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Duality and the DeEham Cohomology of Infinitesimal Neighborhoods

1by D. Lieberman and M. Herrera

Our principal application of the techniques developed in this note appears 

in §7 where we establish the following result. Let X be a nonsingular compact 

analytic space (resp. a complete algebraic variety over φ) of dimension m 

and let Y be an arbitrary closed subvariety of X , U ^X - Y . Then, the 

standard exact sequences

can be computed purely in terms of the analytic (resp. algebraic) deRham cohomology. 
Explicitly if Y^r^ denotes the r^ order infinitesimal neighborhood of Y in X 

then sequence 1) is obtained as the inverse limit of sequences

where. H$R denotes the hyper cohomology of the deRham complex Ω' of holomorphic

(resp. algebraic) differential forms. The second sequence is obtained as the

direct limit of hyperext sequences

where Ω’ ζ^J is ^^ deRham complex on Yk 7 and ^ is the kernel of the map 

Ωχ ---- > ^(j.) · The standard Poincare duality between 1) and 2) is exhibited

as the limit of dualities for each finite r (essentially Serre duality.) hi the

case that Y is nonsingular the limiting procedure is irrelevant, since for every 

finite r the sequences 1)^ and 2)^ already calculate the classical cohomology.

1. The Author was partially supported by National Science Foundation Grant
Grant GP—9^06.
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In the presence of singularities it is well known that Ηηυ(Υ) may fail to 

calculate the correct result, cf. [14] or [12]. An example of R. Slutzki (§7) 

shows that no finite r need calculate cohomology correctly. In the event that Y 

has codimensicn one the representation of ^’^(υ,Ο) as lim Ext^fS^, i^) is 

the result of Grothendieck [8] that the cohomology of U may be calculated using 

forms on X with only polar singularities on Y , and we obtain an expression for 

the residue for a closed meromorphic 'form with pole order - r as defining an element 

of ^(Χ,ο = (H-(Y,C))* .

Our work on this result began jointly in the summer of 1969 and had established 

the results only for Y of codimension one when the first author heard Deligne 

announce the result lim 3(^Y(rp = ^(^ίθ), for Y of arbitrary c ©dimension^ in his 

lectures at Harvard (Fall, 1969). Our method of proof, employing duality, is quite 

distinct from the argument of Deligne which is based on the appendix in [10] written 

by Deligne. The duality theory developed here for use in the proof is new, as is 

the formalism for complexes with differential operators of order cne.

The duality theorem referred to is the following. Let X be ncnsingular and

compact and let 7’ be a complex of coherent C^ modules with the maps 
i -i+l¿ ---- > J being differential operators of order one (in particular they may

be (^linear.) The spectral sequence of hyper cohomology

is dual to a natural spectral sequence
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where this second spectral sequence is obtained as follows. Let 0---- > Ω* -> Q* *

be a resolution of Ω by injective complexes (cf.§2), and form the double complex

Then the first spectral sequence of this double complex is the spectral segbenee 

above. The duality is established by a Yoneda pairing/ gU, of the spectral sequence^ 

which is perfect at level E^ (Serre duality.)
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ί^· J^t sheaves.

We work throughout in the category of "spaces” which is either the 

category of complex analytic spaces with holomorphic maps or the category of 

complex algebraic varieties with regular maps. By a compact space, we mean either 

an analytic space or a complete algebraic variety.

Given a space X let Jn denote the (^ algebra of n jets on X, with 

the standard differential operator of order n: d : 0---- > J The sheaf J is
h η * n

simply the restriction to the diagonal in XxX of the sheaf CL Y/ln+1 where I 
Λ X Λ'

is the ideal sheaf of the diagonal, see for example [16]. The 0^ algebra structure 

of Jn is provided by the morphism π*: (^ -----> ^χχ/1^1 > while the operator

dn is then given by π2 .

The sheaves J^ could also be viewed as (^ modules via tt^ , - and adopting 

this point of view momentarily, one may define for any C^ module B , the 

^n module of E-jets J (E) = J ® „ E which may then be viewed as a sheaf of CL 
. n π20 x

*
modules via the morphism ττχ: 0---- > J^ . The natural π2 linear map

dn: E ---- > Jn(E) is not h morphism of 0^ modules (via π^).

When the space X is nonsingular the sheaves Jn = J W are locally free 

0 modules (via either tl^ or 7T2) as can be seen readily from the standard 

exact sequences

where S^1 is the n^ symmetric product of the differential 1 forms.



Consequently for any (^ module E the sequences of π*Ο modules

remain exacts (Tor (¿Γ^_^,ώ) - 0), Viewing the sheaves as G modules via 7T^ does 

not alter the exactness, (the maps above are all clearly π^ linear. ) We note 

that the standard splitting

of JT as a ^(O) module is not a π^ linear splitting so that

^1^^ / E ® E ® 0 0,3 an O module. (In fact if E is locally free the class of

the extension J^g) , in H (X,Hcm(E, ®Ω )) , is the "Chern class" of E.)

'Note the mapping associating to an 0 module ,E the 0 module J (E) is.

clearly a functor, the composite of extension of scalars from tt (0) to J and

restriction of scalars from. J^ to tt^O . Furthermore in the nonsingular case 

Jn( ) is an exact functor, being essentially tensor product with a locally free 

sheaf.

Remark: Define J by---- n j

and. Jq(E) = Jq ®E. The nonlinearity of the differential operator dn: E ---- > J^(E)

may then be exhibited explicitly by



-6-

1.1

where a a local section of E , fa section of O and dn(f) = f+ d (f) is 

the decomposition of d (f) in the direct sum J = Ο Φ J

We shall employ the standard definition of differential operator of order n , 

namely a morphism of sheaves, E ---- > 7 is such an object, if and only if there is

an 0 linear map D: Jn(E) ---- > 7 making the diagram

commutative. Note that the mapping D is completely determined by D , i.e. Jq(e) 

is generated as an 0 module by d (E) , as is clear from 1.1. Associated to 

the operator =D we have the ’’symbol” g(d): J^ ®E ——> & , given by restricting

Given a function f and a section Qi of E we employ the notation

dn(f)*a to denote the section a(D)(d (f) ® aj thereby obtaining the formula:

1.2 cf. 1.1.
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§2. Complexes, of differential operators of order 1,

Given a space X we denote by C(X) the category of complexes of (^ 

modules with differential operators of order 1. An object [J”} of C(X) is a 

collection of (^ modules, jJ ieZ , with differential operators of order 1 

D.: / ---- > /+1 satisfying Di+1°D.= O. A canonical example of .such an object is

the deRham complex Ω' By a morphism of complexes f: J' -----> Jf we mean a

collection of O-linear maps·, f. : ? —> / such that f.· D. = D · f. . The
■ i - i i i i

set of morphisms is denoted Ηαη(7' ,^’) .

Given a complex T we employ the standard notation 7[i] to denote the

complex ^[i] = ?+i with · d: ^Ji] —> J3*1[i] defined to be (-1)^ times

the differential J1^ ---- > i11^1 .

C(X) is readily seen to be an abelian category which satisfies axions AB 5 ) 

and AB-3 of [6].

Proposition 2,1: If 7' cC then ^’ has a natural structure of graded, module

over the graded ring Ω*, with the property

2.2

where φ is a local section of Ω1 and a is a local section of ^ .

0 ήProof: For φεΩ = O and aeZ? φ·α is well defined. The natural pairing

Ω ®7^ ---- > ^ 1 is given by the symbol of D. . By iterating the symbol one

obtains the G multilinear map (Ω1)®^ ®^ ---- > /^ denoted

φ^ ®..,® φ^ ® a------ >1^^ (φ^·... (- (φ^α))). To see that this induces an O linear
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map Ω^ ® J^ ---- > ^l+*3 it suffices to check that for any function f and a a

section of an > that

But note that

2.3

or

and

The formula 2.2, follows immediately from 2.3, and 1.2,

Remark 2.4: If i: Γ ---- > / is a morphism of complexes then $ is automatically

an Ü' module map.

Thus the category C(X) admits another description, namely as the category 

of graded Ω’ modules T with differential d: T ---- > J*+1 satisfying

for φ , (resp. a) a local section of Ω^, (resp. i^). (The map / ---- > /+1

factors through J^/) O linearly in an obvious manner.) Many constructions 

are more evident from this point of view.
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Viewing the elements of C as Ω* modules, one may introduce a natural 

’’internal” tensor product and an^'internal* Hom into the category. Namely 

(J” ® J'’)' = ^ ® ^* is the complex defined by 
sr

where R is the subsheaf generated by elements of’the form
φ·α ® β + (-l)a^ a^^ a $ φ.β with φε Ω& , cte Ζ"8, and β€^ . The 

differential operator is the standard D = D 8 1 + (-l)1 1 ® d. (One must check 
that ϋ(φ·α®β) = (-l)3^ a) ϋ(α®φ.β) , a straightforward calculation.)

Given a space X we may view X as a ringed space (X, Ω’ ) , a point- of view 

which is most convenient for the study of the category C(X). Given a morphism of 

spaces f: Y ---- >X , the pair (f,df) , (df: Ω’ ---- > Ω’ ) defines a hanomorphiss

of ringed spaces. Viewing spaces as ringed spaces in this manner one has associated 

to a morphism f: Y ---- > X the natural functors f*: C(y) ---- > C(X) and

f : C(X) ---- > C(Y). Namely, given ^eCfY)^ 7 is a sheaf of Ω* modules* so that

the sheaf theoretic-direct image f^W carries a natural Ω’ graded structure A
via df: Ωχ ---- >Ω’γ . Further the morphisms d: f*^) —> f#(^+1) induced, 

by the differentials in Γ , make Τ*(Λ a differential Ω’ module% i.e an

element of C(X). Similarly given ieQ(X) , we note.that f-1^) , (the sheaf 

theoretic inverse image) is a sheaf of graded f"1)^) modules, while Ω^ is a 

sheaf of graded f (i^) algebras, and one obtains a sheaf of graded ÍL, modules, 

f (^) = f W ® ί Ω ·. f (J) equipped with the differential

d(cz ® β) = do; ® β + (-1)^ (X ® άβ for Oís f (J?) and β.ε Ωγ defines an element 

of C(Y). One has the formula Hom(f*J,7) -—> Hom(i,f/) . Note that
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f ^ = ^γ ^ and. that if ^ denotes the complex which is (^ in degree zero 

and zero in other degrees then f*(^) = n^ is the complex of relative 

differentials, this may be seen by noting that Ω^ acts trivially on CL so that 

£ ^^ ~ ^ ^’ ® -1 ?'γ ®?·γ/^'χ£* $*γ · Jn tilie special case that f is ar

immersion f (C^) = Gy .

Similarly one may define Hom (Z ^ ) to be the sheaf of morphisms óf degree k 

of graded Ω modules, i.e, the sheaf obtained from, the presheaf which associates 

to an open set U , the collection of $ e π Hcm(¿ , ¿^) such that

for all φεΩ1, ae^. (The global sections of the sheaf Homk are denoted by 

Hom^ . ) The differential operator D : Homk(r ,>· ) ---- > Hcmk+1{r f^ ) is given

by the standard formula

The fact that for φεΩ1 and ae^ one has

is obtained by a straightforward calculation.

Remark: We note that the cycles in Hornby 9Jf ) are precisely the morphisms

of complexes 7’ : ■> ^*[k]. The boundaries are of course the homotopies 

& ““> ^ [^] > so that the homology group H^(Hom(^* ^ )) is simply the homotopy 

classes of morphisms.
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It is especially easy to calculate f. 9 ^ x and Han-(7",^·) when T or ..>

is simply the complex ft‘:

Proposition 2.5: 1) ft* 0 & -----> ^

2) Hom’ (ft* ^’ ) ---- > ^'

3) If X is nonsingular, Hamk(7*,ft·) -----> Hai^^^1").

I^oof: 1) The natural morphisms ft’ ® ^ ---- > Jr , φ ® a —> φ , a , and '

^ ~ ^ $ ©J* , Oí «¿i*> 1 ® a are inverse to one another.

2) The standard map ‘Hom* (ft*, -T)—> ^ ^ * ---- > $(1) is an ί8αηαΓ^ίΏ

3) Instead of proving this result directly we shall prove a more useful 

generalization in the following lemma.

Definition 2.6: Let ^ be any 0 module, and denote by (ftm“*)* ®^ the 

graded ft’ module with structure

where c: ft^ ® (ft ) > (ft *^) is contraction. (if α, φ, β are

local sections of a3, (!l“’x)* and Ω^1"3 then c is defined hy

c(a ® φ) (β) = φ (β Aa)J

Note that (ft ' ) ® ^ = o unless 0 < i < m , and that the mth level 

is ^ , (X nonsingular.) Further, if ^ = fim , and X is none ingulf then 

(ft J® ft = ft , [2], In view of this facij the following lemma generalizes 3) of 

the preceding proposition.
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Lemma 2.7: Let X be nonsingular. Let J' be a graded Ω* module, and

ÜI an (^ module, then

Proof: One has a natural map Hom (5% (Qm“*) ® 5ft) ---- > Hon^y1"1^ 5ft) obtained

by restricting Φε Hamk to yield Φ . : y"k-----> 5ft . 'The map is clearly injective; 

indeed, if Φ = 0 , then for any α ε y-*'1 and ΦΕ Ω^ we have
m-k ~

0 = Φ(φ·α) = (-1) φ·φ(α) » Thus the section φ(α) of (Ω ) ®^ is annihilated

by every section cp of Ω1 and is hence 0. To obtain surjectivity, assume

λ: J01 k ---- > #i is given. Define (-1)^·Φ . y11’^ ---- >(Ω^)*®^ by
m-K-j

2.8 yn-k-j—> (ná )* ® ® y1'^ —> (ná )* ® y“*k í^-> (ná )* ® j?¡

Clearly ^^ = λ , and the Ω’ linearity of $ is checked easily in coordinates, 

as follows. Let β^,,,^β be a local basis for Ω^ then the man 2 8 is 

described by

where the sum extends over K Π I = 0 and e„T is the sign .of the permutation

required to put KI in ascending order.

where a is a local section of and we employ the multi-index notation·

eT = e λ ... δ e where J = Γη, < no < ... < n.} . Now let eT be anJ n. i - ¿ - j I

arbitrary basal element for Ω1 then
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Comparing this with

we obtain the asserted ft* linearity.

Corollary 2.9: Let Q b'e an injective C^ module then (ft ) ® Q* is an 

injective ft* module^ i.e. if 0 ---- > ^’ ---- > N* is an exact sequence of

graded ft* modules then Hom* (N*, (nm“*)* ® Q) ---- > Hem’(W >(ftm~# )* ® Q) -----> 0

is exact.

Proof: The diagrams

are commutative.

2.10 One further fundamental construction deserves mention. One may associate 

to every CL module E a canonical complex C(E) with
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which is universal for O linear maps of E into the zero’th level of a complex 

of differential operators of order 1. Our complex C*{E) is the same as the 

complex C^ constructed in Spencer [16]. Once C*(E) is constructed, one will 

clearly have that C’(E) [-i] will be a complex which is universal for maps of E 

to the i level of a complex with differential operators of order 1. To 

visualize the form which C'(E) must take, we note that for E = 0Y the complex 

C* = C’(O) has the following description: C^ = Ω^'^ ® Ω^ and the differential 

O'3 —■> C^1 is given by (φ,ψ) —> (dy + (-tf |, d|). Given any complex 7* 

and morphism O —> 7 defined by 1 —> α, λ extends uniquely to Cd —> Γ 

via ^(φ^) = φ.άα + |·α. O. The complex Ω* is not universal for maps 

O -4> ^\ although an extension can be made to give a unique element of 

Homθ(Ω\7,) but this element will be a cycle, i.e. a morphism of complexes, if 

and only if λ(1) is a cycle.

To obtain the construction of C*(E) we proceed'as follows. Let J^(E) = E, 

define J (E) = J^(J (E)); and note the natural sequence

which is not a complex but which clearly has the property that given any 7’ ε C 

and any 0 linear map λ: E —> ίθ there is a unique morphism of sequences 

λ; J’(E) —>7; extending λ. If one sets Κθ(Ε) = 0 and defines Kn to be the 

smallest $ submodule of jn(E) containing ¿(K11^) and dd(jn’^), then 

clearly C*(E) = J*(E)/k‘ is a complex. Given any morphism of sequences 

λ: J*(E) —>7' where J' is a complex, one must have IfK*) - 0, 

so that there is a unique induced morphism of complexes,, X: C’(E) —>7*.

To obtain a more manageable expression for C*(E), we note that’ C*(Q) 

carries two O module structures: the standard *’or left” structure, 

Ο8Ω^”^®Ω'’.—>nd'1®nJ given by ί(φ,φ) -&?,*») and the "«g" or "right"
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structure given by (φ4>ΐ = (ίφ,ίψ + φάί) . Given any 0 module E , C'(E) 

has an expression analogous to that for J^E), namely, viewing C'(O) as a 

%2” module

with the 0 module structure on C * (E) given *by the ’’π^" structure on C * (0). 

The differential on C’(E) is given by (φ^) ® σ -----> (dcp+ (-1)^, άφ) ® σ ,

Remark 2.11: In the event that X is nonsingular the functor E ---- > C’(E) is

exacts being essentially tensor product with the locally free 0 module C‘(0).

Proposition 2,12: The category C(x) of complexes of 0 modules with

differential operators of order 1 has enough invectives.

Proof: Since C.(x) is an abelian category which satisfies AB 5) and AB 3);

of [6] it suffices to show that C(X) has generators, ([6], §1.10). As U 

runs through the open sets of X the sheaves 0y (extended by zero) define a 

system of generators for the category of (^ modules, and the complexes 

C’fO^) [i] clearly form a system of generators for C(X), as i ranges over the 

integers, and U ranges over the open sets.

While the appearance of injective complexes is not at all evident from the 

preceding proposition, one can easily check that, if Q* is injective then each 

Q1 is an injective 0 module provided X is nonsingular. We show below that 

Q* is injective as a graded Ω' module whether or not X has singularities. 

We must first generalize the construction 2.10.
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Propositicn 2,13: Let 55T be any graded Ω’ module. There exists a complex

C’i^) and a morphism Y: ^ ---- > C# ) of graded Ω* modules such that given

any graded module map Φ: ^ ---- > K* with K’ a complex, Φ factors uniquely:

where Φ is a morphism of complexes.

Proof: C*(%’) is clearly the quotient of the complex Φ C'(jsf) [-a] by a
a

suitable subcomplex R. More instructively, we may obtain C’ft) by noting first 

that C*(n*) is clearly just C’(Q). Indeed, a map Ω” —¿> K* of graded Ω* 

modules is determined by an O linear map O---- > Κθ , which uniquely defines a

morphism C ’ (O) ---- > K * .

Now, note that C’(O) has again two graded Ω* module structures given

explicitly by

π^ or left:

π2 or right:

where α and (φ, ψ) are respectively local sections of Ω and 0^(0) = Ω^” Θ Ωυ 

The differential in C* (O) is, of course, linear in the π^ structure. Note 

that C‘(Q) is a free Ω’ module of rank 2 in either structure, with the global 

sections (0,1) e Γ(θ°(θ)) = Γ (ω"1) Φ Γ(Ω°) and (1,0) € PfC1^)) = Γ(Ω°) Φ Ι^Ω1) 

as a basis. Given any ^', a graded Ω* module, the complex
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is the universal object we seek.

Remark 2,1k: In view of the freeness of C*(0) as an Ü’ module, the functor

%’ ---- > C'ft’) is clearly exact. In fact the complex C’(55‘) has the

disarmingly simple description C3^’) ---- >^-1Φ^ (as π*Ο modules)

where we identify (φ, ψ) = (1;θ) ®φ + (0,1) ® * and the differentiation is given 

by d^,|) = (ψ,Ο). This splitting is, of course, not a ^ 0 splitting, In 

particular the π^ splitting C^H’) - Ω^”"1· ΘΩ^" is quite distinct from the π^ 

splitting Cu (Ω ’) ---- > ir Φ Ωυ the relationship being given by

Proposition 2.15: Let Q* be an injective complex with differential operators,

then Q* is an injective graded Ω' module.

Proof: Given 0-----> E* ---- > Γ a morphism of graded Ω* modules and an

Ω’ morphism E’ ——> Q* we obtain the exact (cf.2.1k) commutative diagram

where the morphism λ is a morphism of complexes and λ = X»if· Since Q* is an
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mjective complex the map λ extends to C*(JT ) , yielding an extension of λ to ^

One further remark on the structure of injective complexes is useful.

Proposition 2.16: Let Q* be an injective complex, then Q’ is acyclic, and 

the complex F(Q*) is also acyclic.

Proof: We show that the complex F(Q’) has no cohomology, then given any open

set U , . r(U,Q' ) is acyclic since the restriction of Q* to U is injective on U. 

and the acyclicity of Q follows, Suppose Q¡eF(Q ) is a cycle, and consider 

the morphism of complexes Ω'[-ϊ]---- > Q* λ(φ) = φ.οί . But we have a natural

injection of complexes, O’[-i]---- > C’(O’) [-i +1], ol---- >i!i®aj+1, defined

by φ ---- > (φ,Ο). Therefore one can extend λ to give λ: C’(iT)[-i+l] —¿> Q·

a morphism of complexes, since Q' is injective. Noting that 

α 55 ^((1;θ)) = ^(d(O,l)) = d(X((O,l))) , we see that a must bound in Γ* (Q* ) , 

as asserted.
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§3 Hyper fext

We construct the functor hyperext which is to provide the dual to the 

hyper cohomology of a complex. The construction is quite analogous to the 

hyper cohomology construction (cf. [9], 0 , 11.4) which we briefly review. Given 

any complex E' o C(X) one may find a resolution

where the Q**1 are invectives (cf.2.12). Given 0 ——> E* ——> Q’’ and

0---- > 7 ---- > P” injective resolutions, a morphism f: E' ---- > 7 lifts to a

morphism Ϊ: Q’* ----- > P’* of double complexes, and the lifting Í is determined

up to a homotopy in the following strong sense: If f and ?’ both lift f then 

there exist morphism of complexes L: Q'^ ---- > P*1 ^ such that

Note that if d denotes the total differential in the double complexes

since d’$= $dT . Thus i is a homotopy of degree 0 with respect to the first 

filtration. Given any complex E* , the first spectral sequence of hyper cohomology 

of E' is the first spectral sequence of the double complex r(Q" ) where Qv’ 

is an arbitrary injective resolution of E* . The hyper cohomology sequence
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is functorial in Ξ , and independent of the choice of injective resolution, in 

view of the special form of homotopies, (cf. [3], p. 321.)

The second spectral sequence of this double complex

is also functorial and independent of the choice of Q, but is not interesting 

since h| (r(Q'p)) = 0 for all p . and q in view of 2.16. The label "second 

spectral sequence of hypercohomology" is therefore reserved for the local-global 

spectral sequence

where H^ are the cohomology sheaves of E’.

Now, given two complexes Ε',Γ ε C(X) the spectral sequences for hyperext 

are obtained as follows. Taking an injective resolution 0 —> ¿T —> Q’’, one 

forms the double complex KP* ^ = Homp(E’, Q* ^) where the differential 

d’: Hom^E'X^ —> ΗοΖ^Β’,ζ4) is defined by

while the differential d": Hom(Ea,Qa+p)><1) —> Hom(Ea,Qa+p,<1+1) is given by

where j is the map Q"*Q —> Q‘,q+1. Note that d‘d" = d”d’, so that the 

total differential d of the double complex is defined by d = d' + (-ifd" on 

the ÍPíQ) level. Recall that elements of Hom’ are required to possess Ω* 

linearity, a property which is preserved by d’ and d". The two spectral sequence
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of the double complex K’*

3.1

and

are clearly bifunctorial in E* (contravariant) and J' (covariant) and are 

independent of the particular injective resolution of J' . We define the bifunctor 

Ext^(E',r ) to be the abuttment H^((K‘) of these spectral sequences. Given 

E£---- > Eg we denote by e : Ext (Eg, ) --- > Ext (E£, ) and

e„: Ext ( , E*) ---- > Ext ( , E*) the natural transformations of functors.

The first spectral sequence above is called the first spectral sequence of 

hyperext, while the term "second spectral sequence" is reserved for the local 

global sequence obtained as follows.

Define the sheaf Ext * (y ,^ ) by taking an injective resolution

0 ---- > ^  > Q’* , forming the double complex of sheaves K^^ = Hom$(y ,Q·^)

and letting Ext* to be the cohomology sheaves of the single complex K* , 

Local Ext is related to Ext by a spectral sequence

3.2

In fact 3.2 is the second spectral sequence of hyper cohomology for the 

complex K* :
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3.2’

as may be seen from the first spectral sequence Η^(Χ,Κ^) sr> Η^^ζΚ’).

The sheaves KP are flasque (standard argument cf. ([4], II, 7.3*2) so that 

H^(K^) = 0 q > 0 and Η^(Κ’) is the p+q ^ cohomology of the complex Γ(Κ’), 

i.e. Ext^V,^")·

Remark 3*3: Notice that for E’ = if, one has

In fact, if Q“ is any injective resolution of 7” then Hom‘(^\Q’^) “"> ^(Q*^) 

and Hom* (í2*, Q* ^) ·—> Q*^ in view of 2Λ, (2), and the cohomology of these 

complexes is H^*) and^í^*^ .

Remark 3.4: The bifunctors Ext and Ext are cohomological, i.e.

given E* and an exact sequence 0 —> 7^ ~> ^ —^3 —> θ one obtains 

a long exact sequence

by appropriate choice of injective resolutions. Similarly, given 7* and

0 —> E.. —> Eg —> E~ —> 0, there is a long exact sequence

This is obtained by taking 0 —> 7“ —> Q* ’ any ihjective resolution and 

forming the sequence of double complexed

3.6

which is exact in view of 2.15. The exact sequence of single complexes formed 

from 3-6 has 3*5 as its cohomology sequence.
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§4. The Yoneda Pairing

Let R be a ring.

Definition U.l: Let A, B; C be spectral· sequences of R-modules. A pairing

AxB ---- > C of spectral· sequences is

1) For each r, p, q, p’; q’ there is a bilinear pairing

denoted axb ---- > a.b , which satisfies

2) The pairing on level r+1 coincides with the pairing induced on the cohomology 

of level r .

3) There is a pairing on the abutments An x Bm ---- > Cn+m compatible with the

filtrat i ons j i.e,

4) The induced pairing on the associated graded objects

is compatible with the pairings on the E^ terms, (i.e. the pairing of the Eg 

terns is assumed to satisfy Z^A) x Z^B) ---- > Z^C), Bw(A) x ZjB) ---- > BW(C)
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^ Z«(A) x VB> “—> BMic) thereby inducing a pairing of the Εω terms.)

The construction of the Yoneda pairing which follows is essentially standard. 

See Hartshorne [10], for example.

Proposition 4,2: Let E\ ^', i' e C(X) then there is a natural pairing of

the first spectral sequences for hyperext

Proof: Let 0-----> 7’ ---- > Q’ * and 0-----> Jr* ---- > P* * be injective

resolutions. Denote by Hamr;S(Q’,,P“) the sheaf maps i: Q'n ---- >P* + r,»+.s

which are Ω' linear in the sense that

for φ e Γ(Ω^ ) . Then Hem* * (Q* ’ ,P' *) = Φ Θ Hom^*3 (Q*',? ’ ) has a natural 
r

structure of double complex by defining the total differential d by the formula

One can check that di is again Ω* linear. Note that the differentials in our 

double complexes commute and the total derivative d in a double complex is 

d = d' + (-l^d" on the (p,q) elements. This leads to the formulae

and
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Note that cone has a natural pairing

by composition of morphisms, that is φχ ψ ---- > φ·ψ . This is a differential

pairing in the sense that

indeed

while

Such a differential pairing of double complexes gives rise to a pairing of the 

first (and second) spectral sequences of the double complexes.

Moreover, one has a natural morphism of double complexes

Hom ' (Q'*,P**) — > Horn (7';P';S) obtained by composing a map Q’* ---- > P* r,,+s

with the inclusion Γ ---- > Q'; . This morphism induces an isomorphism of first

spectral sequences. Indeed the fact that 0---- > ^* ;—i> p* * is a resolution

of ^ by injective SV module Sj while Q* ‘ is a resolution of ^’ implies that 

the d cohomology of the two complexes is identical, (standard argument.)

Moreover, since both double complexes are bounded below by s > 0 , the first 

spectral sequences of these double complexes are regular [9] ,0, 11.3.3) , and 

the spectral sequences are therefore isomorphic [9] 0, 11.1,5).
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Remark 4.3: 1) The double complex Φ (Hcanr,s) used in the preceding proof
r 

s>0

can be replaced by ® (Hom ' ) , which also has the same first spectral sequence^

although the proof becomes more arduous since this latter complex is not regular.

4.4 The Yoneda pairing exhibits the following functoriality properties. Given

e f £morphisms E^------ > Eg , 7^ ------ > ^ j ^ —&—> ^ one has the basic formulae

which express the fact that composition of morphisms is associative. We check 3).

Fix injective resolutions 0---- > J^ *—> Q” and 0 ---- > i-----> P‘ , and let

f: q" ---- > Q” denote a lift of f: J^ -----> ^ , so that ? is a morphism of

double complexes. Then given a e Hcm‘,(Qg’í P’*) and ^e Hqm’(E* ,Q£* ) we have 

(cí«f)·^ = a’(fe^) , and 3) follows.

4.5 The relationship of the Yoneda pairing with the connecting morphisms 
f f* 12δ„ · δ is also readily calculated. Assume 0 -----> J? ------ > 71 ------ > JI -----> 0

* ’ 1 ¿ o

is exact then

where a e Extr+s (J^JO and β e Ext (E;7,) .
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§5. Duality Theorem

Throughout this section X denotes a compact nonsingular space of 

dimension m . Given E* e C(X) we have the natural Yoneda pairing of first

spectral sequences

which may be rewritten as a pairing

in view of 3.3 . In particular we have for each r, p, q.

5.1

and on the abuttments

5.2 F ExtP+Q x F, h^^'^ ---- > F Η^(Ω’) .
a = 'b = a+b

:We note the following facts about the spectral sequence for Η(Ω’):

(5.3)

and (5Λ)

Indeed, Η^Ω^) =0 if q > m , and 5^3 and 5-4 follow immediately except for 

the observation E^ ------ > Eg,m which is evident from the exact sequence
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and the fact that Η^ί?11) = (Ηθ(Λθ))* = C .

Thus the pairings 5.1, 5.2 , are into C , and we note for further reference 

that 5A implies that

5.5

Note, moreover, that the vanishing of the differentials ¿m'rím+r“L ¿n 
r

sequence for H (if ) implies that the differentials in the Ext sequence are dual

to the differentials in the sequence H(E‘) , i.e.

5.6

if aeE , βεΕ sincer r

Theorem 5.7*· Let X be a compact nonsingular space. Let E* eC(X) be a 

quasicoherent complex, (each E1 is a quasicoherent ^ module) theq the 

pairings 5.1 and 5.2 are perfect. In particular

is an isanorphism of filtered vector spaces, i.e.



-29-

Proof · Let 0-----> Ω' ---- > Q" be a resolution: of Ω* by injective

complexes. The pairing at level E1 may then be described as

We claim that this pairing is perfect, being in fact standard Serre duality. To 

check this fact we compute H^ .

Consider the left exact functor F from graded Ω* modules to groups defined 

by F^ ) = HomP(E*,7‘). We note that RqF(n’) = hJt (Η®Ρ(Ε·^·')) since Q‘’ 

is an injective resolution of Ω* in the category of Ω* modules (2,15 ) . T\ 

to calculate these groups we may replace Q* * by any resolution of Ω’ by .Ω* 
φ 1

injectives. Let 0 ---- > Ω ---- > P ---- > P ,.. be any ΰ^ injective resolution of
τη 

Ω , and consider the resolution

of Ω' by Ω* injectives, (cf. 2.9 ).

Now HcmP(E’, (flm ) ® P^) ——> Hom(p/11 P, P^) by 2.7 and hence

5.9
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making this identification, the pairing 5.8 is simply the standard Yoneda pairing 

and is well known to be perfect, cf. Hartshorne [10] for X algebraic, and 

Suominen for X analytic, [I?]1 . Thus the pairing of spectral sequences at level 

E^ is perfect, · But both of the spectral sequences in question are biregular,

Tn fact both spectral sequences are defined by double complexes K ’ with

s > 0 so that E^,q = 0 if q < 0 . By the perfectness of the pairings

E^*^ = o if q > in (this is simply the fact that H^(X,7) = 0 and Ext^^n”1) = 0 

for q > m and 7 quasi-coherent.) Moreover in both sequences Z^ = Zy^ for 

r > q+1 and B^ = B^4 for r>m-q+l . Hence

5.10

and the pairing is perfect, on Εω . Moreover, on the abuttment we clearly have 

F +1 Ep = 0 and since E;^ = 0 for q>m , Fp m E? = eP 30 tt)at the ^^^ΐθπ 

is finite, (and in fact of length < m+1 ,) The perfection of the pairing on the 

abuttment then follows from the result on the. associated graded.

Problem: The duality theorem, at least for coherent complexes should ideally

not require compactness of X . The statement should of course be modified from 

the pairing of Ext and H to H* to a pairing of Ext c an<i g to Ηβ '

1 The analytic duality theorem Εχΐ^Ε’,Ω111) ------ > (if1 ^(E)) is stated in

Suominen only for the case of coherent E. If E is quasi-coherent and E = lim E 
—> 

where E is coherent then lim H(X,E ) = H(X, lim E ). since X Is compact*while

lim Ext(E ,Ω^) = Ext (lim E ,Hm). Thus duality extends to the qua si-coherent case.
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(c denoting compact supports.) If X is Stein, for example, the pairing is 

still "perfect” at level E1 by standard duality, but the duality is between 

topological vector spaces. Moreover the differentials d£ need not have closed 

image so that the duality for E^ is no longer automatic. An example is furnished 

by XsC-ϊ and E‘ =i^ , which still possesses duality, topological duality 

on E^ and vector space duality on E^ and the abuttment.

The duality theory for locally free complexes is considerably simpler than the 

result for quasi-coherent complexes and deserves special mention. First of all if 

J^ is a locally free complex (i.e. each / is locally free) then the 

Ext (7^0’) have a simpler description. Note first that for any ^,^ one has a 

natural homomorphism

5.11

defined by taking 0---- > & ---- > Q* ’ an injective resolution, setting

K’ = ®_ Hanr(r ,Q'S) , so that the homomorphism 5.11 is the map

(cf. 3.2* ) arising from the natural map of complexes

The mapping 5.11 is in general neither injective nor surjective.

Proposition 5.13: Let y e C(X) be a locally free complex, then the natural map

is an isomorphism.
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Proof: Let 0---- > Ω* ——> Q" be a resolution by injective complexes. The

sequence of complexes

5.14

is exact. Indeed, the cohomology groups in the sequence are the derived functors 

of Hom’(J", ) evaluated at Ω* , and may be calculated by replacing Q’’ by an 

arbitrary resolution of Ω* by injective Ω’ modules P", for example 

ΡΓίδ = (Qm~r) ® PS where 0 ---- > nm---- > P’ is an injective resolution. The

cohomology of 5.14 is then the cohomology of

which is clearly acyclic since the Z"1 are locally free.

Thus 5.14 defines a resolution of Hem'(Γ>Ω*) and consequently the map

induces an isomorphism of cohomology sheaves. Therefore 

Η(ΒαπΓ(,Γ,Ω·)) ——>^'(^'^‘) as asserted.

Remark 5.15: We know that Ηαη^^,Ω*) ------ > Ηομ^'^,Ω111) by 2,5 .

Thus for ^ locally free Ext (7* ,Ω') is simply calculated as the hypercohomology 

of the complex (Jr1 ' ) ® Ω . The differential operator in this complex is Just 

the usual ’’adjoint*' to the differential in T 3 of. ([1], §5 and §11).

Moreover, the Yoneda pairing Ext (J" ,Ω*) x H(JT ) ---- > Η(Ω') is simply the

cup product
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and. the perfection of the pairing at level· E^ is standard Serre duality, 

H^X^anV^’)) = ^(Χλ/1^)* ®Λ being paired with Í“q(x/'P) into 

i^OM*1) by cup product.

00 "5 ,16 Finally/we note that in the |ocally free case the C differential forms, 

E*·, may be used to calculate all the pairings in question. Namely, if

,eC(X) define (^ ® S'’s)r = Er’s(J<·) . If > is locally free, then 

E,,s(^) is a fine resolution of J* and the global double complex Γ(Ε (J’)) 

has for total cohomology H(^‘) . The Yoneda pairing may be directly calculated as 

the cup pairing
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§6. Poincare duality

The Yoneda pairing may well be perfect even though the complexes are not 

quasi-coherent. A typical example of this is classical Poincare duality ...

fLet X be a complex manifold and Y -----> X a closed subvariety of X, U - X - 1

Consider the exact sequence of complexes

6.1 o —> ίψ —> o¿ —> f1^.---- > 0

where i^ (resp., f'^) is the (sheaf theoretic) restriction of Ωχ to U , 

(resp. to Y) , extended by zero. Note that H(X^) " £c i^^) so ^^^ ^e

hypercohcmology sequence of the above sequence may be written

6.2

Since X is nonsingular the sequence 6.1 is a resolution of the sequence

0---- > íy -:—> C '·—> Φγ ---- > 0 where Φ denotes the sheaf of constants. Conse

quently the hyper cohomology sequence above is s imply

On the other hand we have the Ext sequence

6.3

which pairs with the sequence 6.2 into C , (cf. 4ΛΛ.5) and this pairing is perf? 
-1

even though Qy aqd f β^ are not quasi-coherent. Fixing.an injective resolution

0 ---- > Ω’ ----> Q” , we recall that Ext(U^ Ω*) is the cohomology of Hem’(n^Q’' ) ,
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But Han’ (^Q* * ) —> r(U,Q’ *) by identifying a homomorphism with the image of the 

constant section 1 over U , The restriction of the sheaves Q* ’ to U gives an 

injective resolution on U of ^ ^ so that Extfcf/fl·) ----> HfU^' ) . Similarly,

Hom(f ^>Q'’) = r^iQ”) is the sections of Q’* with support in Y and 

Ext(f ^ίΠ*) = Ηγ (íl^) . Thus the sequence 6.3 is the local hyper cohomology

sequence:

Since X is nonsingular 0---- > C ---- > Ω£ is a resolution and hence the

above sequence is simply the local cohomology sequence

The pairings

are well known to be perfect and it follows that the pairing Η^’^Χ^ΙχΗίϊ,ί!) —> < 

is perfect by the five lemma. (One should check that the pairings above are in fact 

the classical DeRham-Poincare duality pairings. ) This is easy to verify. Let
<30

Ey* denote the sheaf of (J forms on U extended by zero to X . Then

0 ----> Ων ----- > Ey* is a fine resolution of ^ and Γ^Ε^ = Γ (U,E¿') can

be used to calculate Hc (U,^) . The Yoneda pairing is calculated by

and the fact that HomiE^Q* *) —> Ham(íly,Q'’) gives an isomorphism of spectral 

sequences. Let E“ denote the sheaf of fc^-forms on’ X and let E'* ~> Q··
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lift the identity map Q^ ---- > ¡^ . Note that one has a natural map of double

complexes Γ(υ,Ε”) --- > HomÍE^Q* ·) given by "wedge product", i.e. αεΓ(υ,Ε")

defines the map E^ ---- > Q“ , β ---- > λ(α^β) . Observe that

Γ(υ,Ε' ’ ) ---- > HaniEyjQ' * ) ---- > Hcm^jQ* *) = r(U,Q* ’) is simply the map induced

by λ and yields an isomorphism of spectral sequences. Thus the Yoneda pairing of 

spectral sequences is that given by wedge product. The pairing to C is then 

achieved by integrating over X the wedge products of forms on U with forms 

compactly supported on U , and is well known to be perfect. .Analogous remarks 

apply to the pairing Η(Χ,Φ) x H(X,t) ---- > C.)

Remark 6.^: Note that when X is a complex manifold one has for any subvariety 

Y of dimension d that

as is evident from the duality between Η^ίΧ,φ) and Η^'^ίϊ,φ) noted above.

In fact the* local cohomology sequence is simply the homology sequence of the pair 

(Χ,ϊ):
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jL DeRham cohomology of infinitesimal neighborhoods,

f
^ γ _> X be a closed subvariety of X defined by the ideal sheaf Σ

Let U = X - Y , Consider the closed subvariety Y^ defined by the ideal sheaf

I , (then order neighborhood of Y, ) Let i^(n) be the sheaf of holaaorphic
differentials on Y^ , Define 1^ by the exact sequence

or more explicitly by J¿ = l"+1n¿ + dU^V -1) . It will be convenient to define 

¥ to be the "subvariety" defined by the ideal sheaf lim In+X = (^ and to 

employ the notation ζ, = lim Jn = i^ and ¡1^ = y^ = f'1^ . (Of course, 

^y[«J ^ i^ ^Y(np · Iben for n - 0,1,...,“ one has the hypercohcmology sequence

and for 00 > m > n a homomorphism from the sequence for m to that for n induced 
by the inclusion Y^ ---- > Y^ .

Theorem 7.1; let X be a compact complex manifold. In the commutative diagram-



the vertical arrows are isomorphisms, and consequently the top row is exact.

The equality signs in the above diagram result from the non singularity of X 

(cf. §6. ).

Remark 7,2: The above theorem asserts that "in the limit" the deRham cohcmology 

of Γ . calculates the classical cohomology of Y, The limiting process need not 

be "essentially constant," that is no finite value of n need give the "right" 
2 cohomology of Y. An example of this phenomenon was discovered by R. Slutzki 

based upon an example of Reiffen, [14] . Taking X = IP and Y a. reduced singular 

curve, the deRham complex

has Ηθ = Cy and will calculate the "correct" cohomology of Y if and only if 

H^ = 0 as can be seen from the exact sequence

coming from the spectral sequence (Note that H1

2)
In the event that Y is nonsingular, the hyper cohomology j(^y(n)) 

calculates the classical cohomology of Y for all n . More generally, if every 

point peY has a neighborhood V in X with a homotopy φ: Vx[O,l] —> V with 

cp(x,t) holomorphic in x for fixed t , φ(χ,θ) = p , φ(χ>1) = x * and, moreover, 

f®cp(x,t) € Ι·Εγχρ jj Tor all fe I , then ^y(n)) calculates classical 

cohomology. This is seen by using φ to construct a homotopy for ^ which 

preserves Σ^ ,
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is supported on the singular locus of Y and hence H^H1) = 0 for i > 0.)

The nonvanishing of H is a local question, and is equivalent to the ncuvanishiug 
of H2 for the complex 0 —> 2° —> ^ —> Σ^ —> 0 , i.e. one must show

that In ^ ^ d(ln+1op to obtain an example. Letting Y be defined by the affine 

equation f = x + y? + y3x , one may easily check that Adx dy is not of the 

form d(?g dx + A dy) for any g,h . (Note that 

ji 4n J 5(n-l)+3 2 zr = X +y + ny ■ x (mod x so that if one seeks
i J ig = Σ a x y , h = Σ b. .x y -by recursively solving for a. . and b.. one obtains 

three linear equations in &θ^ and b^ which have no simultaneous solution .)

To prove theorem 7.1 we need only establish the dual assertion, namely that in

7.3

The vertical arrows are isomorphisms. (Again the equality signs come ítem 

§^ ·) From this dual assertion we also see how to calculate the homology

H«(Y>C) as a suitable limit of analytic calculations. Moreover, since lim is 

exacts we know that the top row in 7.3 is exact and to show that the maps are 

isomorphisms we need only check that

7>

This result is in fact true in a more general setting, namely let X be a 

compact complex reduced analytic space and let Y be a closed subvariety containing
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the singularities of X, U = X-Y .

To prove this we replace the question by a local, question, by a procedure 

analogous to the local reduction in [8],

Theorem 7.5: Let X be a reduced analytic space and Y a subvariety containing

the singularities of X, U = X - Y. Then the sheaf homeomorphisms

analogous to 7Λ > are isomorphisms.

Assuming this theorem one obtains 7Λ immediately. Indeed for X compact we 

have

7.6

Thus the morphism of biregular spectral sequences (cf. 3.2)

is an isomorphism, being an isomorphism at level E2 in view of 7.5 and 7.6.

Theorem 7.5 is local, and we may therefore assume that r = sup 7 (minimum) 
* xeX

number of generators of I Q O ^ is a finite number, and we proceed by induction 

on r .
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Remark 7.7 ί To prove theorem 7.5 we may clearly replace the sequence of 

complexes Σ^ by any cofinal sequence of complexes. In particular let 

I^o IgD ... □ I^o be a sequence of ideals, cofinal with the powers of I, 

which satisfy d(l Ω’) cl ÍR , (eg. I = I1) and consider the subcomplexes 
i i—1

of Q¿ defined for n > 1 by

These complexes are cofinal with the Σ’ , since

We proceed with the inductive proof. Assume that r =1 , i,e. that I ^ (f).

We show that and the isomorphism with

R^Cy) follows by Grothendíeck's theorem 2 in [8] . Note first that

Fixing an injective resolution 0---- > Ω* ---- > Q** , we note that

I ® Q* * is a resolution of I ηΩ' by injective Ω' modules and we seek to 

compute the total cohomology of double complex lim Hcmr(lm“*n*, l"n 8Q’S) 

From the inclusion 0 ---- > ^"^Ω* ---- > Ω’ we have

in view of the injectivity of l“nQ’^ and 2.5, (2) . The kernel of this map is 

zero, Indeed, a section Qi of lim I ® Q * represented by a section Qi of
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Γη ® Qr?S yields the element ί^'^φ-----> f1-^ ® (φ aS) of

lim Hanr(lII1‘· Ω, Γη ® Q’s ) which is zero only if Ai = 0. But the mapping

r : lim I Q ---- > lim IQ* is the limit of the isomorphisms

f^: I n I331 V,S > so that ft = 0 implies Oí - 0.

Thus lim Ε^^,ί^) ---- > Hq(lim I’V). But the injections

0 ---- > I ηΩ’ ---- > I n ® Q* induce isomorphisms in cohomology so that

lim Extq(2 .(h) ---- > Hq(lim ift*) , as asserted,
^----- η λ ^

Proceeding to the case of general r , we note that since the theorem is local,

one may assume I = j3 Φ Jo where j. = (f) and j. ® (f.,...,f J . The ¿ ¿ 1 r-1
sequence of ideals J^ + Jg is cofinal with the powers of I . Let Y^ be the

subvariety defined by J., and let U. = X-Y. . Let A’ = Π ) Ω’ ;j J 3 n ' 1 2 ’
/Tn+m~* . ,η+m-· x „Ω , C = + J ) Ω , Note the exact sequences

and the hyperext sequences:

7.8

We know by induction that lim Ext^Bi ,Ω) ---- > Rpi (£ ) Moreover, by
__>~ 3>n 3 *

the Artin-Rees lemma (cf, [13]) we know that the sequence of ideals

J^"^ n j^” is Cofinal with the powers of the ideal j^.jg . This ideal has 

r-1 generators (f. f. } , and defines Y UY By induction we therefore have 

lim Ext$(A’ , Ω’) ---- > R?i p (C η n ) · But considering the diagram
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7.9

in which the bottom row is the Mayer-Viet or is sequence we find that

by the five lemma. Since

; by cofinaiity, our proof is complete.

Theorem Τ.1θ· Let X be a nonsingular complete algebraic variety over φ , Y a 

closed subvariety and U = X - Y . Let X’ , YT and U* denote the corresponding 

analytic spaces. In the commutative diagrams

and

the vertical arrows are isomorphisms.

Proof: This may be seen most easily by noting that for each finite n the groups

^(2β) ; «^(^i^) * e^c· are isomorphic to the corresponding groups calculated 

with analytic forms, [GAGA] , and one reduces to 7.1, 7.3. In fact a direct proof
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in the algebraic case is "easier" than the analytic case. As in the analytic case 

the two assertions are dual to one another and it suffices to prove that

or that since

this latter group calculates classical cohomology [8]

But note the hyperext spectral sequence, 3.2 ,

and the morphism of spectral sequences

which in the algebraic case is already an isomorphism at level E^ , (cf.

[7], Theorem 2.8.) This E^ isomorphism fails, in the analytic case.

Remark 7.11: One should note the other description of lim ^(^y^np which 

has been conscientiously ignored in this note. Namely

7.12

where the morphism is induced by the maps lim βγζη) ---- > $γ(η) · ^^s follows from

two observations, first that lim Η (Ω^η)} is the abuttment of a spectral sequence 

with E^*^ = lim Η^ίΧ^Ω^^^) , that is, the ’’dual" spectral sequence to that for 

lim Ι^,ί^^^Ω). To show that 7.12 is an isomorphism it suffices to establish that 

the map H^fX^lim H^np —> lim ^^'^(np at level E1 is 811 Is^^P^l^^ which 

a standard Mittag-Leffler argument ([9] > 0? 13.3) .
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