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Introduction

In |5l we have defined the category of N-differentiable (not necessarily
reduced) spaces and have described certain subcategories that seem to be of
special interest. For one of these restricted categories we have, for example,
established certain embedding theorems of the classical type for manifolds. At
this point then one should describe certain constructions to "smooth" different-
iable spaces, so that starting with a general space, one ends wifh a space in a
more restricted, but nicer class. By this we are able, for example, to extend
certain embedding results of |5| to a far more general class of differentiable
spaces (see |7]).

Here we want to continue the description of differentiable spaces. First we
define "products" for differentiable spaces. This can be done in several ways
and depends on what one wishes to have. We describe here two products (the '"pro-
duct™ in §1 and the "pseudoproduct" in §2). In the classical complex analytic
case these both coincide. Also a fiberproduct can be introduced.

In connection with products we are interested in contractible differentiable
spaces (in the reduced complex case see [2|, but see also [3| for some related
results). We have two kinds of contractions (r-contractibility and weak r-contract-
ibility) according to the different products. Contractions are described to some
detail in §3.

However our main object here are "differential forms on differentiable spaces".
They are defined in §4. The sheaves of these forms constitute a certain complex,
but exactness in general fails. Under some contractibility assumption exactness
from some degree on will be established (§5). In a special case then one gets of
course a type of de Rham theorem for N-differentiable spaces, generalizing the
corresponding theorem for differentiable manifolds. These results have first been
described in |2| for reduced complex spaces. We have not only generalized |2| for
the real analytic and moreover finite differentiable case, but also for the un-
reduced cases. Even in the reduced complex analytic case the result here is slight-
ly more general than |2|, because our notion of an w*-differentiable space is
more general than that of a complex space. When at La Plata, I learned that a
generalization of Reiffen's theorem to the classical unreduced complex analytic
case is also studied by R. Slutzki. We should mention that our C -case can also

be considered as a generalization of Reiffen's theorem to formal powerseries-



algebras over the real or complex numbers. But in this direction there even
exists a generalization to the theory of differential modules due to G. Scheja
(not yet published). So one has the two possible generalizations either to N-
differentiable spaces (analysis) or to differential modules (algebra) with
powerseries-algebras as a non empty intersection.

Finally in §5 we describe some connections between differentiable and
holomorphic differential forms on complex spaces. But this is yet not more
than a beginning of what one should like to know.

After all we hoped to show by an exampkhow for certain questions in com-
plex analysis the notion of an N-differentiable space just gives the approp-

iate set up. This task will be continued elsewhere.



§ 4. The product for N-differentiable spaces.

(‘A_) We recall from £¥3: An N-differentiable space X is a ringed space,
which 18 locally of the form D = (D, 2"Y )c R™ That means:
DS R" is an arbitrary subset,
D" iz the sheaf of germs of complex valued functions of class
c¥ on R™ (: c"- functions or N-differsntieble functions, 1SN Swv, N = w means
realanalytic, N = w* means complex analytic),
Yc 2'ID is any ideslsubsheas with Jy % -'&‘” for all x¢])
"1 = (27
We say, that ‘X satisfies A, , if &1l local representations (D, 20”/ 7 )Yor X
satisfy ( %, - X1 )nﬁ,ﬁ' = J, (ﬁhore N¢ 4 =N for N =, 2 ,0") for all x€D,
In [7] we denote by # 3y the category of N-differentisble mappings and
spaces, which satisfy A, . Here we shorten: 3?” = 9?3"' « Lot W; denote the cate=
gory of all pairs ( X, X;)s X. ¢ &, with differentisble mappings h = (h, ,h,):
( X,s X,)—>(Y,, Y,) as morphisms, where h.: X, —»Y, ¢ #y are differentisble,
If gt Y,~»2; ¢ 73,,. 11,2, are differentisblo and g = (g‘ ,g"); then goh =
= (geh,, goh)). Ientifying X =( X, X ), h = (h,h) for any h: X = T we
consider My as a subcategory of 9?,; s #yc W; .

v &
Let ﬁ” c ??N respectively %ﬁ, < &';‘ be the respective subcategories of

N-differentiable spaceg embeded in zome R™: D<R™ (mnot fixed).

(B) An N-differentiable space in this note will always mean an element of

o

&, . The following spaces from ﬁy shall be givon:
N mi AL L ™y
Ajs(A,ZJ/Ifd)CR » B (s:.:z)j /:5. e R4, 3,2,
For a while we shall drop the indices j. Then let (x,y,) ¢ AxB and
¢ > N
" ( 3*3‘)(,‘,, 1= jf; fe 2)(,.3) » =2 c,'f, * }.‘5..‘3,. » Where
Cyor % € 2)(:;; . fy ‘jx s EAC:T;}.

Here of course 2 ¢ msans the sheaf of germs of l-differentiable functions on

R"xR™ and the f;+ . are considered as elements of 3% in the natural way.



fl 349Y% := the 1deal subsheaf of 3V|AxB, defined by the rings (1+3"), -

N T et TN e e
above.
Pt

Ba xB = (axB, 5%verr),
We obvicusly have AXB ¢ 53’ » The projections
h B ’R™ - r™, 7*: R"xR™ — R™
induce N-differentiable meppings, which we also denote by 'lf“‘, namely s
N ?:axB — a4, 7% AxB— B,
the projections on the first respsctively second component, We write

Ty o= (GG Ajx Bi——s (A, By )

(with the identification Z?N c : from above). Now we have

~

Lemma 1,4. Let D ¢ 9?” , f3sD—>( A, B) be differentiable. Then
-~ P O e W W

there exists exactly one difforsntiable mapping g: D—? A x B  such that

P ™ o P S

f =%og. Hence 7 is left universal, the following diagram is commutative:
P /WM\/\‘M#—\"W_/'“N—

AXB ...I....o(A.B)

S~ A

Proof. Let D = (D, 2'/§ ) < R’. Wa show first the

Uniqueness: Let g'u g and also g% D—>( A , B ) be differentiable with f =
P e i
) ;“’. We have to schow: g'= g%, The problem is of a local nature. Without eny
restriction we may thereforo assume, that g? and g% are induced by some N-diffe=
rentiable mappings
6% 0 —» R"xR™, 1=1,2,
vhere Dc O C ., R, Let G'= (G:'.G;.) with G:;: 0 — K", G:z 0 —R™. Because of
Teg®> =f = 7eg? ,
we have for each ¢ ¢ D: The components of (G: - C‘w,:‘),t are in 'Jz. By t¥31, Lewma
3,1 therefore G and G* gensrate the seme differentiable mapping D= A x B .
Existence, Because of the uvniqueness it suffices to show: To each ¢ ¢ D there
P o i e
exists a neighborhood U(g) € D of z and a differentiable mapping
g% ¢ DIU(S), —— ij B:'
such that rjU(e) = Teg=™
So we even may assume, that f = (i:' ,f& ) is generated by some N-differentiable



mppings F, 1 0—»R", F, 1 O—3R™, where D= 0C, _ RY, Vo olate:

] ap o,
F= (F_' oF, )+ 0—»R"™x R™ generates our differentiable mapping
g: D—>» AxB .
For this we have only to show : If z ¢ D, y = F(e), h, ¢ (']+'l'),‘ , then

hy*Fy ¢ T, . But this is obvious according to the definition of F , F, and (1 +7%),

From all that new follows 4,1, Qe d

Corollary 4,2. Let h = (h ,hy): (4,4B,) — ( A,, B,) be differentisble.
N~ P T

Then there exists & unique differentiable mapping hs A x B Pasd Aa'x B, such
AN N NPT N TN N TN N

S e S L P e
that 7 oh = he, . Hence the following diagram is commutative:
T~ P e I L N S P
N
14)( B4 e ( A,,n a.,)
A A (A

We write h = hAx hao
Proof. Take 1,1 for fi=heT, .

Corollary 1,3. The mapping
P W o S N a
T: (A,B)— AxB , T"th—>h

N2 s
described above is a covariant functor from WN into WN . Especially:
P T S I I T A~~~ P N
T (geh) = T'(g)eT'(h) ; AT 'h 1s a diffeomorphism, so is T7(h).
P NP I S T PP N N

2
The statements 1,1 to 1,3 now also hold for 72;/ and % :

P e

2
Theorem 1,4, In % exists a products To each ( X , Y ) ¢ % there
N N N N O gl
Fava d

exists a Z e %, with a differentisble mapping ¥: Z— ( X , Y ) such that
AN g O I P T L P g

we have: To sach D ¢ 8?" s T1 D—»( X, Y ) differentiable there exists exactly
AN TN TN

one differentisble mepping g: D — £ s such that f = Yeg, it est:
P N W e ——— I~~~

a

L ————> ( X,Y )
N

3D /4'
is commutative, Z is up to diffeomorphisms uniquely determined. We write 2 = Xx Y.
PRI N W e W I i PPPr_ N N e N
) Proof. The uniqueness is obvious, We show the
Existence., Lat

e e ot o ]

§(Y,%)i1eI} beanatlasof X

£ Vi Y s Je J} be an atlas of Y (see [ & 3, p.28%).
Let $.( XJU;) = A, o Y0y = By
%4, ( X0, ~ G ) = Ay Yl I~ %) = B,



e

For simplicity of notation we consider the sheaf A, x Bj— "on A ,xB; also

as a sheaf on W, := Y, xV; © XxY . Then we have

4
- -

Ayx By | WinWy = AgrBig, .

P

The isomorphisms

-4 -1
‘Bﬁo‘s“ : A‘;!".a - A4.21:4 * /Y ’414 Bjafz —> Bai,

induce isomorphisms

-4 - .
(t‘.zfz.":l?‘l 1= (&2 9‘3’5' b 4 (qia,o 11‘14 4 &_5,41 X 53112 7 ‘4‘2‘; x 34.314 ’
-hence
[l . . . . . S « . . . PN
Caide® A% Bl WqnWad, — A x Byl Wog g,

The mappings ‘Z;-:‘-‘ {41_‘ satisfy the usval condicions of compatibility and there=
foredo defe-ine a sheaf g» on XxY , which makes Z := ( xY, 3: ) to a ringed
space in the sense of £57. We have local isomorphisms

ﬂ}'a' 1 AgXx Ba;—‘———?flU“.XV{ .

——mmma

For each 1 ¢ I, § ¢ J we have a bimorphism
G = (Y, % "_fj. L (T Vo Q'U‘K V) —> Lx B,
such that
¢"dx° ¢<':1': = Tdatida. S
{(u,,.xvé— ,Q,J dsieI, Jed} 18 a C'- atlas on Z, which makes Z to an
Ne-differentiable spacs.
Z with this structure of differentiability satisfies the conditions of the
theorem, as follows from the constructions and 1,1 to1,3. q.e.d.
1.2 and 41,3 now genersliss for 32; and 8‘ + Esspecially we have a
functor T3 %-'( —?@dly such that:
T(Xx,Y) &€ &y 4is product of X and Y.
Up to squivalence, T’ is uniquely determined. We write
XxY = T'(X,Y), hxh = T(h,h)
and denote by 7 the "projection” ¥: Xx Y —>» ( X ,Y ) from1,4. We have
XJUxYlv @& XxY|UxV .,
The identity mapping i: X -—» X gives rise to a differentiable mapping 1i*,
such that the following diagram is commutative:



Enad

X — 5 X
aNg A
1" is a closed embeding and hence a bimorphism onto an N-differentiable subspice
Ax € XxX , the diggonal of XXX, Obviously, in this special situation, the
bimorphism is even a diffeomorphism. Any differentisble mapping g: Y —=X then
can be factorsd in a uniqus way, such that the following diagram is commutstive:

. IxY —T o x

S~ 7

The econstruction of the fiberproduet no# is again s usual:

Ay

let (X ,Y) —f-—-r Z be a differentisble mapping. Theﬁghare exists an N-diffe=
Va¥and D i i e g N I e o AP e P, Y N
rentiable space X X 4 ¥ with a differentiable mapping T X x ‘Y —_—> (X T 7},
P P B S eana e o NN )

which up to diffeomorphisms is uniquely determined by the following property:
P I i P I il e e N e R N s

To each differentiable mapping g1 W—>( X , Y ), g*:s W—>2 guch that
P O i T el

PN g
g’ = fog, there exists a uniquely determined mapping h: ¥ —» X X4Y with
I R W I N . T
g = Toh s
{

x'x#Y—-——-——-y(X.Y)———-—-;Z

i

Proof. Let F: XxY¥ —>ZxZ be the mapping induced by f. If Zx2Z = (Zxz,C ),

then there exists an ideal subsheaf £ < & such that

Az = support Eres %2 €/er j f‘_?_
If XxY = (E, €), then lot £* € be the subsheaf, generated by the image
of " usder P tn &, Then with D i= support £/€"  let

XxpY 1= F(D, £/E%D),
vhere 1"3 denotes the smoothing functor of C¥2, which carries arbitray different=
tiable spaces to those of the ciasa ﬁma W,v o For this space the unique
factorisation of g by h eoxists, as follows from the cemmutative diagramm:

bp Sy zx7Z —_
1‘ K ? ’ "\...>

chﬂ:::-———-—-y Xx Y —— (X, Y) sz

-~

IR S e
First there oxists the mapping W — XxY —> 2ZxZ, which factors through

W —% A, and induces & mapping W —» X x‘# Y , which factors W —? Xx Y,
Existaencs and uniq\ﬁmss of h then give, that KXJY is uniquely determined,



In many cases a somewhat weaker notlon for a& product of differentiable spaces
is sufficient. This pseudo;:roduci, which we are going to describe now, is gsolution
of a weaker universal problem than that in§74., In the classical complex analytic
case bothe coincide, in general they certainly do not. So the question arises,
in what cases they do coincide,

We stick to the notations of §4 and stert with the local desoription:
Let (x°,y°) ¢ ij o Again, let us drop for a while the indices j. Define
HCIF I )poqyi= 183 0 e Dsyey has in 8 nelghborhood U(x")x V(ys) of
(x®,y°) a representation F. UxV =—» R such that F”

e I""s € :(,," for each x € UnA, y ¢ VAB }
Here we used F’(x) := F(x,y) for fixed y, Fx(y) := F(x,y,) for each fixed x,

and Fyx c 2}:‘ . ny ¢ 3"” are the corresponding germs.

&
" ':{.'; " ;::W -'snleB s defined hy the rings
L I o
brag L3
(3#73 Yoyy described above,
| AX B 1= (AxB, 3N/(1 FY) ).

We obviously have A B ¢ ??” « Agein we have natural induced differentiable

projections, also denoted by T :
Nt A B —» A, 7% : ARB—> B, T=(whUdH.
The following definition will be usefull:
Il Aditterentible mapping ks A, ¥ B, ——> A X B, 1s called

of product type, if there exists a differentiable mapping h: (A_, B,) —>
P Ww~\/~\ A

— (Aa,Bz) such that hem = m, o h. Hence the following diagramm commutes:
P N ~ M—"W\/\ﬁ
AXB —™ o A¥G3B
2 4 2 2
™) Moy T A

(a,8) 2 (4,8

The class of N-differentiable spaces AX B with A, B ¢ W” together with
the diffsgentiable mappings of product type constitutes a subcategory %’ (o ia, .
The following corresponds to corrollary 41,2:

loms 2. Lst b (hh)t (A8 ——> () be differentanie.

Then there exists exactly one differentiable mapping Bt A, ¥ B4 — Az'i? Bz’
WWWW



e N
such that the corresporiing disgrar (*) is commutative., We write hos= h,,‘:é‘ha .
Proof. Unigueness: Let h and h* be glven mappings A4i’ B,,—-——-—-—-* Aa-“? B, such that
———. At ™
Meeh® =heM = T, oh . We have to show: h = h'. Let z = (x,y) ¢ A xB,.
In zour h and K" aregenerated by N~differentiable mappings (ﬁ; ,ﬁ;) and
- ~ m tad M,
(B 7 ) with H B : (R™x R™), —> R, Hy B ¢ (R™xR™), — R)%
Using ﬂ!’tgh’ = '!Qe’l:f we find, that the components of ﬁ;»— H: ard of f-fz- H; are
in (% '-67'.:('*) . By £59, Lerma 3,1 we therefore have h” =Th , because 2 ¢
A x B, was arbitrary.
Existence. Let again =z = (x,y) ¢ Adx B,. If h, is in x generated by an
N-differentiabl ing H: RTM —> R.% h, iny by H,: R.* —» A™, th
ren e mapping H : x Ry » hy iny by 2° y 7 Ry en,
as 1s immediately verified, (!i' oH, ) generate for some neighbourhoods U(x) < 4 ,
V(y) € B a differentiable mapping
"W AXB | Ux)IxV(y) ———s AFB,
with % SR ho?('IU(x)xV(y). Because of uniqueness the different mappings
'h®¥) define a global differentiable mapping of the required type.
Corollary 2,2, (compare with 41,3). By
o~
T+ (AyB) —3p AXB, T': nhsh

ﬂ-z [
there is defined a covariant functor of ZJA’ into 3?; . Especially we have:
O O P P N S N

e S A

T (geh) = T (g)eT'(h) 3 i,ih a diffeomorphism, so is T (n).
To describe the universal property, which is the basis for the pseudeproduct

define;
Il A differentiable mapping f: A X B,— (4,,B,) 1is called of product
g e W i PP Y o B e ad
type, Af there exists a differentiable mapping h: (A4 'B4) —— (Ax.B&) such
P e o e e el sttt s e et P P
that £ = hoT.

Vi d ~
Corollary 2,3. Let DefS . f: D —>(A,B,) be of product type.
[ P ™ e st

Then there exists exsctly osme differentiable mapping
gs D ..-)Azi' Bz, with f = Meg.

Proof, Let D=AX B,, h: (a, B ) —» (4,,B,) with f = he?; , then 2,3

A s

follows from 8,1:

T 4

s T /T};

A,XB (A,,B,)
1 4—————-—-77,; 4054




The following obvious remark howover should be noted:

Remark 2,4, o) Lot D< #y  bo reduced, f1 D —= ( Ays By) differen=

tiable, Then there exists oxsctly ono differentias-ble mapping
gr D—> A, ¥B, with £ =% ag,
P) If A,, B, are raduced, oo is A, ¥ B,.

¥} % ip in tho cetezory of roduced differentiasble spaces

a product,
Due to lomra 2,4 one cen nce conetruet to sach X ,Y e ﬁy & pssudoproduct

> (2 W) adiffe s

XX ¥ and to ecach difforsntiable mappirg h: (X ,Y )
> ZX W in a similar way as was described in

rentiable mapping hs IXTY
§4 for the product X. Again we have e natural projectiocn, also denoted by o

Ty XXY ——my (X,Y)
21, 2,2 and 2,3 now generalise with the correspording definitions. Let 3?;
denote the category of N-differentiablo spacss of producst type with differentisble

mappings of product type, then:
2 Hir
We have a natural covariant functor 77 i %! — ﬁv defined by
N WO e

PSRy _ e
T(,X)= XFY, T!n) =h,

Bmark 2s5. Imt X, ¥ = %’H e ¥ ¢ ¥ . ¥° has a uniqus roduced H-dif=
forentiedble strusture for oll i, nemely {y°, C), shorts y°, The natural embeding
y°—>Y togethor with the identity I —> X therefore induce differentiable
mappings:

XX Yo Ex Y, XX y° —p IX Y.
Gne finds, that the projoctions
Xy —> X oand X% y” ——> X

are diffoomorphisns ard Xxy°® = XX y°,



§ > rirsctille aiffeventiabls spacsa.

Let D < R™ » X° e D and ¥ 9?,, be the reduced space defined by D, Then:
D” ig called r-contractible at x°, if to each neighbourhood U(x*) € D there
exists a neighbourhood V(x*) € U(x*)} of x° and ‘g“differentnble mapping
¢ +DAVXI —> Dal with I={t; 0st=<1], such that
| tp(x.‘l)mx for all x e DAV

?(x, 0)CBC DAU for all x e DAV, where embdim B & r,

This generalises for arbitrary N-differentiable spaces as follows:

Def.3,1. Xe 3?”

if to each neighboursrhood U(x®) € X there exists a neighbourhood V(x°) < U(x°)
I e g R T e O N
of x®, a subspace Y ¢ 2-1” of X3 Y «»X|U(x9) with embdim Y < r ,

P el

P~

P
satisfying A, of { s}, p.275, and a differentiable mapping
i N I e

¢+ (X[Vx2) )xI' —— X |u(x®)

(resp.  § ¢ (XIWx))XIY o x]Ux) ),

is called strongly (weakly) r-contractible at x®e X,
e A e P st T TN e st O TN TN I e e gt —

such that for the composed mappings
NW .
bt (X[VE) )x1 — (X]Vx0) IxI¥ — x]Ux®), 11,
( resp. the same for X ) we have
P o SR g PO s
lf),' ig the natural projection X ]V(x“) x 1 —— X ‘ V(xo°)
PR NP i o g
¢, maps X[ V(x°) x 0 into Y,

¢ 1s called r-contraction. We say contractible instead of O-contractible.
is reduced and in x% ¢ i weakly r-contractible, then we may assume without any
restriction, that also Y above is reduced,

let X =( D, .'b"/:( ) € R™ We want to compare the following properties
for x° ¢ X 3
8} X 4is in x°® strongly r-contractible,
b) X is iu i’ <eakly r-contractible.
¢} To each neighbourhood U(x*) < R of x* there exists a neighbourhood
V(x*) € U(x°) and an N-differentiable mapping ¥: VxI —» U gsuch that:
1) ¥ 4s an r-contraction,

2) % induces an r-contraction ( X|V )xI" —» X|U.



-2,2!"
d) The same am o), with ( X |V ) % I" instoad of ( XIVv)IxIV¥ 4n e), 2).
Lerma 3,2. For X = (D, 3”/?} ) we have
1) a) ~ b), e)~d). 2) a)epe), blewd),
3) b) ~ a), d) ~wc), ifso <N and D satisffes propsrties A, and A, of
~ Vi P W e e i ~—r— e

c# 3, p- 2755

Proof. 1) is obvious, because one hase the natural mapping XX Y — XxY .

2): C).~pa), d),~ b) follow by definition. We show &) ~ec), b) ~ d):
Let U(x*) © R™ be given. Then there e xists 2 neighbourhcod V(x*) € U(xe) and
an r-contraction
¢ 1+ ( X|DAvV }x:" —> X|DAvU.,
Let Y=(B, 2/7 ) © XIDAV be an N-differentiable space with embdin ¥ &
<r amd ¢ ((XIDAV)x0) © Y. I is compact. Then there saxist finitely
many relatively open intervals 1 €I anda neighbourhood W(x*®) € D, such that
- ) ‘9 v = 1,
B) To each v there exists a ¥' ¢ H°( Wx 1, 2 )ﬂ'. which generates
GP‘WX 1’ . Here ¥ is the sheaf of germs of functions in R x r7 ( respectively
in C™x C” in case N = wh ) of class c®, For each cansponent j we therefore have:
(*) (9= '3")1-Hx'}x(1"n ™ e HY §xotx(IAI" , T +0),
{ Hers 0 is the gero-idealsheaf of the structure sheaf 2*Y on r1 (resp. on chy.
So the elements in (*) define an element in H4( §x%xI , J+0) =¢ H". But we
luvelr’ =0 ( In case N < w, because J + 0 is fine; in case N =W or N =w"
this follows essentially from theorem B of the snalytic sheaftheory). Hence there
exists a 8" ¢ H(fxe3xI, D" )" such that:
(8* -9 Y Jixeix 1Y ¢ HGx3xIY, T+ 0),
Hence we may suppose $* ¢ E°( V(x)xI , 3N " and
. (& - 97), | Mx)x T’ e BT, T40)
for all j and a sufficiently small neighborhood W(x°) €D of x*( eventusally we
make the I' a little bit smaller). It follows, that $* generates the differsn=
tiable mapping ¢ | WxI .. Making V(x°) < R™ smaller, if necessary, as well as
‘Woe), we may assume, that ¢* is induced by an element
% e E(V(x)x WD, V)™,



with U(I) € R? some neighbourhood of T. It
8(x) 1= B(x,0), §(x) = ¥'(x,1), ¥O°:= 8, (x°),
Because of embdim ¥ < r thers exists in a neighbourhood V(ys) < U(x*) an
redimensional submanifold M < V(y°) such that
) H 2> BaAV(y®),
B) It £, :bf » f£,)M, = 0, then fy ¢ 9;, for all £ & BaV{ye).
If V(y°) 1is properly chosen, then M is an N-differentiable retract of V(ye),
that means
Y) There exists an N-differentiable mapping
T: V(ye)—> M such that W I|¥ = id,
Hence: ( id - 7}'):.2 € j; for each component j and each z ¢ BAV(ye).
Now let V(x°) be so small, such that ¢,(V(x°)) < V(y°). For each x ¢ D AV(xe)
we have than € (x) ¢e B and
(=T )eg) = (S-meb), ¢ %,

¢
(‘54-1d)1-,{ e I .
It
Y 3= (3 - WeSe) 4+ (8 -u-(3, -M3,)),
we have 37 e 3 +0, forall (x,t) e DaV(x*)xI and each j. With

706¢)
B = gL a¥

finally we have :
«) B - Siexe) © T+ 0, for a1l (x,t) ¢ DAV(x°) X I, That
mesns: ¢ generates the same morphism as %’ , hence it generates (HDnV(x*’) X1,
P) ¥ (%,0) = TWeR,(x), hence ¥(x,0) €M for all x & V(x°),
w(x,1) = id,
Hence % : V(x°)x I ——3 U(x*) is a required mapping for V small.q.e.d. Finally
b) ~ d) follows in the same way by substituting # for 4 and X for x.

3) In this cese one can show, that x = X,

Remark 3,3. DM is r—contractible at x® e D , 4ff D'  1s weakly
——— e ~~ PR

r-contractible at x¢ ¢ D.
/\M/\_’v-»

- Proof, Let D" be r-contractible at x° & D, U(x°) € D a neighbourhood of x°.
then there exists & neighbourhood V(x°) € U(x®) and an r-contraction

4) 1 V(x°) x I — U(x°),



i !

¢ obviously defines also an recontraction (D] V(x°) )% 5 DNIU(J:").

This prosves one dixfétion, the other direction follows from 3,2 , b) ~»d).

84 Differential forms on N-diffsrentiable spaces ( N z 3!).
P — AR,

Here we describes the analogon of differential forms in algebraic and analytic
geometry for our differentiable geometry. We sncounter some difficulties, which
however can be overcome. It is usefull 5 to introduce three types of differential
forms, which in general are different. In certain cas'os some of them coincide, for
example if N = ©¥* or in some cases, when N = o _ We start with the local
dfscription., So let D = ( D, R)H/ 7T )c R" be an arbitrary N- differentisble
space, always with N 2 3 of course.

A) Sheaves of p-forms on D,

Let !QP denote the sheaf of germs of p-~forms of class ¢’ in R" o+ Let
P
”"'_Q_P < ""'_Qf dencte the 2’” - subsheaf of elements w e N‘K)f . such that
APAAAN o
dw ¢ N"LQ_PH « Let tﬂ:" b ﬂ'# =C , :(2'2 ﬂ‘io_‘z = 0, Let
Vaaa o d AN’
‘1' T= 'J
e T-2¥2 (1.6 TDV2 s the ( 2D"*D ) - subshear of 2“D ,

generated by 1, end T M2 g4 topological closure in the sense of ¢ 5 3, p 2¥6.

'13:- U'I'J(D) s= ideel sheaf of slements of Sb"’gll), vanishing on D,

With these and d: -()F —""*"" tne difrerential operator, define
T 3‘-"-§_gp_="m+ a(*x,;mx*' YA
T (L") AMN° (12,2 . 1= o
We have: '} C 5, © I3 , then U;P c :QP c 7; . and each 'IT cn’h”in
is a (2V)D) - subsheaf with 1HAP ‘1: for 4 =1,2,3.
I8 117 G= FLQPD)/Y) sa 2Y/Y - sheat, celled

. P L N g
1) sheaf of p-forms on D , if 1 =1 ,

P —r—

2) sheaf of wesk p-forms on D, ifi =2,
B i SN

3) sheaf of reduced p-forms on D, if i = 3,

LY
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r'?vj '{F"»(:‘ [ d o
Remari 4,1 ). We have 4 = F_AL . f, « J IfN=ow w w,

p-form = weak p-form, if N= w, w* S or if N = > and J 1is elosed;

p-form = weak p-form = reduced p-form, if D is reduced and N = == , w0, w*,
B) I, may be substituted by I 2" 4 the definttion
- - PN S -2y P

of :[,P.Wo have d(’I*Q)” 1')/\Mf < '3'"3-0— + d(’fl-”-‘_z_ﬂf‘ﬂ).

AARAN” [Sesdad ANAAAS
1

Y) Vo have 2'=*1Q)° » hence ':C,a'-'-('.f'.@”“z)n 2%

hence if :l:’ = J  then 2)”/3’ = N':Qo/ J° . This holds for example if D is

reduced,

B) Differentiarl operater.

We have the exact sequence ( ses the proofs on pages 18 - 49 )

d
- k4P N-1~ P44 N=1 o P42 N-A4 P43
*) o — —0" et L,

P P+
and we have obviously d{ J; ) < '3; T for i=1,2,3, Hence (*) induces the follow=

ing complex d

(“) tj‘f’ —_— 34" pP+3

P4 P+2
—

and therefore the complex .
d
N-AP /o P N-*fﬁ"“" Psa N-A P43/, P42
(%) (2/5; — /'f[ —F ‘)/(]; —~—— -,

Remark &,2.  (***) 1s exact at ("7 1P) ., Aff  (**) is exact
‘?;;——_—-‘ PR 4 x P~ —
.t j‘xo »
T~
The proof is obvious, Hence sxactnes of (***) depends on axactnes of (**). In gene

ral exactnes fails (ass £ 21), We give condicions for exactnes of (**) in §5, which
in the reduced complex cass are due to Reiffen t 23, but see also a related
statement in £33 . But even in the case N = ©* our §5 is slightly more general,
becauss we do not assume neither that (D , '2)‘0./ 3 ) 148 reduced, or J is

coherent, or P is analytic.

~

C) Change under differentiable mappings.

Let D' = (D', :o"‘/ 1"y e R"", D* = (D*, 2*/3* ) c R™ be two other spaces
from é;ﬁ with differentiable mappings
¢:D——9D', 'V'tD’-——-—-—)D*.
In what follows, entities with a stipe "’ " ref.er to D’, those with a star "« *

refer to DY .



~ L
Let x°e D, y° = ¢(x°). There exists sneighbourhood(x*} < R™ and an
Nedifferentiable mapping %t U(x°) —» R™ , which generates ¢| U(x*) AD., For
each x e DU, y = Q(x), 1Y <N, % induces by w —p g®(w)
(= woey ) an homomorphism ( becauss d{we¥ ) = (dw)e ¥ )
F- 4 AY) :P v, P
8" s j)_g e aseay 12 . .

P
One verifies, that 3 ( ".a’; ) « 'L—,‘ for 1i=1,2,3., The following diagram is

commutative:
-1 __1p+a < N4 __ prsg
o N o L)
2 ya I
H-1 \P { NP
'Q"S J ’ —O—x P+
T :’19+1 o — T -y ']Ax
S J 7
Ty P
> 1.,
¥t~ 1P
3 now induces hormomorphisms _(7_3/ 3}, _— _Q'/ and therefore

& sheafhomomorphimm
/ P ',\‘_.Q_P P
P ORg g P E——) ]
One shows (using 4,1 B) ), that this homomorphism does not depend on the repre=
sentation ¥ of 4>an U, So we havo an induced sheaf homomorphism
~ N-1ry P N-4yP/r P
¢, D&, {2 /:r__:" —> .O_/I;

N1 P “ NP
(short: _Ql /f["p —— /lp Je One hes in a naturel way

a) ¥°% = W b) f =1d, 1 ¢ = 1d,
c) 7;': injective, § surjective, if 7{‘4’ = id

~

d) §, 1is an lsomorphisw, if $ 1a. o) $ ed = de§ ,
if d denotes each of the following natural homomorphisms:

a ”"1(2?/719 : N-mw /.T,PM

d ﬂ"-‘f_Q_P/J/D — N-4 m/,j,m.,
_ 1: Dey e > Do g My e
Especially there exists on each space X = (X ,4) ¢ ﬁ” s N23, certain A - sheaves

P
_Q_A- s 1=1,2.9 , called sheaf of p-forms, if i=xl, sheaf of weak p-forms, if i=2;
0 gt
sheaf of reduced p-forms, if i=3 ; and homomorphisma ds AL, —> -Q,; » such that
d d
1) _.Q.P e _Q_Hz is a complex .



2) Ir {(U,j ,cﬁ:- }i 3 J} is an atlas of X, 4;.(]{,[%—) = (D, Q%'”/%‘ ),
then ore hase iscmorphismes for all p
~ ' NAP P
bir "0 137 (= vioy "W ygl ) ——n (O,
v % ] ~1°q
N‘.' ,—-.___,.——:’; - ~
with 43‘ . 0@1»‘- = qg o cpe )‘ R c%_‘_ed = dotfj.‘. a)-¢generalise for the sheaves

_Q_:- on Xa

Finally: The product
2P N
A 3 ( N:.Q. ."4 ' )

induces a product
: -4
A (MOPP Mt ey NNy e

with d{wfaw?) = dwt A (-l)p-dm’ . wPaw? =Tt W

a pruduct on the p-forms

N-10)P+4

éne sess then, that A induces for arbitrary X € R,,
on X : A 3 (_Q‘P ’_O_:) —— _CZ‘.P*'T

with WPaw? m @ )Pl 0P, a(WPawt) = dwfawt e ()F - wfadwt



g > wongs Ui rouncsre lur NediIlerentiable spaces, N 2z 3,

Theoram 5,1, Lot X ¢ 32&’ s x°¢ X and for i=1,2,3

e d ~ o ++ 4 ~a
(1) ﬂix. ’ "xé ; .Q—-“,O——-— ’
be the complexes of the thros different types of differentlal forms on X ,-f,t Xy

P ...

A ©

P g NP NP

8) If X is strongly recontractible at x°, then (1), (2), (3) are exact.
o~ P

b) If X 15 weakly recontractible at x° then (2) and (3) are exact,
Proof, We may acsume X = (D, D /) c R™, Then we have to show the exactness of

 od T44 et
Toe—> 50— L0 ——

M A X O

P
Let r<p end '-*3:9 € :{,;,,. for & fixed 1. w,f has in a neighbourhood W(x°)

c rR" scme representation

-4

w P . 8.,P-1
= §r4w + d(;ﬁgz W )!

i g
where f,‘;u g ¢ H (W, Z”)AH"(H,\D, Tede 0™ e BOMW, YY) ) for T = p,p-i.

There exists a neighbourhood V(x°) < W{x?) and an N-differentiable r-contraction

€: VxI —=> W, such that the properties c), 1), 2) of &3, p.M hold. Write
whe - wP wi A dt
“ofes 2 dof + ol A dt
*.l‘wpqo @ - JK?'P-/: + 4w1P—3A dt .
Hore all differential forms are defined on V %I, The forms with index 4 do not
conta-in dt, and ‘0: - is of class c¥ 7, Let d, denote differentiation with
respect to x ¢ U(x°), dg differentiation with respect to t ¢ I, then we have:
(7) wiTadt = (Zges Wkt Yadt o+ T gpus. gt )
+ d( ;\: g o8- il adt,
Ir 4 m:, = 0, wo may assume dw® = 0, Then
0= d(whes) = d,0f + d,w ¢+ dwi"Adt —~
0= dwof , 0 duw <+ dw tadt —
WP(x) = wWPlxl) = wP(x1) - wi(x,0
= o? doof = - o wftaat
( integration with rvspsct to t ). Here we have used: '9(x,1) ¥ x, hence wf(x) =
= W,'P(x.l). and uS;'P (x,0) = 0, beca-use B ( V(x*)x{0}) © W 1is contained
locally in & not more than r-dimensional n-differentiable manifold with r < p, If
T L ? w:"'/\ dt, we have in V(xo):
w e ; wf1,



L ) N-1 _‘p

o %5

Cbvivuaiy, w - L& =f <Yuue o P S T o0 T S B

olass C¥7, Hence w7 ¢ H(V ,"“fﬂ_"" )e Finally we even have

Wit e (MR e a0V )L,
Vo aaid SASIIN

becsuss integrating (*) gives wP4 as a sum of slements of the form

Fanoe A P Ao

F-wP1 ( integrating the first sum in (%))
G-woP1 = gdo‘f(X.tg)' 4.'»3@_4(:.1,,) {integrating the second sum in (*) ),
d( H- ™)  ( integrating the third sum in (*) ).
Hore 3% ¢ RH'(Wke) ,”:i_g:) for T = pel, p-2 and
(*) P = Fe8(xt)k(xzt)dt,
k ¢ H%Vx I, D¥2) and H being of the same form as F. We now specialize.
Case a) for i=1 : If V(x°) is small enough, we have
fie2(x,t) = I b (xet) ki (x)

with k_. ¢ H(V, 2¥YAH°(VAD,T), h, are of class « Then of course

b} 3
M- .
(**) yields an element F,, ¢ Txo-.'bx,z s similarly H., ¢ T ibz, 2 | 80 we

oM

~ s N-2 AP-4 . -4, N-a~#-2 P- N P
get Fx"'wa £ e i. ns® H, 6:; ¢ Lo -'Q",,xo * Gxo'“xoq ¢ L. - x° .
Eana’and
P-4 P-qa
—~ w?? e 'I‘"‘, g.8.d.

Case b), 1=2 1 Here we have for each t, ¢ I :
£.08(. .., t,) k(- ., t,) € BV ,D2"HAB(VAD, T 2V ),

1
oV ~ P- N2
But then of course: F , & 1. .D’:'f » hence P ,- wxf 7 & A ”,gl:,;:.SMhr]y
~ P H=2 ~ P~ L3P N-20 P-4
Hyo- 55 T e T Q*:‘,, » ard of course G, /71 ¢ 9, .. _Q_xa ‘
P-4 P-4
u&’ [ 3 72)(9' q.&.,d.

Case b), i=3 : Similarly .
Case &), 122,3 1 because r-contractible implies weakly r-contractible. g.e.d

Theorem 5,2. Let X e W” « Then the sequences of differential forms
Lad P S P N NS N N N e
3
0—C—5 Q> Oy O* —y (-

)

are exact for
P S N
41=1,2,3, 4f I is strongly contractible at each x° ¢ X.
~
1=2,3, if X 1is weakly contractible at each x* ¢ X.
” N\—MMM —

F]
Honee, because the ._Q_; are soft, we have for parscompact X :

i B I I VN, S
KT X, ) 2 kerned( H°( X, L)) —H°( X, Q07" )/am( HO(L QYY) —» HO(X, O, ) ),

in the corresponding cases.




-
Remark 5,3. The proof of 5,1 gives in certain nice cases a homotopy opere=

tor. For this let our dax X[V x M —— X]U be an r-contraction with

4)(:(‘)( I) =x° Let N=oo, to ,t0¥ | Then if § 4above is a (P inducing mrapping,

decompose each w’ = .Q_x. as above:

LDPo b1 = "'%P + LO&P-J, A dt,

4
C(whf) = -Iw"'*Adt.

¢
then defines a mapping G : .Q.,‘p——-—ir _Q_ satisfying
P~
e ( Ta'x" ) < R:!x°4

for i=1,2,3, if ¢ is a strong contraction, for i=2,3, if 4> 1, a weak

contraction (by the proof above). Hence we have induced mappings

P11l > gt QL QUL

We have
(doem = Tod W) = wix1) - Wx0) = 9x1) = Win)

for p » r. Hence the induced mapping
(deee = wea): 0P, — af .

is the identity, if p > r, for
WM P~ —
41 =1,2,3, if ﬁP - 18 a strong r-contraction, as above 5
~ P e e S NP N

1=2,3, if ¢ 18 a weak r-contraction, as above
W’V‘W



§ 0. Coms conneciions 16 analytic spaces

let AcC = {g: e=(z, ,...2,) ccmplex} bs locally complex analytic, ¥y
ﬁ”lk the ideal shsaf of germs of functions vanishing on A, N = 1,2,3,..... We
are interested in some comnctions betwesn holomorphic and differentiable differen=
tial forms on A, With the notations from §4 and § 5 we have:

Theorem 6,1. There exists a locally bounded function N: A — N into

P

the integers, such that for each ¢° ¢ A, Nz¥(2*) we have:
P e
w* P ¥ P w*~P N, p W p
341' = 3320 N “'(le = j" z° N .Qza .

L}
Proof. Obviouslys “&7 NP P W p wNP T show
—_— J, < Jygen on c 33201\ (2”9.

1z°
the other inclusion let g,. ¢ ”gf;;n usk Px » « Hence we have
(1) Szo = “7:0 € wmo
. - p . Py
@ ©F el ¢ FeCame ol
R : 2~
where f, ., Ejge & ¥ 2{]’3, ’ “'w; € ””_.Q.a. for 7 = p,p-i.

First let A be pure dimensional ard £, & representations of the f.__, &0

A,

in some neighbourhood U(s°) < ¢™. For each ¢ ¢ U(2°) we have a decomposition

fim = hy + a8, + Kige

where h,, 4 &,, is the taylorpolynomial of f ., of degree N-3, h,, its

holomorphic part, and k,;, the taylor rest of f .. . For each s & AAU we have

h ’ + “-z = "k‘z mﬁ N.zyz

A

and therefore

1im sup ﬂhj('i)#a‘.(i)'f)z-z'“mz < o
A T ~»2

As incrc % 3 p. 743  we get

(3 lim sup |h;(E)/ |& - le." L e .
A>T —»=m
If U(z%) is sufficiently small, then there oxists in U(2°) a holomorphic function

u , which does not depend on the -h; and satisfies:
w) ug|Ay is not a gero divisor of @z/ "’.32 for any ¢ ¢ AAU,
) For some 1 >3 and all z ¢ AnU statement (3) implies:
Uphy & mfe mod w’foz, ( see £42, P. 143 - 150 )
% ;’ » MyC 03 maximal ideal ), Hence for all =z ¢ U(ze)n A .
(%) uphy ¢ ug G An®l maa V).

enisls
Following the theorem of Artin - Rees, there to each function Mm: A N a

function Y : A—> N such that: v > and



(58) (o)™  med 7} © up(Gomi™) med Y, .
Again, if U(z°) is sufficiently small, # = constant, one also may choose
Y = constant > 4 in (5a) (see 0§21, p. 93 }. Hence

(56} (v -Ox) A (mImod 77 ) < u,( O my’) mod @MY
But u, is not a szero divisor in &/ ""Z » therefore (&) and (5b) imply

for N-1 Zv and a1l z ¢ A~U :
t 3

(6) R
! { [
fop = hy 4 Ky o, with Ky e VT,

and vhere the taylor polynomial of k;z up to the degree « does not contain
any holomorphic part. A similar decomposition exlsts for g o Again for
U(z°) being small, there exist ¢ ,,...c, ¢ H°(U, “"gj ), generating w*'.'”U. By
(6) we may write for (2) :

(7 w: = }: c{‘.";.g: + g;d"jz A 7;\‘{"4 + w,‘zp ,
with ¢ ¢ U(z°), "w: . l«.?z:p 3 ”“3_()_’; . 4;‘:‘:‘4 e "‘?Qf: , and the taylor
polonomials of the coefficlents of wip up to degree M do not contain any
holomorphic part. Multiplying out in (7) and seperating corresponding coeffi=
cients, we find (7) to be squivalent to & system of equations

'(8) Ay = G dy + r.,
where A 13 & column vector and C 1is & ma.tgix with in U(z¢) holomorphic
coefficients, d, and r, are row vectors with germs of functions of class ch3
as entities., Moreover, the tayloer polynomials of the coefficients of r, do not
contain a holomorphic part up to the order u. Let € dencte the & - submodule

generated by the column vectors of C, then(8) implies

M4
(9) Ay ¢ f’z mod 0‘-(%) (: o=times diregt sam )
for all g ¢ U(z°) and some ¢ N, Hence by ¢ ¥ 7 . for sufficiently large x:
A’. ¢ gz" Py -~
3 P 4‘ .
g0 = 3: c-t‘zo'Amzo + Edc““&° ~ “’2‘4

. i
for some 4&9:; e W*{ ) 20 * M = p,p-1. It follows €ogo :w'j:, « The existence
of the locally boundet function N(z) is now obvious,

If A is not puredimensional, then combine the proof given here with some

sdditional considerations described in 41, p 4184



uuz'j...

Theorem 6,2, If A« i is only locally real analytic, z° « A, <u.

P~

Wi, p = =0, 0 w2, P
7/::0 ’jg.z- 4 ,Q.,a

Proof. similar as the proof for 6,1 , but instead using results of [ 4¢3

and Cé32use CA43, Theorem 2 . We find a decomposition similar to that of (6}:

7/ ’
fige = Bize +  kiyo N VR A
where the Taylor series of k;.,‘,, venishes,
. WP [ty P ¥ P Nee P \
Corollary to 6,i. (25,/ 4g0 < —-Qz‘/ :gz’ )}}: N Zz N(z<.
Corollary to 6,2. 2"./' :,f,;o < .on /"’j;lo .

Hence holomorphic p-forms can be identified with certein n-differentiable
p-forms, analytic p-forms can be identified with certain <@ differentiable
p-forms, Let us call a holomorphic (analytic) p-form on Age

N-differentiably closed ,
if this form, when considered as a N-differentisble form, is closed, Then we have:

Corollary to 6,1. Each N-differentiably closed holomorphic form on A
e M N e T I I e i

is clesod, N> Ncze,
T e

Corollary to 6,2, Each oo-differentiably closed analytic p-form on 4o
N\’WA'W

is closed,

The problem arlsss of course, whether similar results hold for boundedness,

This will probably be true, However here we ce-n only show for A C c" locally

complex analytic:
Thecrem 6,3. For some locally bourded function N: A —»N one has @
Lo

Each holomorphic 1-form on Aye, Which is N(2°)~differentiably bounded, is
i e R N N e

bounded.
N N-2 ~P-1
Proof. let N > N(z°), wf ¢ "’,Q_z.. . wh 1 ¢ “ 2 and
dwf1 = WP mod P
w2 .
We may assume - .
-4 .
(1) dw’™ 2w s nh WP
N-2 ; 1 _ - -
with heoe D00, hilhge=0, “0f & #-2n g0+ Write w’la u;" 14 gl
APPINY
where 'Qf-" containe exactly all forms of w7 of the sort
a~cfr.-zx R - . Let d=94¢9 s then (1) implies

P-4
o~ _ s - .
v, 1*9(0’." 4+ 'Dua" = ;;h‘,wh,..r

. - P - *
with “0*P ¢ P20 e Pt . 0f 4 s fwP | Ir pet we have



-~

whe w° = Bgo © 2)::”’ and
og, = Ik T, D8y /0%y [ Age = 0, —

gz.lkz. is weakly holomorphic and of class C'M‘. By £é3 then g, is
holomorphic for a suitabls locally boundet function N:t A—> N ., qg,e6,d.

Romark 6,4, With the notations from above: If AY is contractible at

L T g W N, SR
2° ¢ A , then the following complexes are exact:
,\/\MWW
e L —ey W14 N
D 0—C — / 3:0 z"/ :Q;o
0 ’c 3 w2 w N wl 4 »
2) “’QZ/ :razo —Qz’/w%‘;d 3

Af A is complex ana-lytic and N sufficiently large, or if A is real analydic and
L i i e e i e WP e S

N=~
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