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Ramón López La Valle
Facultad de Ingenierı́a, UNLP

UIDET SENyT
La Plata, Argentina

lopezlavalle@ing.unlp.edu.ar

Pedro A. Roncagliolo
Facultad de Ingenierı́a, UNLP

UIDET SENyT
La Plata, Argentina

agustinr@ing.unlp.edu.ar

Abstract—In the global navigation satellites systems, the trav-
eling time determination of the travelling signals is the main
task of the receivers. For precise positioning applications, the
accuracy is expected to be less than 1 ns to limit the error to
the centimeters level. Hence, the influence of the responses of the
antennas cannot be ignored since they can introduce delays of
the order of 10 ns, which translates into errors of a few meters.
The problem becomes even more complex when compact antenna
arrays are used since the mutual coupling between their elements
is considerable. In this work, a signal pre-processing scheme
for coupled antenna arrays to compensate their space-frequency
responses is described and analyzed.

Keywords—Smart Antennas, Compact Arrays, Global Com-
pensation, Orthonormal Matrix, GNSS

I. INTRODUCTION

The essential information that the Global Navigation Satel-
lite Systems (GNSS) receivers must determine is the travelling
time of the signals from the satellites to a reference point
located in the immediate vicinity of the antenna or antenna
array. This information together with the positions of the
satellites are necessary to obtain the position, velocity and
time (PVT) of the receiver [1]. The main benefit of using an
antenna array (AA) in a GNSS receiver are the possibility of
applying beamforming to increase the signal to noise ratio,
reject interference or mitigate multipath [2]. Although its use
implies an associated complexity in the design of the receiver,
it is currently considered in critical and precise applications to
ensure the integrity of the signals [3], [4]. However, in many
cases there are strict space limitations which restrict the AA
to be composed of a reduced number of antennas and to be
extremely compact, i.e., a small array of coupled antennas.
The appropriate design of a compact AA for simple array
signal processing while maintaining the induced biases on the
determination of the receiver’s PVT to the minimum require
special attention.

The incoming GNSS signals from the satellites are captured
by the antenna/s, set up by the radio frequency (RF) front-
ends and then digitized to subsequently go through certain
stages of digital processing. In this process, the signals are
modified by the equivalent frequency response of the analog
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and digital stages of the receiver [5]. In fact, the receiver must
be able to correct or avoid these distortions. Otherwise, biases
are generated in the estimates of group and phase delays
of the GNSS signals, which is equivalent to errors in the
determination of the travel time or pseudo-range [6], [7].

In a compact AA, the frequency response is not only a
function of the direction of arrival (DOA), but it is also dif-
ferent for each antenna. The received signals will be distorted
according to these functions. When considering the combina-
tion of the received signals, the distortion can be interpreted as
caused by an equivalent antenna response, which also changes
according to the particular combination. The conclusion is
that the introduced biases of this stage are variable according
the DOA. In practice, the objective is to know the induced
biases at the specific DOA’s of the incoming GNSS signals.
When performing beamforming (BF) the weight coefficients
are predefined and constant for each DOA, hence it is possible
to provide the receiver of predefined tables that allows it to
remove the biases. [6], [8]–[10]. However, with the presence
of interferences the nullforming (NF) algorithms produce an
equivalent frequency response that is highly variable according
the particular scenario. Hence, the biases are no longer so sim-
ple to correct, and even less if not only spatial processing (SP)
techniques are applied, but also space-time processing (STP)
[11]. In [12], an analysis about the induced biases by an AA
controlled by SP techniques has been done. The results suggest
that, despite the differences that depends on the particular SP
method, the main problem comes from the transfer function of
the antennas itself. With STP techniques, the conclusions are
similar [11]. Although there are solutions based on adaptive
methods with minimum distortion restrictions, they require full
knowledge of the responses of the antennas in the bandwidth
of interest, which requires a high processing capacity and a
high level of calibration precision [13]. Equalization filters
can also be used to correct the effects of SP/STP [14], but
the need to update the filter coefficients for each particular
scenario leads to similar implementation problems.

In order to simplify these problems of the signal processing
of compact AA’s, it is convenient to consider a compensation
technique that should preferably be global, i.e., for all the
main lobe patterns region. In [15] it has been proposed a
SP compensation method for compact antenna arrays with the
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peculiarity of performing a linear transformation by means of
an orthonormal matrix, which does not distort the radiation
characteristics of the array. Additionally, it retains unaltered
the statistical properties of the received signals. The purpose
of this compensation is to allow that the received signals can
be interpreted as those corresponding to an ideal phased array.
In this paper, the proposal is extended to an STP scheme
that simultaneously perform the spatial compensation and the
frequency equalization of the antennas using an orthonor-
mal/unitary matrix to obtain a virtual array that allows a wide-
band phased array model. This simplifies the array signal
processing in the spatial domain, and reduces the induced
pseudo-range biases of the acquired GNSS signals.

The rest of this work is organized as follows. Section II
presents a description about the signal distortions caused by
the frequency response of a multi-antenna receiver. Focusing
on the most relevant factors in GNSS, the delay biases induced
by an actual AA are quantified and analyzed. In Section III, a
new space-frequency compensation method based on a unitary
matrix is presented. Its validation is done with the previously
mentioned AA. In Section V, the final conclusions are stated.

II. INFLUENCE OF THE RECEIVER ON THE PSEUDO-RANGE
DETERMINATION

Figure 1 shows a block diagram of a generic GNSS
receiver with a compensation stage. The n-th antenna re-
sponse is a function defined by its radiation characteristics
gn(f, θ, ϕ) and the phase differences according to its rela-
tive location sn(f, θ, ϕ), both frequency f and DOA (θ, ϕ)
dependent. To ease notation, it is defined sngn(f, θ, ϕ) =
sn(f, θ, ϕ)gn(f, θ, ϕ). The RF front-ends and the ADC’s,
whose frequency response vector is modelled as f(f) =
[f1(f), ..., fN (f)]T , can also be included. Hence, the vector
that store the complete response is h and can be defined as
follows,

h(f, θ, ϕ) = sg(f, θ, ϕ) ◦ f(f). (1)

where the operator ◦ is the Hadamard product.

Antenna array

RF front-end and
A/D converters

Space-
frequency 

compensation

Digital signal processing

Fig. 1. Model of a GNSS receiver with a space-frequency digital compensa-
tion stage.

The GNSS signals transmitted by the satellites impinge on
the antennas of the receiver after an elapsed time τ0. These
signals become distorted by the responses of each RF channel

hn(f, θ, ϕ), or the equivalent response hBF/NF (f, θ, ϕ) which
is a result of applying BF/NF. Consequently, the receiver
obtains a distorted replica of the signal which typically
presents an additional time delay. A graphical representation
is illustrated in Fig. 2, where the A/D conversion, the additive
noise and other distortion effects over the signals have been
omitted for the sake of simplicity. Therefore, the important
characteristics that we need to rescue for the PVT determina-
tion are the group delay δτ0 and phase delay δϕ0 biases that
are introduced by the antenna array and subsequent stages.
In terms of the navigation solutions, the group delay bias can
produce position errors of c·δτ0 meters level, being c ∼= 3·108
m/s the speed of light in vacuum. The phase delay bias has
influence in more precise measurements given that its effect
is of the order of centimeters.

GNSS receiver

Output

Carrier Envelope

Fig. 2. Group delay and phase delay in a received GNSS signal.

Hereafter, it is assumed that the receiver and the satellites
are perfectly synchronized in time and that the wireless
channel is ideal, that means that all other possible influence
factors over the pseudo-range are omitted. Hence, it is only
considered the traveling time of the desired signal together
with the biases incorporated by the receiver. Given a GNSS
satellite signal expressed in baseband, d(t), when it arrives to
the reference point of the receiver it becomes A0d(t−τ0)ejϕ0 ,
where A0 in the signal amplitude, ϕ0 is its phase referred to
the carrier frequency (particularly fc = 1575.42 MHz for the
L1 band of GPS), and τ0 is the traveling time of the signal.
If it is also considered the existence of J interference signals,
Ij(t), it can be expressed as,

y(t) = A0d(t− τ0)e
jϕ0 +

J∑
j=1

Ij(t) , (2)

Its autocorrelation function (averaged in time, for cyclically
stationary power signals) is obtained as follows:

Ryy(τ) = ⟨E{y(t)y∗(t− τ)}⟩



Ryy(τ) = lim
T→∞

1

T

∫ T/2

−T/2

E{y(t)y∗(t− τ)}dt (3)

where E{·} denotes the mathematical expectation, in order to
include random signals in the model. Doing the calculations
and using similar definitions for the autocorrelations of the
GNSS signals, Rdd(τ) and the interferences, RIjIj (τ), one
obtains,

Ryy(τ) = A2
0Rdd(τ) +

J∑
j=1

RIjIj (τ) , (4)

where the equality is fulfilled when the signal and each one
of the interferences are completely uncorrelated to each other.
According to the theorem of Wiener-Khintchine [16], applying
the Fourier transform we obtain the Power Spectral Density
(DEP):

Syy(f) = A2
0Sdd(f) +

J∑
j=1

SIjIj (f) , (5)

being Sdd the DEP of the baseband signal, and SIjIj the DEP
of the j-th interference.

Therefore, the vector of received signals, x(t), consists of
the y(t) signal affected by the transfer functions of each of
the channels of the receiver. Besides, it includes the antenna
array noise vector, e(t), which is also weighted by the transfer
functions of the RF front-end. It is assumed to be white noise
with DEP N0/2. Then, the DEP of x(t) is [17], [18],

Sxx(f) = A2
0Sdd(f)|h(f, θ0, ϕ0)|2 + · · ·

· · ·+
J∑

j=1

SIjIj (f)|h(f, θj , ϕj)|2 +
N0

2
|f(f)|2 . (6)

Hence, the corresponding autocorrelation function of x(t) is,

Rxx(τ) =

∫ ∞

−∞
Sxx(f)e

j2πfτdf . (7)

Correspondingly, the intercorrelation function between the
signals vector and the local reference signal d(t) can be
expressed as

Rxd(τ) = ⟨E {x(t)d∗(t− τ)}⟩ . (8)

If we consider a single antenna that presents an ideally
isotropic response h(f, θ0, ϕ0) = 1 for the bandwidth of
design, then the intercorrelation results,

Rh=1
xd (τ) = A0e

jϕ0Rdd(τ−τ0)+
J∑

j=1

RIjd(τ)+Red(τ) , (9)

where it is expected that the two latest terms be approximately
null given that it is assumed that the signal is completely
uncorrelated to the interferences RIjd(τ) = 0 and the noise
Red(τ) = 0. Hence, Rh=1

xd (τ) is maximum when τ =
argτ max{|Rh=1

xd (τ)|} = τ0, and in such a case the phase

of the intercorrelation coincides with ϕ0. Then, with this ideal
antenna, h = 1, the search for the maximum of Rh=1

xd (τ)
would allow to obtain unbiased estimates of τ0 y ϕ0. In the
frequency domain, the same information can be expressed by
means of the power interdensity:

Rh=1
xd (τ)

F
⊃ Sh=1

xd (f) = A0e
jϕ0Sdd(f) e

−j2πfτ0 , (10)

For an ideal antenna whose phase center does not match
with the chosen reference point, its response can be written
as h = s = ej2πfo

T
0 p/c, being p the position vector of

the antenna, and o0 the directional cosines in the DOA of
observation (θ0, ϕ0). The power spectral interdensity results,

Sh=s
xd (f) = A0e

jϕ0Sdd(f) e
j2πf(−τ0+oT

0 p/c) , (11)

and the corresponding intercorrelation function is,

Rh=s
xd (τ) = A0

∫ ∞

−∞
Sdd(f) e

jϕ0+j2πf(τ−τ0+oT
0 P/c)df ,

Rh=s
xd (τ) = A0e

jϕ0Rdd(τ − τ̇0) , (12)

being τ̇0 = τ0 − oT
0 P/c, while the phase delay ϕ0 is not

modified.
If we finally consider an antenna (and its RF

front-end) whose response behaves as h(f, θ0, ϕ0) =

g(f, θ0, ϕ0)f(f)e
j2πfoT

0 P/c, the power interdensity
experiences changes both in module and phase, and as
a consequence, the intercorrelation is also affected with
changes. Mathematically can be expressed as,

Rh
xd(τ) = A0

∫ ∞

−∞
Sdd(f)|h(f, θ0, ϕ0)|2 · · ·

· · · ejϕ0+j2πf(τ−τ0)+j∠h(f,θ0,ϕ0)df . (13)

The influence of the antenna response is evident, and its
effects are represented qualitatively in Fig. 2. Now taking
into consideration an AA, when performing BF/NF with SP
techniques we obtain an equivalent response

hBF/NF =

N∑
n=1

cnhn(f, θ0, ϕ0). (14)

In this case, the intercorrelation is variable as a function
of the particular weight vector c that is used, and it must be
considered that it modifies the induced biases for both the ideal
and non-ideal antenna responses.

From a quantitative point of view, it must be determined
which is the effect of the antennas or the AA in terms of
the resulting group delay τ̇0 = τ0 + δτ0 and carrier phase
delay ϕ̇0 = ϕ0 + δϕ0, being δτ0 and δϕ0 the receiver induced
biases. Since an analytical deduction is not immediate, in the
following subsection a numerical approximation based on least
squares estimation is chosen.



A. Group and phase delays estimation

Typically, the antennas are designed so that the transfer
function or frequency response has practically constant ampli-
tude in the bandwidth of interest and its phase remains linear,
which is an appropriate approximation for narrowband anten-
nas. With this assumption, the phase presents a dependency
that is expressed as ∼ j(δϕ0 + 2πfδτ0), being δϕ0 and δτ0
the denominated phase and group delay biases. However, these
parameters are not constant given that the transfer function
of an antenna is DOA dependent, and a coupled AA has a
different function to each one of them. Hence, to perform
precise positioning in GNSS it is required to know and remove
their effects.

In [17] a simple approximation based on least squares is
defined, which can be used to estimate the biases introduced by
an actual antenna or AA. The formulation consist of defining
the phase of the transfer function that has been presented in
(13) as α(f, θ0, ϕ0), and to find the polynomial of degree 1
that best fits it in terms of a weighted linear regression. The
weighting factor takes into account that the DEP of the signal,
Sdd(f), has the influence of the frequency response of the
antenna/s and RF front-end/s, as it is shown in (13). In sum-
mary, the fit is performed considering α(f, θ0, ϕ0) ≈ α0+α1f ,
where the parameters approximate the carrier phase ψ̇0

∼= α0,
and code delay τ̇0 ∼= −α1/2π, in order to discriminate the
biases δψ0 and δτ0.

In this work, we adopt the antenna array proposed in [19]
as case of study. This array has a considerably coupling level
which is beneficial by design.

B. Characterization of the AA under test

The AA consists of four microstrip antennas over the
same Ro4350B substrate PCB and sharing the same ground
plane. Each antenna has a single coaxial feed port, and their
separation distance is d = λ/3, being λ the wavelength at the
carrier frequency of GPS, fc = 1575.42MHz. The AA and its
dimensional parameters are shown in Fig. 3. This particular
design, when used together with the proposed orthogonal
transformation, can be treated as an ideal phase array for space
processing purposes [19].

Figure 4 presents a map of the estimated group delay of all
the antennas for each of the DOA’s of the upper hemisphere,
where the array radiation is higher. This group delay biases has
been translated to pseudo-range biases. In general, it is verified
that there is an average error of approximately −3 m in a large
part of the space. Then, deviations around ±1m are observed
in various sectors, even reaching differences of up to ±2m,
mainly for low elevation angles. These variations show the
level of uncertainty that exists between DOA’s and antennas.
Moreover, if BF/NF is performed the equivalent response has
a new biases map that can change according the weighting
coefficients needed for the combination [12]. For the following
evaluations, the Orthogonal Projection Beamforming (OPB) is
used either for BF/NF [20].

1) Group delay when performing BF: When BF is applied,
an equivalent group delay pattern is obtained as a function of
the particular vector of weights that has been used to direct
the beam in the direction in which the signal is assumed to
come from. For each combination we are interested in knowing
the delay only in the DOA of the desired signal. Therefore,
each DOA in the map that is presented in Fig. 5(a) shows
the obtained group delay when the BF technique is applied to
maximize the gain in that direction, so every DOA in the map
arises from a different BF combination. It can be seen that the
resulting map is quite homogeneous, with smooth variations in
a relatively minor range. So the pseudo-range errors produced
by the receiver when a satellite traverses across the space may
vary in the range ∼ [−3.5,−2.5] meters at most. This means
that when performing BF, the uncertainty in the group delay is
significantly reduced in comparison to the differences already
seen in the individual antennas because they are approximately
neutralized by the averaging.

2) Group delay when performing NF: In the presence of
interference/s, the group delay in the direction of the desired
signal also depends on the location of the interference/s.
Suppose a particular case in which there is an interference
located at (90◦, 270◦), and OPB is applied to mitigate it while
the gain in each of the possible directions in which the desired
signal arrives is maximized. The group delay map is presented
in Fig. 5(b). This particular case confirms the assumptions and
shows that in these situations the unwanted delay variations
are considerable and approximately equal to or even greater
than the individual antennas.

III. SPACE-FREQUENCY COMPENSATION

In order to compensate for these effects, a joint space-
frequency compensation will be developed. The proposed
array [19] was designed to be used in conjunction with a uni-
tary spatial compensation matrix. The following development
consists of a new method that simultaneously compensates
in space and frequency, also with a single unitary matrix.
Hence, it is an extension of the previous version, and it will
be analyzed on the already presented AA design.

A. Compensation scheme

This method is intended to reduce the differences that the
antennas present among their radiations patterns in space and
frequency. The purpose is to obtain a virtual phased array to
simplify the following signal processing stages. In Fig. 6 the
structure of this digital compensation stage is shown. Each
one of the samples of the received signal by the n-th antenna
in a specific time instant, ti, is xn[i]. By using time delay
blocks z−1 = e−j2πf/fm , where fm is the sampling frequency,
the samples of K time instants are stored. Assuming K odd,
for each time instant ti the data xn[i − k] is stored, with
k = −(K − 1)/2, · · · , 0, · · · , (K − 1)/2. This definition with
instants before and after the central one is convenient since it
provides symmetry in the phase evolution, which allows better
results to be achieved in this type of development [21]. If the
different samples are grouped in the same dimension then the
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vector x can be constructed, which has a total of N ·K rows
and whose elements are indicated as xn,[i−k]. Without loss of
generality, we assume i = 0 and that only one signal exists
and comes from (θ0, ϕ0). Hence, the spectrum of the signals
is affected by, hn(f, θ0, ϕ0) z−k.

When applying the transformation, the vector of signals x̃
is obtained, which has the same dimensions and therefore rep-
resents the signals of N antennas and K consecutive instants

z-1 z-1

z-1 z-1

x1 x1

xN

xN

xN

x1

x1

x1

xN xN

Fig. 6. Space-frequency compensation scheme.

of time, now dependent on the responses of the compensated
virtual array, h̃n(f, θ0, ϕ0) z−k. It can be noted that the term
z−k already has a linear dependence on frequency, therefore
it is not necessary to incorporate it in the process of searching
for the objective array response h̊. The compensation will
be performed for the discrete set of DOA’s, (θp, ϕp) with
p = 1, · · · , P , that cover the radiation hemisphere of the
antennas, and for a certain set of frequencies, fl with l =
1, · · · , L, that are representative of the signal and antennas’
bandwidth. Therefore, the designed array matrix H and the
target array matrix H̊ must be defined, where each of them
have dimensions N × (P · L).

The proposal to find the appropriate features for the target
array and the corresponding unitary transformation matrix is
similar to the development presented in [19]. The steps to
effectuate are the same, starting with the initial objective
matrix H̊A, going on to obtain the optimized response H̊B ,
and finally the objective array response H̊ .

1) Initial objective array response, H̊A: The magnitude and
phase of the initial response are defined as,

|̊hAn,pl| =

√√√√ 1

N

N∑
m=1

|hm,pl|2 , (15)



∠̊hAn,pl =
2πfldn
c

sin(θp) cos (ϕp − φn) , (16)

where dn = d/
√
2 = c/(3

√
2fc) y φn = φref − 2π (n−1)

N are
the polar coordinates of each antenna relative to the geometric
center of the array, φref = 3π/4 is the reference angle that
coincides with the orientation of the antenna labeled 1, fc is
the center frequency of design, and pl = p+ (l− 1) ·P is the
index that combines p and l in the same matrix dimension.

2) Optimized objective array response, H̊B: The iterative
process is based on the steepest descent method, which tries
to optimize the phase of all the terms of H̊A. The structure of
the algorithm is:

1) Initialize H̊B = H̊A, R = HHH , R̊B = H̊H
B H̊B , γB =

∥R− R̊B∥2F , and the step size α.
2) The gradient of γB about the phase of each term of H̊B

is the matrix δ that is calculated as,

δn,pl = 4ℜ


P ·L∑
ql=1

[
jh̊n,pl h̊

∗
n,ql (̊rpl,ql − rpl,ql)

], (17)

where rpl,ql and r̊pl,ql are the elements of the matrices
R and R̊B respectively.

3) Update the phases in the opposite direction of the
gradient wit a step α,

∠H̊B = ∠H̊B − αδ, (18)

then the correlation matrix R̊B and the cost function γB .
4) If an acceptable value for γB has not yet been achieved,

or some other break condition has not been met, check
the convergence of γB , update α if necessary, and then
return to the point 2.

3) Objective array response, H̊: Now for the virtual array,
the steering vectors S̊ and the gain of the antennas G̊ may be
derived from the previous results. The gains retain their origi-
nally defined magnitudes, but the phases arise from averaging,

|̊gn,pl| = |̊hBn,pl|, ∠g̊n,pl =
1

N

N∑
m=1

∠̊hBm,pl . (19)

The remaining variations of the phase components of H̊B

are incorporated to the matrix S̊ as indicated next,

∠s̊1(fl, θp, ϕp) =
1

N

N∑
m=1

ψm

(
fl, θp, ϕp + 2π

m− 1

N

)
, (20)

∠s̊n+1(fl, θp, ϕp) = ∠s̊n(fl, θp, ϕp + 2π
1

N
) , (21)

where ψm(fl, θp, ϕp) = ∠̊hBm,pl − ∠g̊m,pl.
In this way it is possible to obtain the matrix of averaged

responses,

H̊ = S̊ ◦ G̊ . (22)

4) Orthonormal transformation and virtual array: Since
we already have the structure of the matrices H and H̊ , we
can now add the time delays. We define the matrices named
Hz and H̊z , whose elements are,

hznk,pl = hn(fl, θp, ϕp) e
−j2πflk/fc , (23)

h̊znk,pl = h̊n(fl, θp, ϕp) e
−j2πflk/fc , (24)

being nk = n+ (k − 1) ·N the combined index of n and k.
Thus, the unitary matrix W is calculated as,

W = UV H , (25)

being U and V the unitary matrices of left and right eigen-
vectors of the Singular Value Decomposition (SVD) of the
matrix H̊zQQHHzH , where Q it a diagonal matrix that allows
assigning different weights to each DOA. This leads to the
following approximate equality,

WHz = H̃z ≈ H̊z. (26)

Although the memory and processing capability require-
ments for obtaining the W matrix are considerable, this
process only needs to be done once. In contrast, applying
this transformation on a receiver does not consume significant
resources.

B. Validation

Next, the space-frequency compensation of the proposed
array is performed. For the development, P DOA’s were
considered, each 5◦ in the range 0◦ ≤ θ ≤ 90◦ and
0◦ ≤ ϕ < 360◦. The L frequencies were defined in a
10MHz bandwidth around fc, which correspond to the set
{fl}11l=1 = fc + {0,±1,±2,±3,±4,±5}MHz.

1) Characterization of the compensated antennas: Working
with a single temporal sample is defined as the case K = 1,
it is equivalent to perform an spatial compensation as done
in [19], and whose results are presented in Fig. 7. By using
a larger number of samples (K > 1) it has been verified
that the quality of the compensation in the space domain is
preserved as expected, and in the following its performance in
the frequency domain will be analyzed.

In Fig. 8 the group delay maps for the four compensated
antennas with K = 3 are presented. It can be seen that
in addition to correcting the average delay value, in certain
DOA’s it was possible to reduce the existing deviations. It is
at higher elevations where the greatest differences still persist.
Although a gradual improvement is achieved as more K time
instants are processed, in the present arrangement the correc-
tions converge quickly without presenting great differences for
high K. Naturally, the latter occurs because a limit is reached
in terms of the possibility of homogenizing the bias maps for
all the selected DOA’s with the same transformation.

For practical purposes, it is interesting to continue by
evaluating the resulting bias after performing BF or NF.



Fig. 7. Realized gain patterns with the spatial compensation (K=1).

Fig. 8. Group delay patterns of the compensated AA (K = 3).

2) Characterization of the group delay bias for BF: In
this comparison we analyze the resulting group delay diagram
when performing BF in the direction of the desired signal,
which runs through each of the possible DOA’s of the upper
hemisphere with a step of 5◦. Fig. 9 shows the group delay
maps when performing BF with the AA for each processing
scheme, that is, uncompensated (NC) and K = 3. Both present
significant differences between them. Group delay variations
have been noticeably reduced at low elevations, keeping a
practically constant value as is desirable. At higher elevations
the variations have not been corrected. In a certain way, this
is related to the fact that the compensation aims to neutralize
the differences between antennas, but it does not ensure that
better results are obtained in BF.

Although the calculation of the compensation matrix W
takes into account the responses of the antennas, there is
more influence by those DOA’s where their gain is greater. By
means of the weight matrix Q, the relative weight that each
DOA acquires can be graded in a compromise relationship that
allows for better compensation in certain sectors compared to
others. The results presented in Fig. 9 are equivalent to using

(a) NC. (b) K = 3.

Fig. 9. Group delay obtained when performing BF to each DOA. Comparison
without and with compensation.

an identity matrix called Q0. Consider a weight matrix Q1
whose elements on the diagonal are,

Q1pl,pl =
1

|̊hn,pl|
, (27)

with pl = p+(k−1)·P and n = 1 since all the target antennas
have the same magnitude. If Q1 is used instead of Q0, then
it is possible to reduce the priority imbalance in terms of the
calculation of the W matrix between the different DOA’s. In
Fig. 10 the new delay bias graphs are presented, where it can
be seen that at high elevations the delay deviations are reduced
to a certain extent, while no significant changes are found for
lower elevations. Therefore, the use of a weight matrix can be
of help to improve the performance at high elevations in cases
where it is required, for instance when the signals coming from
grazing orientations are commonly recovered.

(a) K = 3, Q0. (b) K = 3, Q1.

Fig. 10. Group delay when performing BF to each DOA. Comparison
regarding the use of a weight matrix.

3) Characterization of the group delay bias for NF: As
shown above, the group delay biases are increased when
performing NF. In Fig. 11 it can be seen that the array
incorporates considerable variations in the map of delay biases
when trying to cancel an interference located at (90◦, 270◦)
while maximizing the gain in other DOA’s. As with BF,
the K = 3 compensation manages to significantly reduce
the variations for low elevations. In the region close to the
interference, it is in vain to analyze the delay because the
response of the array has very low gain. Observing other
sectors, it can be concluded that it has not been possible to
completely reduce the variations at high elevations either. But



again, it is possible to consider the use of a matrix of weights
Q1 in order to reduce the variations at high elevations. The
results of this last case are presented in Fig. 12, where a
significant improvement is observed.

(a) NC. (b) K = 3.

Fig. 11. Group delay when performing NF to (90◦, 270◦) and maximizing
every other DOA. Comparison without and with compensation.

(a) K = 3, Q0. (b) K = 3, Q1.

Fig. 12. Group delay when performing NF to (90◦, 270◦) and maximizing
every other DOA. Comparison regarding the use of a weight matrix.

IV. CONCLUSIONS

In the present work it has been verified that the level
of uncertainty produced by an array of coupled antennas in
the determination of the position of a GNSS receiver can
be of the order of a few meters. From this point of view,
the development of broadband compensation techniques is
interesting because they help to avoid relying on the frequency
responses of the antennas in order to remove their effects.
The development presented here provides an adequate space-
frequency compensation scheme for compact arrays. The re-
sults obtained show that it is possible to globally reduce the
uncertainty with a single transformation matrix which is in fact
unitary, thus does not alter the noise statistics between samples
and between channels, neither the array radiation properties.
In summary, this method allows effective signal processing
while reducing induced biases on the PVT solution for GNSS
applications that use small arrays. It may also be considered to
be used in other applications that require simple yet effective
signal processing with compact AA.
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