 Ag/AgCl electrodes mounted on an 
elastic cap (Electrocap) while the participant performed the counting 
Stroop task, using NeuroScan SynAmps amplifiers (Compumedics Neu
roScan) and the Scan 4.5 software (Compumedics NeuroScan). Elec
trodes were referenced to the right earlobe (A2), and the electrical signal 
was collected from the left earlobe (A1) as an independent channel. 
Recordings were re-referenced offline in two ways: (a) to the averaged 
earlobes, as was usually performed in previous studies, and (b) to the 
average reference. The EEG was digitized with a sampling rate of 500 Hz 
using a band-pass filter of 0.01–100 Hz. Impedances were kept below 5 
kΩ. An electrooculogram was recorded using a supraorbital electrode 
and an electrode placed on the outer canthus of the left eye. 

ERPs were obtained for each subject and experimental condition (i. 
e., No Interference and Interference). Epochs of 1500 ms were obtained 
for each trial, which consisted of 200 ms pre-stimulus and 1300 ms post- 
stimulus intervals. An eye movement correction algorithm (Gratton 
et al., 1983) was applied to remove blinks and vertical ocular-movement 
artifacts. Low-pass filtering for 50 Hz and a 6-dB slope was performed 
offline. A baseline correction was performed using the 200 ms 
pre-stimulus time window, and a linear detrend correction was per
formed on the whole epoch. Epochs with voltage changes exceeding ±
80 μV were automatically rejected from the final average. The epochs 
were visually inspected, and those with artifacts were also rejected. 
Averaged waveforms for each subject and each stimulus type included 
only those trials that corresponded to correct responses. Only the correct 
answers were used for further analysis because we had a low percentage 
of incorrect answers, which made the ERP analysis for incorrect answers 
unreliable. 

2.5. Wavelet transform and wavelet-based measures 

The ERPs were next subjected to a wavelet analysis. Unlike Fourier 
analysis, in which the sine and cosine functions are used, the wavelet 
transform is based on functions that are vanishing oscillating functions 
(Mallat, 2008; Rosso et al., 2006). A wavelet is an oscillating function 
with an amplitude that begins at zero, increases, and then decreases to 
zero. In other words, it is an oscillating function with compact support. 
One of the interesting properties of these functions is that they are well 
localized in time and in frequency, so they are functions which cover a 
certain narrow frequency band (Daubechies, 1992; Mallat, 2008). 
Defining one function ψ(t) as being the first scale of the analysis, we can 
continue decomposing the signal into subsequent scales, by scaling and 
translating this function. This ψ(t) function, an oscillating function with 
narrow width both in time and space, is called the mother wavelet. Using 
a scale and translation parameters a,b ∈ R, a∕= 0, we can construct a 
filter bank to decompose the signal into frequency bands (Daubechies, 
1992; Mallat, 2008). In the continuous wavelet transform these pa
rameters are arbitrary, whereas in the case of the fast discrete wavelet 
transform an algorithm exists which selects the scale and translation 
parameters by means of a dyadic decomposition, which would be 
detailed later in this section (Mallat, 2008). Within the wavelet multi
resolution decomposition framework, a wavelet family ψa,b is a set of 
elemental functions generated by scaling and translating a unique ad
missible mother wavelet ψ(t): 

ψa,b = |a|−
1
2 ψ

(
t − b

a

)

(1)  

where a,b ∈ R, a∕= 0 are the scale and translation parameter, respec
tively, and t is the time (Rosso et al., 2006). In defining the mother 
wavelet, one chooses the wavelet functions from a subspace of the space 
L1(R) ∩ L2(R). This is the space of functions with finite integral of its 
absolute value and finite integral of its squared absolute value. This 
ensures that the wavelet could have zero mean and could be normalized 

as ||ψ(t)||2 = 1. In the context of signal analysis this means that the 
wavelet has zero mean and energy equal to 1. In most situations it is 
useful to restrict the mother wavelet to be a continuous function with a 

higher number N of vanishing moments, i.e. for all integer m < N, 
∫∞

−∞ 

tmψ(t)dt = 0. This is the case of the Daubechies-N wavelets, with N the 
number of vanishing moments (Daubechies, 1992). 

Wavelet’s transformation has been widely used in EEG signal pro
cessing (Al Ghayab et al., 2019; Blanco et al., 1995, 1996, 1997, 1998; 
Gross, 2014; Korol et al., 2007; Kovach and Gander, 2016; 
Lopes-Dos-Santos et al., 2018; Nakhnikian et al., 2016; Navajas et al., 
2013; Quian Quiroga et al., 1997; Quiroga et al., 2001; Rosenblatt et al., 
2014; Rosso et al., 2001; Rosso et al., 2004; Rosso and Hyslop et al., 
2005; Rosso et al., 2005; Schrouff et al., 2016; Schütt et al., 2003; 
Venkata Phanikrishna and Chinara, 2021; Yordanova et al., 2002; Rosso 
et al., 2006). It divides the continuous signal into time frequency do
mains. Provides high frequency resolution for low frequency content 
and high time resolution for its high frequency coverage. Wavelet 
transform is considered an effective tool for analysis of non-stationary 
signals such as brain wave signals (Lopes-dos-Santos et al., 2015; 
Quian Quiroga and Panzeri, 2009; Quian Quiroga et al., 2001; Ortiz-
Rosario et al., 2015; Rosso et al., 2001; Rosso et al., 2004; Rosso and 
Hyslop et al., 2005; Rosso et al., 2005; Schrouff et al., 2016; Schütt et al., 
2003; Venkata Phanikrishna and Chinara, 2021; Yordanova et al., 
2002). The wavelet coefficients examine the correlations across the 
signal under investigation and the set of functions named as wavelets. 
These wavelets are acquired among the translation and dilatation of 
some special functions named as mother wavelets and the coefficients 
show the correspondence between the investigated signal and the 
wavelets (Al Ghayab et al., 2019; Blanco et al., 1995, 1996, 1997, 1998; 
Gross, 2014; Korol et al., 2007; Kovach and Gander, 2016; 
Lopes-Dos-Santos et al., 2018; Nakhnikian et al., 2016; Navajas et al., 
2013; Quian Quiroga et al., 1997, 2001; Rosenblatt et al., 2014; Rosso 
et al., 2001, 2004, 2005; Rosso and Hyslop et al., 2005; Schrouff et al., 
2016; Schütt et al., 2003; Venkata Phanikrishna and Chinara, 2021; 
Yordanova et al., 2002). 

The wavelet treatment of brain EEG signals has been presented 
previously by some of the authors of this paper (Baravalle et al., 2018; 
Blanco et al., 1995; Blanco et al., 1996; Blanco et al., 1997; Blanco et al., 
1998; Korol et al., 2007; Quian Quiroga et al., 1997; Quian Quiroga 
et al., 2001; Rosso et al., 2001; Rosso et al., 2004; Rosso and Hyslop 
et al., 2005; Rosso et al., 2005; Schütt et al., 2003; Yordanova et al., 
2002; Rosso et al., 2006). It can be considered today as the 
state-of-the-art in these matters that there are multiple possible choices 
for the specific type of wavelet and that the election of the type of 
wavelet does not affect the results (Baravalle et al., 2018; Blanco et al., 
1995; Blanco et al., 1996; Blanco et al., 1997; Blanco et al., 1998; Korol 
et al., 2007; Quian Quiroga et al., 1997; Quian Quiroga et al., 2001; 
Rosso et al., 2001; Rosso et al., 2004; Rosso and Hyslop et al., 2005; 
Rosso et al., 2005; Schütt et al., 2003; Yordanova et al., 2002; Rosso 
et al., 2006). This is to say the adopted methodology is robust and in
dependent of the type of wavelet that could be adopted for the analysis 
(Baravalle et al., 2018; Blanco et al., 1995; Blanco et al., 1996; Blanco 
et al., 1997; Blanco et al., 1998; Korol et al., 2007; Quian Quiroga et al., 
1997; Quiroga et al., 2001; Rosso et al., 2001; Rosso et al., 2004; Rosso 
and Hyslop et al., 2005; Rosso et al., 2005; Schütt et al., 2003; Yorda
nova et al., 2002; Rosso et al., 2006). For the sake of completeness we 
show a detailed comparison of the different mother wavelet methodol
ogies in the Appendix A, Figs A1, A2, A3, A4 and A5. 

Let us remark that by choosing the wavelet function, we need to look 
at the resolution of the wavelet in both time and frequency domains. Due 
to the uncertainty principle, a shorter-in-time wavelet is going to be 
wider in frequency space, and vice versa. But this property, critical in 
using wavelets as a filter bank to reconstruct or compress the signal, is 
not so important when studying the power spectra (Torrence and 
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Compo, 1998). In this paper we use the Daubechies 2 as a mother 
wavelet, which means that this wavelet has zero mean and zero variance 
(Baravalle et al., 2018). We tested with other wavelets, from the family 
of Daubechies, Symlets and Fejér-Korovkin (Nielsen, 2001), but the 
quantitatively and qualitatively results were very similar. The only 
variant of the different approaches, being in all cases which mother 
wavelet can be used, is an orthogonal discrete mother wavelet and 
therefore its election may depend on what is the choice made by the 
author. In all of them, the specific methodology is basically the same. 
There are multiple possible choices for the specific type of wavelet, 
however, the election of the type of wavelet does not affect the results. 
Notice that we presented a detailed description of the wavelet meth
odology and we could also exhibit all different possible mother wavelets 
that are being used in the literature, however, we consider this to be 
slightly redundant for the objective of this article as the election of the 
type of wavelet does not affect the results (Baravalle et al., 2018; Blanco 
et al., 1995; Blanco et al., 1996; Blanco et al., 1997; Blanco et al., 1998; 
Korol et al., 2007; Quian Quiroga et al., 1997; Quiroga et al., 2001; 
Rosso et al., 2001; Rosso et al., 2004; Rosso and Hyslop et al., 2005; 
Rosso et al., 2005; Schütt et al., 2003; Yordanova et al., 2002; Rosso 
et al., 2006). Importantly, in other papers published also by the authors 
of this paper, we have included the treatment with Gabor Transform, 
with variant of time-frequency analysis, and a comparison with other 
mother wavelets finding no differences (Baravalle et al., 2018; Blanco 
et al., 1995; Blanco et al., 1996; Blanco et al., 1997; Blanco et al., 1998; 
Korol et al., 2007; Quian Quiroga et al., 1997; Quiroga et al., 2001; 
Rosso et al., 2001; Rosso et al., 2004; Rosso and Hyslop et al., 2005; 
Rosso et al., 2005; Schütt et al., 2003; Yordanova et al., 2002; Rosso 
et al., 2006). 

The continuous wavelet transform (CWT) of a signal S(t) ∈ L2(R) (the 
space of real square summable functions) is defined as the correlation 
between the signal S(t) and the wavelet family ψa,b for each a and b: 

〈
S, ψa,b

〉
= |a|

1
2

∫∞

−∞

S(t)ψ∗

(
t − b

a

)

dt, (2)  

where * means complex conjugation. In principle, the CWT gives a 
highly redundant representation of the signal because it produces an 
infinite number of coefficients (Rosso et al., 2006). A nonredundant and 
efficient representation is given by the discrete wavelet transform 
(DWT), which also ensures complete signal reconstruction. One way to 
fulfill this condition is by means of the fast wavelet transform algorithm 
(Mallat, 2008). In this case, for a special selection of the mother wavelet 
function ψ(t) and the discrete set of parameters aj = 2-j and bj,k = 2-j k, 
with j,k ∈ ℤ, the family ψ j,k(t) = 2j ∕ 2 ψ(2j t - k) constitutes an ortho
normal basis of L2(R) (Mallat, 2008). This orthonormality is the basis of 
the multiresolution analysis, and ensures that each subspace spanned by 
a set of functions with an integer index j is independent of the subspace 
spanned by functions with an integer index j’ ∕= j. Any arbitrary function 
of this space can therefore be uniquely decomposed, and the decom
position can be inverted (Daubechies, 1992; Mallat, 2008; Rosso et al., 

2006). The wavelet coefficients of the DWT are 
〈
S,ψ j,k

〉
= Cj(k) =

|2|−
j
2

∫∞

−∞

S(t)ψ∗

(
t − 2−jk

2−j

)

dt (Mallat, 2008). The DWT produces only 

as many coefficients as there are samples within the signal under anal
ysis S(t), without any loss of information. 

Due to the Nyquist theorem, frequencies above half the sampling 
frequency cannot be distinguished (Nyquist, 1928; Shannon, 1949). The 
intuition behind the DWT is that for each scale the signal is separated 
using a lowpass filter (this part is called the signal approximation at that 
scale) and a highpass filter (this part is called the detail signal). This 
decomposition is done into octave bands, i.e. at each scale j the 

frequency range of the signal approximation is divided into two parts: 
the approximation and the detail signals at scale j + 1 (Daubechies, 
1992; Mallat, 2008). The subbands (in Hz) for the signal approximation 

at level j are approximately 
([

n Fs
2j+1, (n+1) Fs

2j+1

)
, with n = 0,…, 2j −1 and 

Fs the sampling frequency. Let us assume that the signal is given by 
equally sampled values S = {s0 (n), n = 1,…,M}, with M being the total 
number of samples. If the decomposition is carried out over all possible 
scales (or resolution levels), N = log(M), the wavelet expansion reads: 

S(t) =
∑−1

j=−N

∑

k
Cj(k)ψj,k(t) =

∑−1

j=−N
rj(t), (3)  

where the wavelet coefficients Cj(k) can be interpreted as the local re
sidual errors between successive signal approximations at scales j and j- 
1, respectively, and rj(t) is the detail signal at scale j, which contains 
information of the signal S(t) corresponding to the frequencies 2j-1 Fs ≤ | 
F| ≤ 2j Fs, Fs being the sampling frequency (Rosso et al., 2006, 2005). For 
example, the first step in the DWT is the following: at scale j = 0 we have 
the original signal S(t). We decompose at level j = 1 the signal into the 
approximation (lowpass) and detail (highpass) signals A1 and D1, 
respectively. Thus, S(t) = A1(t) + D1(t). Here A1 and D1 are functions of 
orthonormal spaces, thus they are linearly independent. In this case, we 
have that D1(t) = S(t)-A1(t). For the scale j = 2, we take A1 and 
decompose it in approximation and detail signals for scale j = 2, AA2 
and AD2, respectively. Since the DWT algorithm is done in a recursive 
way, at scale j we have the decomposition in lowpass (signal approxi
mation at scale j) and highpass frequencies (detail signal at scale j) of the 
signal approximation at scale j-1. The highpass filtering is done using the 
wavelet function for this scale, ψ j,k(t), so the wavelet coefficients give the 
highpass content of the signal approximation in the previous scale j-1. 
Thus, if we subtract the signal approximation at scales j-1 and j, we 
recover the detail signal at scale j, which is given by the wavelet co
efficients. That is the reason why these wavelet coefficients can be 
interpreted as the local residual error between successive signal ap
proximations (Mallat, 2008). 

Since the family ψ j,k(t) is an orthonormal basis for L2(R), the concept 
of wavelet energy is similar to the Fourier theory energy. Thus the signal 
energy at each resolution level, j = −1,…,-N, will be the energy of the 
detail signal: 

Ej =
⃦
⃦rj

⃦
⃦2

=
∑

k

⃒
⃒Cj(k)

⃒
⃒2
. (4) 

The units of energy here are the same as in Fourier spectra, i.e. the 
units of the squared amplitude of the signal (µV2 in this case). Since the 
signal energy of the wavelet function is 1, the DWT conserves the signal 
energy. The total energy can be obtained summing over all the resolu
tion levels 

Etotal =
⃦
⃦S2

⃦
⃦ =

∑−1

j=−N

∑

k

⃒
⃒Cj(k)

⃒
⃒ 2 =

∑−1

j
Ej (5) 

Finally, we define the relative wavelet energy (RWE) through the 
normalized ρj values: 

ρj =
Ej

Etotal
(6)  

for the resolution levels j = −1, − 2,…,-N. The distribution P –––{ρj} can 
be viewed as a time-scale distribution, which is a suitable tool for 
detecting and characterizing phenomena in the time and frequency 
domains (Rosso et al., 2006). Since the mother wavelet has a certain 
width in frequency domain, in wavelet theory the term scale is used 
instead of the term frequency. Moreover, in the DWT the partition of the 
frequency range is done in a dyadic way (Mallat, 2008). That is, for each 
scale, the lower frequency signal (signal approximation) is filtered into 
two frequency ranges, whereas the high frequency signal (signal detail) 

S.M. Sánchez-Moguel et al.                                                                                                                                                                                                                   



Journal of Neuroscience Methods 376 (2022) 109608

5

remains unchanged. Thus, the resolution in frequency changes for lower 
or higher frequencies, in contrast with the windowed Short Time Fourier 
Transform, in which the resolution in time and frequency is the same for 
all the frequencies. However, within the DWT one can localize with 
certain precision the frequency bands for each scale, as 
([

n Fs
2j+1, (n+1) Fs

2j+1

)
, with n = 0,…, 2j −1 and Fs the sampling frequency. 

The quality of this bandpass approximation depends on how 
frequency-localized the mother wavelet is. We tested the results with a 
very localized wavelet, the Fejér-Korovkin 18, and the result was the 
same as with the Daubechies 2 we used (Nielsen, 2001). 

An extension of this discrete wavelet transform is the discrete 
wavelet packet transform (DWPT). The DWPT is a generalization of the 
DWT that at level j of the transform partitions the frequency axis into 2j 

equal width frequency bands 
([

n Fs
2j+1, (n+1) Fs

2j+1

)
, with n = 0,…, 2j − 1., 

and Fs the sampling frequency. Increasing the transform level increases 
frequency resolution, but starting with a series of length M, at level j 
there are only M∕2j DWPT coefficients for each frequency band n (Per
cival and Walden, 2000). That is, the DWPT could be used as a 
non-redundant description of the signal. Thus, the DWPT is the same as 
the DWT for the signal approximation, but it also filters at each scale the 
detail (high frequency) signal. In this case, one can have a good fre
quency resolution also for higher frequencies (Coifman and Wick
erhauser, 1992; Mallat, 2008). 

The wavelet packets can be organized on an orthonormal basis of the 
space of finite energy signals. The main advantage of using wavelet 
packets is that the standard wavelet analysis can be extended with a 
flexible strategy. Thus the description of the given signal can be well 
adapted according to the significant structures (Blanco et al., 1998). The 
resulting DWPT yields what can be called a time-scale-frequency 
decomposition because each DWPT coefficient can be localized to a 
particular band of frequencies and a particular interval of time (Percival 
and Walden, 2000). Here we use the flexibility of the DWPT to combine 
the energy of the decomposition frequency bands, to have an insight into 
the typical clinical frequency band decomposition: delta, theta, alpha, 

beta, and gamma. Finally, we have the energy {EDelta, ETheta, EAlpha, EBeta, 
EGamma} corresponding to each band, and the relative energy {ρDelta, 
ρTheta, ρAlpha, ρBeta, ρGamma} for each one of the five bands. The energy 
corresponding to each band is obtained by adding all the values of Ej for 
all the j values that satisfy 2j-1Fs ≤ |F| ≤ 2jFs, Fs being the sampling 
frequency and |F| being within the frequency interval corresponding to 
one of the five clinical frequencies. We used the frequency band intervals 
shown in Table 1 for the results presented in Sections 3.2, 3.3, 3.4, and 
3.5. 

Regarding time-frequency analysis, one of the first developed 
methodologies is the Short Time Fourier Transform (STFT). STFT is a 
well-known technique in signal processing to analyze non-stationary 
signals. STFT segments the signal into narrow time intervals and takes 
the Fourier transform of each segment (Allen, 1977). This allows us to 
obtain the frequency spectra for each time-window. However, one of the 
pitfalls of the STFT is that it has a fixed resolution. The problem with this 
fixed resolution comes from example when studying a signal in which a 
combination of high-frequency and low-frequency events occur. For the 
STFT to distinguish the frequency of low-frequency events a larger time 
window is needed, but this is detrimental to the temporal resolution of 
the high-frequency events (Daubechies, 1992). This is one of the moti
vations for using wavelet transform and multiresolution analysis, which 
can give good time resolution for high-frequency events and good fre
quency resolution for low-frequency events (Daubechies, 1992; Mallat, 
2008). As an example of this resolution issue with the STFT, we can look 
at Table 2. When segmenting the signal into ten time windows, fre
quency resolution is lost with STFT, at the point that two bands need to 
be merged: delta+theta and alpha+beta, whereas with wavelets these 
bands can yet be distinguished, as in Table 1 (with the exception that 
with ten time windows the delta band includes the range [0 – 3.9063) Hz 
as discussed in Section 3.6). The comparison of wavelets and STFT using 
the frequency band intervals shown in Table 2 was performed in Section 
3.6. 

2.6. Statistical analysis 

The behavioral data from the counting Stroop task, and the total and 
relative energy were tested for Normal distribution using the Shapiro- 
Wilk test, Lillefors test, and Qqplots. Most of the data followed a 
Normal distribution and to facilitate the description of the data we used 
ANOVAs. The data were also analyzed using nonparametric tests 
reaching to the same conclusions as with ANOVAs; these results are 
available upon request. ANOVAs included repeated measures for Stim
ulus, Bands, and Windows, as required. A Tukey post hoc test was used 
to make comparisons among groups. Data were processed, analyzed, and 
plotted using R and Matlab. 

3. Results 

The participants were examined for their general health status and 
those that meet the criteria described in Materials and Methods were 
then assessed as described next. After the participants were categorized 
into Normal-EEG or Theta-EEG by resting state analysis of their EEG 
they were tested in the counting Stroop task while their EEG was also 
recorded. Data were processed following standard procedures for ERP 
analysis (Sánchez-Moguel et al., 2018) and were later examined by 
wavelet analysis. 

3.1. Behavioral results of the counting stroop task 

We first explored if there were behavioral differences during the 
execution of the task. Table 3 shows the mean percentage of correct 
responses and response times (RT) by each group and type of stimulus. 
For the RT, there was no main effect of Group (F(1, 44) = 0.73, 
p = 0.3963), while Stimulus and the Group X Stimulus interaction were 
significant (Stimulus: F(1, 44) = 85.89, p < 0.0001; Group X Stimulus: F 

Table 1 
Frequency for each band analyzed. Intervals for each band 
when analyzing five windows with wavelets.  

Band Frequency Interval (Hz) 

Delta [1.9531 – 3.9063) 
Theta [3.9063 – 7.8125) 
Alpha [7.8125 – 11.7188) 
Beta [11.7188 – 19.5313) 
Gamma [19.5313 – 39.0625)  

Table 2 
Frequency for each band when comparing wavelet and STFT methodologies. 
Intervals for each band when analyzing ten windows.   

Frequency Interval (Hz) 

Band Wavelets STFT 

Delta+Theta [0, 7.8125) [0, 7.6923) 
Alpha+Beta [7.6923, 15.3846) [7.8125, 15.625) 
Gamma [15.3846, 38.4615) [15.625, 39.0625)  

Table 3 
Behavioral performance during the counting Stroop task. Data are shown as 
mean ± standard deviation (SD); response times are expressed in ms.  

Group Stimulus % Correct responses Response times 

Normal-EEG Interference  
No Interference 

77.13 ± 14.93 
83.55 ± 14.28 

727.47 ± 59.21 
658.97 ± 59.13 

Theta-EEG Interference  
No Interference 

74.63 ± 19.55 
83.15 ± 17.14 

698.71 ± 72.81 
656.10 ± 70.93  
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(1, 44) = 4.66, p = 0.0363). Post hoc analysis showed that RT for the 
Interference stimuli were larger than the response times for No Inter
ference stimuli within both the Theta-EEG (mean difference (MD) 
= 42.61 ms, p < 0.001) and the Normal-EEG groups (MD = 68.5 ms, 
p < 0.001); the Theta-EEG group showed fewer differences between 
stimulus types than the Normal-EEG group. There were no differences 
between groups for the same type of stimulus (Interference: p = 0.39, 
No Interference p = 0.99). We applied the arcsine to the percentage of 
correct responses in order to approximate the distribution of the data to 
a Gaussian distribution to use parametric statistical tests. We observed a 
significant main effect of Stimulus (F(1, 44) = 62.43, p < 0.0001) with a 
lower percentage of correct answers in the Interference than in the No 
Interference condition; however, there were no main effects of Group or 
Group X Stimulus interaction (Group: F(1, 44) = 0.09, p = 0.76, Group 
X Stimulus: F(1, 44) = 1.24, p = 0.27). These results showed that, at the 
behavioral level, the Theta-EEG and Normal-EEG groups showed a 

Stroop effect and that they answered similarly despite the differences in 
their resting EEG. 

3.2. Total energy 

We wanted to explore whether the higher theta activity found in the 
Theta-EEG group under resting state conditions was still present during 
the performance of a task that evaluates inhibitory processing, a 
cognitive dimension known to be compromised during ageing (Rey-
Mermet and Gade, 2018; Sánchez-Moguel et al., 2018; Thomas et al., 
2010). Furthermore, we were interested in exploring whether abnormal 
EEG signal activity was present in other frequency bands. 

We first compared the total energy on each band between Theta-EEG 
and Normal-EEG groups, obtaining the average of the total energy for all 
electrodes (reference electrodes A1, A2 were discarded) and averaging 
across the counting Stroop trials for each type of stimulus. In Fig. 1, the 

Fig. 1. Total energy. Data were obtained from the average total energy across electrodes (reference electrodes excluded) for Interference (Int) and No Interference 
(NoInt) stimuli during the counting Stroop task. ** p < 0.01 for group factor from two-way ANOVA. Data are expressed as means with standard error bars. 

Fig. 2. Topographic distribution of total energy. Total energy is shown for the different bands during Interference and No Interference stimuli according to the EEG 
group. The color scale is expressed in µV2. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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total energy for each group and stimulus type is shown for each fre
quency band. For delta band we found a main effect of Group (F(1, 86) 
= 11.003, p = 0.00133), while neither Stimulus (F(1, 86) = 0.416, 
p = 0.51961) nor the Group X Stimulus interaction were significant (F 
(1, 86) = 0.036, p = 0.84973). In theta band, there was a main effect of 
Group (F(1, 86) = 11.605, p = 0.001), while no significant differences 
were observed in Stimulus (F(1, 86) = 0.031, p = 0.862) or in the Group 

X Stimulus interaction (F(1, 86) = 0.01, p = 0.919). Similarly, in alpha 
band there was a main effect of Group (F(1, 86) = 8.539, p = 0.00444), 
while Stimulus (F(1, 86) = 0.002, p = 0.96375) and the Group X Stim
ulus interaction remained without statistical significance (F(1, 86) 
= 0.004, p = 0.95266). 

For beta band, neither Group (F(1, 86) = 0.836, p = 0.363) nor 
Stimulus (F(1, 86)= 0.099, p = 0.753) nor the Group X Stimulus 

Fig. 3. Relative energy. Data are shown for each band according to the EEG group and to the type of stimulus. Data are expressed as means with standard error bars. 
* * p < 0.01 for group factor from two-way ANOVA. 

Fig. 4. Total energy for time windows and bands. Post hoc test of Group X Window: **p < 0.01 between Normal-EEG and Theta-EEG for the 258–516 ms window. 
Post hoc test of Window: #p < 0.05 compared to the 0–258, 516–774, 774–1032, and 1032–1290 ms windows; +p < 0.05 compared to 0–258, 516–774, and 
774–1032 ms windows; &p < 0.05 compared to 0–258 ms window. Data are expressed as means with standard error bars. 
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interaction were significant (F(1, 86) = 0.078, p = 0.781). Similar re
sults were observed in gamma band, no significant differences were 
found for Group (F(1, 86) = 0.330, p = 0.567), Stimulus (F(1, 86) 
= 0.127, p = 0.723) or the Group X Stimulus interaction (F(1, 86) 
= 0.027, p = 0.869). 

Overall, our analysis of the total energy showed a higher energy in 
the Theta-EEG group in delta, theta, and alpha bands irrespective of the 
type of stimulus presented during the counting Stroop task. In contrast, 
no significant differences in the total energy were observed in beta and 
gamma bands, as shown in Fig. 1. 

In order to give visual intuition of energy distribution in the different 
frequency bands for each Stimulus and Group, we depicted in Fig. 2 the 
total energy across electrodes. We observed a higher total energy in 
Theta-EEG group than in Normal-EEG group in delta and theta bands. 
Although the reaction times between Interference and No Interference 
stimuli were different, this increase in total energy was similar for both 
types of stimuli. For delta band, the total energy increase was observed 
in the midline electrodes, while for theta band, this change was more 
pronounced in occipital electrodes. No obvious increase in total energy 
was visible in alpha, beta, and gamma bands. 

3.3. Relative energy 

In order to become independent of the total amount of energy among 
subjects, we further studied the relative wavelet energy for the entire 
signal. The relative energy corresponds to the amount of energy in each 
band, relative to the total energy aggregated for all frequency bands. 

Fig. 3 shows the relative energy per frequency band for each group 
and stimulus type. In delta band we observed a main effect of Group (F 
(1, 86) = 10.346, p = 0.00183) but not of Stimulus (F(1, 86) = 0.678, 
p = 0.41269) or of the Group X Stimulus interaction (F(1, 86)= 0.056, 
p = 0.81351). In theta band neither of the variables nor the interaction 
between them were significant [Group (F(1, 86) = 1.651, p = 0.202); 
Stimulus (F(1, 86)= 0.165, p = 0.686); Group X Stimulus (F(1, 86) 
= 0.186, p = 0.668)]. For alpha band there were no statistical differ
ences for any of the effects or the interaction between them [Group (F(1, 
86) = 0.070, p = 0.793); Stimulus (F(1, 86) = 0.021, p = 0.886); Group 

X Stimulus (F(1, 86) = 0.062, p = 0.804)]. 
The relative energy in beta band showed a main effect of Group (F(1, 

86) = 13.401, p = 0.000433) but not for Stimulus (F(1, 86) = 1.676, 
p = 0.198983) or for the Group X Stimulus interaction (F(1, 86) 
= 0.312, p = 0.577787). Similarly, for the gamma band, there was a 
main effect of Group (F(1, 86)= 7.017, p = 0.00961), but no differences 
were observed for Stimulus (F(1, 86) = 0.259, p = 0.61188) or for the 
Group X Stimulus interaction (F(1, 86) = 0.038, p = 0.84581). 

Our analysis therefore revealed that even after normalizing by the 
total amount of energy used during the task, the Theta-EEG group 
showed an increase of relative energy in the delta band, as compared to 
the Normal-EEG group, which was independent of the type of stimulus 
presented. Moreover, a decrease in relative energy was observed in beta 
and gamma bands. 

3.4. Total energy across windows 

To analyze the signal in the temporal domain, we took time windows 
of at least 27 + 1 = 129 points, which corresponded to 258 ms; this 
procedure allowed us to analyze five-time windows in the ERP signal. 
The energy across electrodes was averaged. Fig. 4 shows the total energy 
per window. For the delta band, significant main effects of Group (F(1, 
430) = 21.058, p = 5.86 × 10-6) and Window (F(4, 430) = 12.610, 
p = 1.04 × 10-09) were observed, but there were not significant effects 
of Stimulus (F(1, 430) = 0.149, p = 0.7) or the interaction among fac
tors [Group X Stimulus (F(1, 430) = 0.062, p = 0.804); Group X Win
dow (F(4, 430) = 0.79, p = 0.532); Stimulus X Window (F(4, 430) 
= 0.307, p = 0.873); Group X Stimulus X Window (F(4, 430) = 0.367, 
p = 0.832)]. The analysis of the Window factor showed that the total 
energy in the 258–516 ms window was higher than in the windows 
0–258, 516–774, and 774–1032 ms (p ≤ 0.03783 for each comparison). 
For this same band, the total energy in the 1032–1290 ms window was 
higher than in the window 0–258 ms (p = 0.00893). 

For the theta band, there were significant main effects of Group (F(1, 
430) = 30.596, p = 5.53 × 10-08) and Window (F(4, 430) = 17.546, 
p = 2.38 × 10-13) but not of Stimulus (F(1, 430) = 0.279, p = 0.5978). 
The interaction Group X Window was close to significance (F(4, 430) 

Fig. 5. Topographic distribution of the total energy in the theta band. Data are shown for each window and according to the group and type of stimulus. The color 
scale is expressed in µV2.(For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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= 2.229, p = 0.0651), while the other interactions were not significant 
[Group X Stimulus (F(1, 430) = 0.241, p = 0.624); Stimulus X Window 
(F(4, 430) = 0.298, p = 0.8794); Group X Stimulus X Window (F(4, 430) 
= 0.321, p = 0.8639)]. The analysis of the Window factor showed that 
the total energy in the 258–516 ms window was higher than in all the 
other windows (p < 0.0001 for all the comparisons). As is depicted in 
Fig. 4, the post hoc test for the interaction Group X Window indicated 
that the total energy in the 258–516 ms window was higher in the Theta- 
EEG group when compared to the Normal-EEG group (p = 0.0065). 

For the alpha band, the total energy showed significant main effects 
of Group (F(1, 430) = 23.548, p = 1.71 × 10-06) and Window (F(4, 430) 
= 34.484, p < 2 × 10-16), while Stimulus was not significant (F(1, 430) 
= 0.005, p = 0.9452). The interaction Group X Window was close to 
statistical significance (F(4, 430) = 2.163, p = 0.0724), while other in
teractions did not show significant differences [Group X Stimulus (F(1, 
430) = 0.03, p = 0.8622); Stimulus X Window (F(4, 430) = 0.053, 
p = 0.9947); Group X Stimulus X Window (F(4, 430) = 0.149, 
p = 0.9633)]. The analysis of the Window factor showed that the total 

Fig. 6. Topographic distribution of the total energy in the delta band. Data are shown for each window and according to the group and type of stimulus. The color 
scale is expressed in µV2.(For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 

Fig. 7. Topographic distribution of the total energy in the alpha band. Data are shown for each window and according to the group and type of stimulus. The color 
scale is expressed in µV2.(For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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energy in the 258–516 ms window was higher than in all the other 
windows (p < 0.0001 for each comparison). The analysis of the inter
action Group X Window indicated that the total energy in the 
258–516 ms window was higher in the Theta-EEG group than in the 
Normal-EEG group (p = 0.0079), Fig. 4. 

For beta band we found significant main effects of Group (F(1, 430) 
= 10.868, p = 0.00106) and Window (F(4, 430) = 17.402, 
p = 3.03 × 10-13), while there were no statistical differences for Stim
ulus (F(1, 430) = 0.311, p = 0.57723). None of the interactions of the 
factors was significant either [Group X Stimulus (F(1, 430) = 0.105, 
p = 0.74663); Group X Window (F(4, 430) = 1.046, p = 0.3829); 
Stimulus X Window (F(4, 430) = 0.295, p = 0.88137); Group X Stimulus 
X Window (F(4, 430) = 0.2, p = 0.93804)]. The post hoc comparisons of 
the Window factor showed that the total energy in the 258–516 ms 
window was higher than in all the other windows (p ≤ 0.0143 for all the 
comparisons). Additionally, the energy in the 1032–1290 ms window 
was higher than in the 0–258 ms window (p = 0.0261), as shown in 
Fig. 4. 

Finally, the analysis of total energy in the gamma band revealed a 
significant main effect of Window (F(4, 430) = 4.018, p = 0.00328), 
while Group (F(1, 430) = 3.242, p = 0.07246) and Stimulus (F(1, 430) 
= 0.318, p = 0.57321) did not reach significance. None of the in
teractions among factors was significant [Group X Stimulus (F(1, 430) 
= 0.053, p = 0.81849); Group X Window (F(4, 430) = 0.021, 
p = 0.99915); Stimulus X Window (F(4, 430) = 0.093, p = 0.98453); 

Group X Stimulus X Window (F(4, 430) = 0.037, p = 0.99741)]. The 
analysis of the Window factor showed that the total energy in the 
258–516 ms window was higher than in the windows 0–258, 516–774, 
and 774–1032 ms (p < 0.01 for all comparisons). The total energy in the 
1032–1290 ms window was also higher than that observed in the win
dows 0–258, 516–774, and 774–1032 ms (p ≤ 0.002 for all compari
sons), as shown in Fig. 4. 

Overall, our analysis across windows revealed a higher amount of 
total energy in the Theta-EEG group than in the Normal-EEG group in 
the delta, theta, alpha, and beta bands irrespective of the type of stim
ulus presented. For theta and alpha bands, the total energy was higher in 
the Theta-EEG group than in the Normal-EEG group, specifically for the 
258–516 ms window, as depicted in Fig. 4. 

To provide visual intuition of the energy changes on each electrode 
occurring across windows we generated topographical maps for theta, 
delta, and alpha bands. Fig. 5 shows the topographical distribution of 
the energy in theta band per group and type of stimulus through time. 
The topographic distribution of the total energy across windows for 
theta band corroborated the relevance of the 258–516 ms window found 
in the analysis shown in Fig. 4. 

The topographic map of theta band showed a higher total energy in 
the Theta-EEG group as compared to the Normal-EEG group only in the 
258–516 ms window. The amount of total energy looked similar for both 
types of stimuli in the same EEG group. The increased energy for this 
theta band in the Theta-EEG group was more prominent in mid-line and 

Fig. 8. Total energy in the CPZ electrode. The amplitude of the signal obtained by event- related potentials during a counting Stroop task was further analyzed by 
wavelet transform. **p < 0.01, *p < 0.05 for the 258–516 ms window when comparing Theta-EEG versus Normal-EEG in the post hoc analysis of the interaction 
Group X Window. No significant differences were observed for other windows or for the type of stimulus. 
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occipital electrodes (Fig. 5). Similar changes were observed in delta and 
alpha bands (Figs. 6 and 7): increased total energy for both types of 
stimuli in the Theta-EEG group was observed in mid-line and occipital 
electrodes towards frontal regions; this change was prominent in the 
258–516 ms window. 

3.5. Wavelet analysis on central electrodes 

The changes observed in the topographic maps (Figs. 5–7) led us to 
further inspect specific midline electrodes. As shown in Fig. 8, we per
formed an analysis for central electrodes to better depict the information 
added by wavelet analysis when studying the data obtained by ERP. 

The wavelet transform of the voltage in the CPZ electrode showed a 

significant Group X Window interaction in delta, theta, and alpha bands 
in the total energy (Table 1, Appendix B). The post hoc test indicated 
that the total energy was higher in the Theta-EEG group than in the 
Normal-EEG group in the 258–516 ms window for the three bands 
(p ≤ 0.0141). The differences in total energy for CPZ electrode in delta, 
theta, and alpha bands were independent of the type of stimulus pre
sented (Stimulus, Group X Stimulus, Stimulus X Window, and Group X 
Stimulus X Window were not significant; Table 1, Appendix B). 
Although the Group X Window interaction was significant for the beta 
band (Table 1, Appendix B), the post hoc comparison did not show any 
statistical difference between Theta-EEG and Normal-EEG conditions for 
any given window (p ≥ 0.0720). For the gamma band, there was a 
significant effect of Group and Window, but not for other factors or 

Fig. 9. Wavelet and Short Time Fourier Transform analyses across ten windows. (A-B) Delta+Theta energy obtained by wavelet or STFT analysis. (C-D) Alpha+Beta 
energy obtained by wavelet or STFT analysis. (E) Gamma energy obtained by wavelets. (F) Gamma energy obtained by STFT. (G) Delta energy obtained by wavelets 
(H) Theta energy obtained by wavelets. Post hoc test of Group X Window: *p < 0.05 between Normal-EEG and Theta-EEG for the indicated window. Data are 
expressed as means with standard error bars. 
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interactions (Table 1, Appendix B). 
The total energy in the PZ electrode showed a significant Group X 

Window interaction for the delta, and theta bands (Table 1, Appendix 
B). The total energy was higher in the Theta-EEG group for the 
258–516 ms window (p ≤ 0.0005 for delta and theta bands). In the 
alpha, beta, and gamma bands, only the factors Group and Window 
showed statistical significance (Table 1, Appendix B). 

A similar increase in the total energy in the alpha band was observed 
in FCZ and CZ electrodes for the Theta-EEG group. There was a signif
icant Group X Window interaction in the alpha band for both electrodes 
(Table 1, Appendix B). The total energy was higher in the Theta-EEG 
group than in the Normal-EEG group only in the 258–516 ms window 
(FCZ p = 0.0288; CZ p = 0.0175). For the CZ electrode, the Group X 
Window interaction was significant for the beta band; however, the post 
hoc comparisons did not reveal statistical differences for any specific 
time window (Table 1, Appendix B). For FCZ and CZ electrodes, only the 
factors Group and Window showed statistical significance for delta, 
theta, and gamma bands (Table 1, Appendix B). 

Taken together, our analysis of wavelet transform for central 

electrodes indicated that the total energy was higher in the Theta-EEG 
group than in the Normal-EEG group in the 258–516 ms window in 
the delta and theta bands for more posterior electrodes (CPZ, PZ). The 
increase in total energy in the Theta-EEG group was observed in the 
258–516 ms window for the alpha band in more anterior electrodes 
(FCZ, CZ). 

3.6. Comparison with short time fourier transform 

Our previous wavelet analysis showed that the energy in delta, theta, 
and alpha bands was highly increased during a Stroop task in elderly 
with excess in theta activity in their resting EEG. We next deemed 
important to evaluate the changes in these bands with another signal 
processing method. Time-frequency analysis applied to ERPs can also be 
performed by using a Short Time Fourier Transform (STFT). To stress the 
similitudes and differences between wavelet transform and STFT, we 
calculated the total energy using ten time windows. In this case, the 
differentiation between delta and theta bands and between alpha and 
beta bands is not possible with STFT (as mentioned in Section 2.5). 
Therefore, to achieve a direct comparison between wavelets and STFT, 
we analyzed delta+theta bands and alpha+beta bands (Fig. 9 A-D). For 
the wavelet analysis we found significant effects of Group, Window, and 
Group X Window in the delta+theta energy [Group (F(1, 860)= 71.992, 
p = 2.0 × 10-16); Window (F(4, 860)= 4.77 p < 3.2 × 10-6); Group X 
Window (F(4, 860) = 3.516, p = 0.000274)]. The analysis of the inter
action Group X Window indicated that the energy signal in the 
645–774 ms and in the 774–903 ms windows was higher in the Theta- 
EEG group than in the Normal-EEG group (p < 0.009 for both win
dows) (Fig. 9 A). When using STFT, we found very similar results; Group, 
Window, and Group X Window showed significant differences [Group (F 
(1, 860)= 68.585, p = 4.63 × 10-16); Window (F(4, 860)= 4.557 
p = 6.9 × 10-6); Group X Window (F(4, 860) = 3.667, p = 0.000162)] 
and the analysis of the interaction Group X Window indicated that the 
voltage in the delta+theta band in the 645–774 ms and in the 
774–903 ms windows was higher in the Theta-EEG group than in the 
Normal-EEG group (p < 0.009 for both windows) (Fig. 9 B). 

Fig. 10. Slow wave band energy using five windows. The [0, 1.9531] Hz band 
was analyzed. Post hoc test of Group X Window: *p < 0.05 between Normal- 
EEG and Theta-EEG for the indicated windows. 

Fig. A1. Different mother wavelets used in the calculation of the total energy averaged across electrodes. Data correspond to the Interference condition in the Theta- 
EEG group for the 0–258 ms window. Wavelet Daubechies2 (db2), WaveletDaubechies4 (db4), Fejér-Korovkin wavelet (fk18), Wavelet Symlets 4 and Wavelet 
Symlets 7. (A) Delta Band. (B) Theta Band. (C) Alfa Band. (D) Beta band. (E) Gamma Band. 
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When exploring alpha+beta bands with wavelets we found signifi
cant differences in Group, Window, and Group X Window [Group (F(1, 
860)= 22.816, p = 2.1 × 10-6); Window (F(4, 860)= 37.834 
p < 2 × 10-16); Group X Window (F(4, 860) = 3.189, p = 0.000835)]. 
The analysis of the Group X Window interaction revealed that the energy 
in the Theta-EEG group was higher than the energy in the Normal-EEG 
group only in the 258–387 ms window (p = 0.0001) (Fig. 9 C). With 
STFT we found that also Group, Window, and Group X Window were 

statistically significant [Group (F(1, 860)= 76.629, p < 2 × 10-16); 
Window (F(4, 860)= 8.331 p = 5.68 × 10-12); Group X Window (F(4, 
860) = 2.623, p = 0.0054)]. The post hoc analysis of Group X Window 
showed that there were differences between groups in the 645–774 ms 
and in the 774–903 ms windows (p < 0.05 for both comparisons) (Fig. 9 
D). 

The wavelet analysis of gamma band with ten windows revealed 
differences only in Group and Window [Group (F(1, 860)= 8.135, 

Fig. A2. Different mother wavelets used in the calculation of the total energy averaged across electrodes. Data correspond to the Interference condition in the Theta- 
EEG group for the 258–516 ms window. Wavelet Daubechies 2 (db2), Wavelet Daubechies 4 (db4), Fejér-Korovkin wavelet (fk18), Wavelet Symlets 4 and Wavelet 
Symlets 7. (A) Delta Band. (B) Theta Band. (C) Alfa Band. (D) Beta band. (E Gamma Band. 

Fig. A3. Different mother wavelets used in the calculation of the total energy averaged across electrodes. Data correspond to the Interference condition in the Theta- 
EEG group for the 516–774 ms window. Wavelet Daubechies 2 (db2), Wavelet Daubechies 4 (db4), Fejér-Korovkin wavelet (fk18), Wavelet Symlets 4 and Wavelet 
Symlets 7. (A) Delta. (B) Theta Band. (C) Alfa Band. (D) Beta band. (E) Gamma Band. 
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p = 0.00445); Window (F(4, 860)= 8.515 p = 2.84 × 10-12)] however 
the Group X Window was not significant (F(4, 860) = 0.581, 
p = 0.81361) (Fig. 9 E). With STFT we observed significant effects of 
Group, Window, and Group X Window [Group (F(1, 860)= 9.648, 
p = 0.00196); Window (F(4, 860)= 17.684, p < 2 × 10-16); Group X 
Window (F(4, 860) = 2.84, p = 0.00266)]. The post hoc analysis of 
Group X Window revealed that the energy in gamma band was higher in 

the Theta-EEG group only in the 258–387 ms window (p = 0.004) 
(Fig. 9 F). 

The properties of the wavelet transform allow us to examine sepa
rately delta and theta bands across the ten windows. This could not be 
achieved using STFT, due to its fixed time-frequency resolution inde
pendently of the frequency range considered. The range of the bands 
were the following: for delta between [0, 3.9063) Hz and for theta 

Fig. A4. Different mother wavelets used in the calculation of the total energy averaged across electrodes. Data correspond to the Interference condition in the Theta- 
EEG group for the 774–1032 ms window. Wavelet Daubechies 2 (db2), Wavelet Daubechies 4 (db4), Fejér-Korovkin wavelet (fk18), Wavelet Symlets 4 and Wavelet 
Symlets 7. (A) Delta Band. (B) Theta Band. (C) Alfa Band. (D) Beta band. (E) Gamma Band. 

Fig. A5. Different mother wavelets used in the calculation of the total energy averaged across electrodes. Data correspond to the Interference condition in the Theta- 
EEG group for the 1032–1290 ms window. Wavelet Daubechies 2 (db2), Wavelet Daubechies 4 (db4), Fejér-Korovkin wavelet (fk18), Wavelet Symlets 4 and Wavelet 
Symlets 7. (A) Delta Band. (B) Theta Band. (C) Alfa Band. (D) Beta band. (E) Gamma Band. 
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between [3.9063, 7.8125) Hz. In the delta band we observed that Group, 
Window, and Group X Window showed significant differences [Group (F 
(1, 860)= 66.876, p = 1.03 × 10-15); Window (F(4, 860)= 4.829 
p = 2.58 × 10-6); Group X Window (F(4, 860) = 3.78, p = 0.000109)]. 
The post hoc analysis of Group X Window indicated that the energy in 
the 645–774 ms and in the 774–903 ms windows was higher in the 
Theta-EEG group than in the Normal-EEG group (p < 0.009 for both 
windows) (Fig. 9 G). When analyzing the theta band we found that 
Group, Window, and Group X Window factor were significant [Group (F 
(1, 860)= 20.966, p = 5.37 × 10-6); Window (F(4, 860)= 36.082 
p < 2 × 10-6); Group X Window (F(4, 860) = 2.944, p = 0.00189)]. The 
analysis of Group X Window interaction revealed that Theta-EEG and 
Normal-EEG group were only different in the 258–387 ms window 
(p = 0.00017) (Fig. 9 H). 

Altogether, using wavelet or STFT we showed that the energy in 
delta+theta and alpha+beta bands is increased in the Theta-EEG group 
during a Stroop task and that this change is independent of stimulus 
type. With wavelet analysis we were further able to show that the 

increase in delta energy in the Theta-EEG group occurred between 645 
and 903 ms while the increase in theta energy was visible in the 
258–387 ms window. 

To compare the reliability of the analysis made using Matlab to apply 
wavelet analysis, we performed the analysis in Python using the stan
dard python package scipy.signal (Appendix A, Fig. A.6). 

3.6.1. Slow wave activity 
When exploring ten windows by wavelets the results obtained in the 

delta band (Fig. 9 G) contrast with the results of five windows using the 
same methodology (Figs. 4 and 8). This difference may have relied on 
the frequency band ranges used as with ten windows the range was [0, 
3.9063) Hz and with 5 windows we used [1.9531–3.9063) Hz. To 
confirm this, we evaluated the total energy averaged across electrodes 
for the [0, 1.9531) Hz range using five windows. The Group and Window 
factor showed significant differences [Group (F(1, 430)= 45.191, 
p = 5.7 × 10-11); Window (F(4, 430)= 3.126 p = 0.0149)] while the 
interaction Group X Widow was close to significance (F(1, 430)= 1.975, 
p = 0.0975). The post hoc analysis of the interaction Group X Window 
showed that there were differences between Theta-EEG and Normal- 
EEG groups in the 526–774 and 774–1032 ms windows (p < 0.05 for 
both comparisons). This result confirmed that the increase in energy in 
the delta band in the Theta-EEG group occurred between 516 and 
1032 ms for the [0, 1.9531) Hz frequency and between 258 and 516 ms 
for the [1.9531–3.9063) Hz frequency. 

4. Discussion 

By using a wavelet analysis, we aimed to explore whether the EEG 
signal energy obtained from ERP during a counting Stroop task was 
different between a group of elderly subjects with excess of theta activity 
in their EEG and another one with normal EEG. The methods applied in 
the present study complement ERP analysis used in similar studies 
involving the elderly. With wavelets we were able to discern that the 
major difference in theta and alpha energy was in the window 

Fig. A6. The results using the STFT function implemented in Python 
and MATLAB. 

Table B1 
Two-way ANOVA results for the total energy in central electrodes.  

Electrode Band/ ANOVA factors Delta Theta Alpha Beta Gamma 

F (1, 430); 
p-value 

F (1, 430); 
p-value 

F (1, 430); 
p-value 

F (1, 430); 
p-value 

F (1, 430); 
p-value 

FCZ Group 9.1; 0.003 12.5; 0.0004 12.5; 0.0004 7.1; 0.008 4.2; 0.04 
Stimulus 0.003; 0.9 0.3; 0.6 0.006; 0.9 1.5; 0.2 0.8; 0.4 
Window 5.9; 0.0001 9.7; 1.54 × 10-07 19.2; 1.64 × 10-14 13.0; 5.21 × 10-10 7.4; 8.72 × 10-06 

Group X Stimulus 0.2; 0.7 0.6; 0.4 0.3; 0.6 0.3; 0.6 0.09; 0.8 
Group X Window 0.5; 0.8 1.3; 0.3 2.4; 0.05 2.0; 0.1 0.4; 0.8 
Stimulus X Window 1.0; 0.4 0.5; 0.7 0.2; 0.97 0.8; 0.5 0.9; 0.4 
Group X Stimulus X Window 0.4; 0.8 0.4; 0.8 0.3; 0.9 0.4; 0.8 0.4; 0.8 

CZ Group 11.7; 0.0007 14.6; 0.0002 12.8; 0.0004 6.5; 0.01 6.2; 0.01 
Stimulus 0.1; 0.8 0.2; 0.6 0.01; 0.9 1.3; 0.3 0.7; 0.4 
Window 5.6; 0.0002 9.5; 2.42 × 10-07 16.9; 6.73 × 10-13 12.9; 6.49 × 10-10 8.7; 9.07 × 10-07 

Group X Stimulus 1.1; 0.3 1.1; 0.3 0.2; 0.7 0.01; 0.9 0.1; 0.7 
Group X Window 0.9; 0.5 1.8; 0.1 2.6; 0.03 2.4; 0.05 0.5; 0.8 
Stimulus X Window 0.6; 0.6 0.6; 0.7 0.1; 0.97 0.4; 0.8 1.1; 0.4 
Group X Stimulus X Window 0.4; 0.8 0.4; 0.8 0.2; 0.99 0.3; 0.9 0.3;0.9 

CPZ Group 16.9; 4.62 × 10-05 20.8; 6.75 × 10-06 15.2; 0.0001 8.2; 0.005 9.3; 0.002 
Stimulus 0.3; 0.61 0.3; 0.6 0.02; 0.9 0.8; 0.4 0.3; 0.6 
Window 4.5; 0.001 8.5; 1.40 × 10-06 16.2; 2.8 × 10-12 11.9; 3.45 × 10-09 8.8; 8.3e X10-07 

Group X Stimulus 1.4; 0.2 1.3; 0.3 0.2; 0.8 0.04; 0.8 0.2; 0.6 
Group X Window 2.5; 0.0447 3.7; 0.006 2.7; 0.03 3.1; 0.02 0.9; 0.5 
Stimulus X Window 0.5; 0.8 0.4; 0.8 0.1; 0.98 0.2; 0.95 0.96; 0.4 
Group X Stimulus X Window 0.4; 0.8 0.4; 0.8 0.1; 0.97 0.3; 0.91 0.2; 0.95 

PZ Group 19.9; 1.02 × 10-05 24.6; 1.04 × 10-06 14.4; 0.0002 5.9; 0.02 8.2; 0.005 
Stimulus 0.4; 0.6 0.2; 0.6 0.003; 0.96 0.6; 0.4 0.3; 0.6 
Window 5.2; 0.00042 8.3; 1.96 × 10-06 13.9; 1.12 × 10-10 9.8; 1.46 × 10-07 7.2; 1.24 × 10-05 

Group X Stimulus 0.7; 0.4 0.99; 0.3 0.03; 0.9 0.04; 0.8 0.2; 0.7 
Group X Window 3.8; 0.0047 4.9; 0.0007 1.9; 0.1 2.2; 0.07 0.8; 0.5 
Stimulus X Window 0.2; 0.9 0.3; 0.9 0.1; 0.9 0.1; 0.9 0.7; 0.6 
Group X Stimulus X Window 0.5; 0.7 0.4; 0.8 0.2; 0.9 0.2; 0.9 0.3; 0.9  
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corresponding to the categorization of the stimulus (~ 258 ms). That is 
to say that this method allowed us to discern in which stage of cognitive 
processing there was a greater EEG signal energy that might help explain 
the observed similar behavioral results. 

Future work remains to analyze possible cellular mechanisms that 
lead to increased EEG signal energy for specific bands in one population 
than in another during a Stroop task. MRI methodologies would be 
required as it might be possible to have effects of disconnection and/or 
reorganization of neural networks that could lead to the observed higher 
energy (Amoroso et al., 2018; Li and Liu, 2019; Long et al., 2019). For 
instance, using EEG, effects in the cortical connectivity related to 
memory performance in cognitive decline have been shown (Vecchio 
et al., 2016), whereas using fMRI it has been shown that disruption of 
the salience network is related to cognitive decline in elderly people (La 
Corte et al., 2016; Onoda et al., 2012). Another study found that 
long-range connections may be more vulnerable to aging effects than 
short-range connections and that, in addition to the default mode 
network, the dorsal attention network is also sensitive to aging effects 
(Tomasi and Volkow, 2012). The methodology presented here, com
plemented with traditional ERP analysis and another imaging tech
niques, could shield light in the underlying process and effects of this 
observed higher energy signal in the Theta-EEG elderly. 

4.1. Total energy analysis 

The results at the behavioral level showed that there were no major 
differences between the groups. These results were expected if we 
consider that the difference between groups were only at the electro
physiological level in the quantitative resting state EEG analysis. 
Furthermore, the Theta-EEG and Normal-EEG groups showed a Stroop 
effect (i.e., longer reaction times for Interference stimuli) and they 
answered with similar efficacy despite the differences in their resting 
EEG (Table 3). 

During the performance of the counting Stroop task we observed 
that, for both types of stimuli, the Theta-EEG group showed a higher 
energy in delta, theta, and alpha bands than the Normal-EEG group 
(Figs. 1 and 2). Given that the total energy is related to the number of 
synchronized active neurons and that no major differences between 
groups were observed in the performance of the counting Stroop task, 
we think that this higher energy reflects neurobiological adaptations 
taking place in the Theta-EEG group that allow them to cope with the 
cognitive demands of this task. 

In fMRI it has been observed that the healthy elderly presented a 
greater neural activity during the performance of Stroop tasks than 
young subjects (Cabeza, 2002; Langenecker et al., 2004; Mathis et al., 
2009; Milham et al., 2002; Zysset et al., 2007). We suggest that the 
increased energy observed in the Theta-EEG group could also be related 
to greater neuronal activity and that this augmented energy might 
reflect induced compensatory neurobiological adaptations to achieve an 
optimum performance (Mathis et al., 2009; Zysset et al., 2007) or it may 
reflect a difficulty in recruiting specialized neuronal circuits (Cabeza, 
2002). Furthermore, in fMRI and ERP studies, the elderly with mild 
cognitive impairment (MCI) or with electrophysiological risk for 
cognitive decline exhibited greater brain activity than the healthy 
elderly (Kaufmann et al., 2008; Sánchez-Moguel et al., 2018). From the 
point of view of the performance of the task, it is evident that this 
compensatory mechanism is effective in both the elderly affected by MCI 
and the Theta-EEG group. However, a higher energy or greater neuronal 
activity in unspecialized neuronal circuits might trigger anomalous 
cellular processes that might be hallmarks of neurodegenerative diseases 
(Mattson and Arumugam, 2018), making this compensatory mechanism 
ineffective in the long term. The affected elderly will then have an 
anomalous activation of the involved circuits, and they will show a 
dysregulated energetic metabolism (Mattson and Arumugam, 2018). 

The greater signal energy in the Theta-EEG group observed in delta 
and theta bands agrees with the finding that increased activity in these 

bands predicts the development of cognitive impairment (Prichep et al., 
2006; van der Hiele et al., 2008), as shown in Figs. 1, 2, 4, and 9. On the 
other hand, some studies suggest that increases in alpha power are 
related to success in inhibiting irrelevant information (Herrmann and 
Knight, 2001; Werkle-Bergner et al., 2012). This set of works supports 
our interpretation that the higher alpha energy in the Theta-EEG group 
is related to a good performance of this group in the task. Furthermore, 
the greater energy in the alpha band in the Theta-EEG group can be 
explained by a topographic reorganization of the alpha rhythm during 
aging in which it is biased towards more frontal regions (Evans and 
Abarbanel, 1999), as shown in Fig. 7. As mentioned earlier, these EEG 
changes are exacerbated in patients with dementia or MCI (Prichep 
et al., 1994; Weisz and Czigler, 2006). 

It is hypothesized that the brain is structured and works in a way that 
minimizes free-energy. This free-energy principle rests on the fact that 
biological agents such as the brain maintains an homeostatic balance to 
counteract disorder (Friston, 2010, 2009; Friston et al., 2006). It is 
possible that the increased energy in the Theta-EEG group is involved in 
maintaining this homeostatic balance. However, over time the increased 
energy can promote neural metabolic imbalances more rapidly, causing 
the development of cognitive impairment. Future work remains to 
elucidate the mechanisms that lead to this increased EEG signal energy. 

4.2. Analysis of relative energy 

There was a greater relative energy in both EEG groups in the delta 
and theta bands compared to the other bands (Fig. 3). For the Theta-EEG 
group, the relative energy in delta band was greater than for the Normal- 
EEG group; this relationship reverts in beta and gamma bands (Fig. 3). 
Patients at risk of cognitive impairment (Prichep et al., 2006; van der 
Hiele et al., 2008) or who transition from MCI to Alzheimer’s disease 
(Huang et al., 2000; Jelic et al., 2000; Rossini et al., 2006) show an 
increase in delta and theta power and a decrease in the beta relative 
power. The beta band is sensitive to the discrimination of Interference 
and No Interference stimuli in Stroop tasks (Schack et al., 1999), while 
the gamma band has a prominent role in the coupling of excitatory and 
inhibitory neuronal networks (Fries, 2009). This lower energy in beta 
and gamma bands, in addition to the increased theta activity in the 
Theta-EEG group, agree with the inhibitory control impairment at the 
electrophysiological level previously reported by Sánchez-Moguel et al. 
(2018). Based on the reported higher risk of cognitive impairment of the 
Theta-EEG group (Prichep et al., 2006), we suggest that the greater 
relative energy in delta band and the lower relative energy in beta and 
gamma bands during the performance of the Stroop task may be related 
to the progression to MCI. It would be interesting to study if the observed 
changes in energy in the above-mentioned frequency bands could be 
used as a complementary biomarker of risk of cognitive impairment. 

4.3. Analysis of total energy across time windows 

The greater total energy in both EEG groups occurred in the 
258–516 ms window for all bands, as shown in Figs. 4, 5, and 8. In ERP 
studies, it has been observed that this time window is sensitive to the 
categorization of interference and no interference words (Zurrón et al., 
2009; Sánchez-Moguel et al., 2018). Then, we interpret that this greater 
energy is related to stimuli categorization. The total energy for this time 
window was higher for the Theta-EEG group in the theta and alpha 
bands. Thus, we can hypothesize that the increase in the theta band was 
because the Theta-EEG population already had excess theta activity in 
their resting state EEG. We can also relate the increase in alpha band 
energy in the Theta-EEG group (Fig. 8) to a greater difficulty in inhibi
tory processing in this group, previously reported by Sánchez-Moguel 
et al. (2018). We interpret that the combination of increased energy in 
alpha and theta bands (Fig. 1) reflect neurobiological adaptive mecha
nisms that allow the Theta-EEG group to discriminate the stimuli with a 
similar efficiency as the Normal-EEG group. 
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The total energy for each stimulus condition in the different bands 
was similar within each EEG group (Figs. 1, 8, and Table 1, Appendix B). 
This is an interesting result given the increased complexity of the 
Interference as compared to the No Interference stimuli because reading 
and counting processes are in competition (Bush et al., 2006; West and 
Alain, 2000) causing the response times to be longer in Interference 
stimuli. There was no difference in energy from window to window 
between stimulus conditions but, considering that for the Interference 
stimulus the average response time is longer (Table 3), we hypothesize 
that subjects integrate more energy across time under the Interference 
stimulus than under the No Interference stimulus. In other words, the 
variable of interest to better differentiate between stimuli in our 
experiment could not be directly the energy, but the integral of the 
energy between the beginning of the task and the response time of the 
individual. This analysis would be similar to that done when there is a 
signal s(t) whose period is T and uses the "pulse energy" as a measure, 
which is defined as the integral of the instantaneous power s(t)2 with 
respect to the time in a period T of the signal. The hypothesis is that, in 
elderly adults, the processing of Interference and No Interference stimuli 
demands similar neuronal resources when comparing the same time 
windows. Nevertheless, to give a correct answer, patients would need to 
integrate more energy for the Interference stimuli. This hypothesis 
should be tested in future research. 

Wavelet analysis outperformed STFT when exploring several time 
windows across low and high frequency bands as delta, theta, alpha and 
beta bands could be distinguished only with wavelet analysis. Further
more, by wavelet analysis we revealed that energy increase in delta band 
in the Theta-EEG group was composed by a slow wave [0, 1.9531) Hz 
and the “typical” delta band [1.9531–3.9063) Hz (Figs. 4, 8 and 10). 
Some studies have explored the role of slow waves (<1 Hz) in awake 
states suggesting that the increase in these waves modulates higher 
frequency bands such as theta and alpha bands (Kirov et al., 2009; 
Koo-Poeggel et al., 2019). Studies in elderly at risk of cognitive 
impairment will be needed to test the role of this slow wave in pro
moting behavioral deficits. 

Recent studies in elderly that also applied wavelet analysis on EEG 
signals obtained during the performance of cognitive tasks support that 
theta and alpha frequencies are modulated during ageing. Using a se
mantic memory task, Alejandro et al. (2021) showed enhanced theta and 
less decrease of alpha power in older subjects compared to young adults 
despite that there was no difference in the number of correct responses 
between groups. The authors suggest that the observed changes may 
indicate reductions in attentional processing in the older group that 
might be compensated by higher retrieval efforts to achieve the same 
behavioral performance. Henry et al. (2017) reported that alpha activity 
in elderly was suppressed during an auditory gap-detection task while 
the opposite was observed in young adults; no behavioral differences 
between groups were reported. The authors hypothesize that alpha 
suppression reflects that elderly may use a different strategy to allow 
attention to fluctuate rhythmically. 

Our current findings lead us to propose that using wavelets and more 
than five windows allows a straightforward dissection of signal energy 
in the EEG bands when analyzing ERPs during a Counting Stroop task in 
a population of elderly. Summarizing, our results, together with the 
current literature, support that the wavelet methodology ensures a 
highly precise analysis of the underlying processes that are taking place 
within the frequency bands of the EEG signals obtained during cognitive 
tasks. 

5. Conclusions 

In summary, the signal energy was higher in the Theta-EEG group 
during a counting Stroop task. The energy analysis of ERP using wave
lets showed that during the Stroop task performance: (1) Theta-EEG 
group exhibits greater total energy in delta, theta, and alpha bands 
than Normal-EEG group. (2) Theta-EEG group has a higher relative 

energy in delta band but less energy in beta and gamma bands compared 
to Normal-EEG group. (3) In theta and alpha bands, the energy is greater 
in the Theta-EEG group, specifically in the time window 258–516 ms 
related to stimulus categorization processing. (4) Theta-EEG group has 
higher total energy in 258–516, 516–774, and 774–1032 ms windows in 
delta band. Thus the current findings emphasize the relevance of a 
wavelet analysis for diagnosis of neurological disorders, as in recent 
studies (Alturki et al., 2020; Bhattacharyya and Pachori, 2017; Faust 
et al., 2015). 

We presented a novel methodological design through a wavelet 
transform that provides an accurate quantification of the EEG energy 
during a counting Stroop task between a group of elderly subjects with 
increased theta activity in their resting state EEG and another one with a 
normal EEG. We propose, as one possible mechanism, that this excessive 
energy in the Theta-EEG group could imply that more neurons are 
recruited to perform the task with the same efficiency as the Normal- 
EEG group. However, we do not know if this increased energy is an 
effective long-term mechanism since neurons could be recruited from 
unspecialized regions, and there could be cellular and metabolic im
balances that promote progress to cognitive impairment. Furthermore, 
since the Theta-EEG group participants have a higher risk of developing 
cognitive impairment and already show inhibitory control detriment at 
the electrophysiological level, we suggest that this excessive energy is 
abnormal. 

We can conclude that the obtained results show that the proposed 
methodology accomplishes high accuracy, which is as good as the best 
existing state-of-the-art mother wavelet approach found in the literature 
for EEG signals (Al Ghayab et al., 2019; Blanco et al., 1995, 1996, 1997, 
1998; Gross, 2014; Korol et al., 2007; Kovach and Gander, 2016; 
Lopes-Dos-Santos et al., 2018; Nakhnikian et al., 2016; Navajas et al., 
2013; Quian Quiroga et al., 1997; Quiroga et al., 2001; Rosenblatt et al., 
2014; Rosso et al., 2001; Rosso et al., 2004; Rosso and Hyslop et al., 
2005; Rosso et al., 2005; Schrouff et al., 2016; Schütt et al., 2003; 
Venkata Phanikrishna and Chinara, 2021; Yordanova et al., 2002; Rosso 
et al., 2006). Importantly, the current methodology outperforms the 
Short Time Fourier Transform when exploring EEG signals. 

Imaging techniques such as fMRI, diffusion tensor imaging, and 
magnetic resonance spectroscopy, which evaluate the neural networks 
involved in the task and metabolic expenditure, would complement our 
findings (Arco et al., 2018; Dimitriadis et al., 2018; Forouzannezhad 
et al., 2019; Arco et al., 2018; Long et al., 2019). Additionally, we 
suggest exploring the signal energy during the performance of tasks 
related to other cognitive processes that are known to be altered in 
patients at risk of cognitive impairment. 
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Appendix A 

In Figs A1, A2, A3, A4 and A5 we show boxplots of the total energy 
averaged across all electrodes for Theta-EEG group in the Interference 
condition. We examined the effect of using different mother wavelets in 
the calculation of the energy, for each temporal window (here we show 
only five of them, but the results were similar when using ten) and each 
frequency band. The range of the bands was the same as before except 
for Delta band which involves also the so-called slow wave activity, that 
is: Delta [0–3.9063) Hz. There were small differences across the 
different wavelets, however the results did not differ statistically. The 
statistical results for the 0–258ms window were the following: Delta: F 
(4110) = 0.04, p = 0.9966; Theta: F(4110) = 0.23, p = 0.9229; Alfa: F 
(4110) = 0.13, p = 0.9718; Beta: F(4110) = 0.03, p = 0.9988; Gamma: 
F(4110) = 0.01, p = 0.9997. We reached the same conclusion with the 
other time windows. 

Finally, in Fig. A6 we show the mean STFT energy across temporal 
windows for the Theta-EEG group in Interference condition for Delta 
band and electrode CPz. The results using the STFT function imple
mented in Python and MATLAB yields same results (the two-way 
ANOVA yielding the results for Program: F(1220)= 3.7 × 10-30, p = 1, 
and for Window: F(4220)= 9.8 × 10-31, p = 1). The same results were 
verified for all electrodes and frequency bands. 

Appendix B 

See Appendix Table B1 here. 
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Ramos-Goicoa, M., Galdo-Álvarez, S., Díaz, F., Zurrón, M., 2016. Effect of normal aging 
and of mild cognitive impairment on event-related potentials to a stroop color-word 
task. J. Alzheimers Dis. 52, 1487–1501. https://doi.org/10.3233/JAD-151031. 

Reisberg, B., Ferris, S.H., de Leon, M.J., Crook, T., 1982. The global deterioration scale 
for assessment of primary degenerative dementia. Am. J. Psychiatry 139, 
1136–1139. https://doi.org/10.1176/ajp.139.9.1136. 

Reisberg, B., Ferris, S.H., Kluger, A., Franssen, E., Wegiel, J., de Leon, M.J., 2008. Mild 
cognitive impairment (MCI): a historical perspective. Int. Psychogeriatr. 20, 18–31. 
https://doi.org/10.1017/S1041610207006394. 

Rey-Mermet, A., Gade, M., 2018. Inhibition in aging: what is preserved? what declines? a 
meta-analysis. Psychon. Bull. Rev. 25, 1695–1716. https://doi.org/10.3758/s13423- 
017-1384-7. 

Román Lapuente, F., Sánchez Navarro, J.P., 1998. Cambios neuropsicológicos asociados 
al envejecimiento normal. . Psicol. 14, 27–43. 

Rosenblatt, M., Figliola, A., Paccosi, G., Serrano, G., Rosso, O.A., 2014. A quantitative 
analysis of an EEG epileptic records based on multiresolution wavelet coefficients. 
Entropy 16, 5976–6005. https://doi.org/10.3390/e16115976. 

Rossini, P.M., Del Percio, C., Pasqualetti, P., Cassetta, E., Binetti, G., Dal Forno, G., 
Ferreri, F., Frisoni, G., Chiovenda, P., Miniussi, C., Parisi, L., Tombini, M., 
Vecchio, F., Babiloni, C., 2006. Conversion from mild cognitive impairment to 
Alzheimer’s disease is predicted by sources and coherence of brain 
electroencephalography rhythms. Neuroscience 143, 793–803. https://doi.org/ 
10.1016/j.neuroscience.2006.08.049. 

Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., Başar, E., 
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