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Duality and the DeRham Cohomology of Infinitesimal Neighborhoods

i
by D, Lieberman and M, Herrera

Our principal appiication of the techniques developed in this note appears
in §7 where we establish the following result. Let X be & nonsihgular compact
analytic sﬁeee (resp. a complete algebralc variety over ¢€) of dimension m
and let ¥ be an arbltrary closed subvariety of X, U=X-Y ., Then the

standard exact sequences
1) ... —> # (0,6) —> B(x,0) —> 1¥(1,0) —> £7(0,0) —> ...
2) ... <—HE(U,e) <—H"x,0) <—H RK,0) <— 1" PHue) < — .

can be camputed purely in terms of the analytic (resp. algebraic) deRham cohamology,
Expllc1tly if Y( ) genctes the r'D order infinitesimal neighborhood of Y in X

then sequence l) is obtained as the inverse limit of sequences

1) ... HP (X Y(r)) — H§R(x) —_ Hp (Y(r ) —>

' where“.HDR denotes the hypercohanology of the deRham ccmplex 0{° of holomorphic
(resp. algebraic) differential forms, The second seguence is obtained as the

direct limit-of hyperext sequences

2)p -er < Ext(E, fy) <— g Rx) < Exf” p(n () &%) -

where 51&(r) is the deRham complex on Y(r) and Er. is the kernel of'the map

Oy _—€>i?Y(:)' The standard Poincaré duality between 1) and 2) is exhibited

as the limit of dualities for each finite r (essentially Serre duality,) In the
case that Y is nonsingular the limiting procedure is irrelevant, since for every

finite r the sequences 1)r and 2)r~ already calculate the classical cohamology.

1, The Author was partially supported by National Science Foundation Grant
Grant GP--9606,
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In the presence of singularities it is well Xnown that HDR(Y) may fail to
calculate the correct result, cof, [14] or [12]. An example of R, Slutzki {§7)
shows that no finite r n;:-ed calculate cohamology correctly. In thé‘:‘event that Y
‘ms.sf codimension one the representation of Hm'P(U,C) as lim Ext P(}_‘T, Q.x) is
the result of Grothendieck [8] tha:b the cohamology of U m:y be calculated us:.ng
forms on X with only polar singularities on Y , and we obtain an expressicn for

the residue for a closed meromorphic form with pole order. r as defining an eiement

of Hy(X,C) = (H'(¥,0))" .

Our work on this result began jointly in the summer of 1969 and had established
the results only for Y of codimension one when the first a.uthor heard Dellgne

announce the result lim E(Q‘Y(r)) = H(Y,C), for Y of arbitrary codimension,in his
=

‘lectures a.t Harvard (Fall, 1969), Our method@ of proof, employing duslity, is qulte
distinct from the argument of Deligne whlch is based on the appendix in [lO} wrltten
by Deligne, The duality theory developed here for use in the proof is new, as is

the formalism for complexes with differential operators of order one,

‘The duality theorem referred to is the following, ILet X be nonsingular and
_compact and let &  Tbe a complex of coherent (%{ modules with the maps-.
.71 —_— .'FI 1 being differential operators of order cne (in particular they may )

be %{ J_.inear,) The spectral sequence of hyperpohomology

EPJq Hq'(X 3P) ==, HP Cl(: )

is dual to a natural spectral sequence

DL 2 Ext Y P,0") = Ext? U ,07)



where this second spectral sequence isg: obtained as follows, Let QO —> Q——-—->Q,’

be & resolution of Q" by injective complexes (cf,§2), and form the double ccmplex

K3 < vl (7, @9) (ct.§2)

Then the first.spectral sequende of this double complex is the s;pet:"l:rév,i'i‘ii(-5‘c}{_iﬁ-ﬁ:ftée\“j
above, The dwslity is established by & Yoneda pairing, §k4, of the ép‘ectrai se};uences,

which is perfeét»at*level"El, (Serre auality.)



§1. Jet sheaves,

We work throughout in the category of "spaces'é which is either the
category of complex analytic spaces with holomorphic maps or the category of
complex algebraic varieties with regular maps. By a compact space, wé mean either

an analytic space or & complete algebraic variety,

Given a space X let Jn denote the C%( algebra of n Jjets on X, with
the stendard differential operator of order n: dn: o —> Jn . The sheaf Jn is
simply the restriction to the diegonal in X xX of the sheaf C%(xx/Inﬂ‘ where I
is the ideal sheaf of the diagonal, see for example [16]. The %[ algebra structure
: . * +1 R
of Jn is provided by the morphism 'rrl: %C —_— q‘xx/In s Wwhile the operator

*
d. is then given by 1r2 .

n
*
The sheaves Jn could also be viewed as (%C modules via ‘rr2 » -&and. adopting
this point of view momentarily, one may define for any OX module B ., the

J, module of E-jets J (EB) =J ®,E which may then be viewed as a sheaf of Oy
o
: 2

Tox
modules via the morphism m c—> Jn . The natural Ty linear map

La:E -.—> Jn(E) is not & morphism of (%( modules (via ‘Jrl).

When the space X is nonsingular the sheaves J, = Jn(O) are locally free

* *
O modules. (via either m or 'rr2) as can be seen readily from the standard

exact sequences

0—>sP%l —>3 —> 7 . —>0
n n-1l

1

where Snn is the nt‘n syrmetric product of the differential 1 forms.



*
Consequently for any Gx module E the sequences of 'rrEG modules

n 1l :
——— — —_— B) —
0 —>8 v ‘;e E—>J (E) —>J () —>0

0 —> JO(E) —>E —> 0

remain exact, (Tor(Jn_l,E) = 0). Viewing the sheaves as & modules via T, does
- * *
not alter the exactness, (the maps above are all clearly 'rr‘lO linear.) We note

that the standard splitting
1
J 1= o0&

*
of J, asa Trl((}) module is not a 7r2 linear splitting so that
J(E) fE@E®@0Q" asan O module, . (In fact if E is locally free the class of

the extension Jl(E) , in H‘L(X,Hom(rs:, @91)) » 1s the "Chern class'of E.)

Wote the mapping associating to an G module E the O module Jn(_E) is.
clearly a ftmcf,or, the composite of extension of scalars from ?TZ(O) - to Jn .and
restrictﬁion of scal.:ars from J = to TI‘;(:(} . Purthermore in the nonsingular case
J ) is an exact functor, being essentially tensor product with a locally free

n
sheaf,

Remark: Define J a by

0 —>J > J >0 —>0 ,

and J (E) = J, ®E. The nonlinearity of the differential operator d:E—>J (%)

may then be exhibited explicitly by
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1.1 dn(foc) = f dn(oz) + dn(f) ®a.

where O a local section of E , f a section of O and dn(f) = f+dn(f) is

the decomposition of dn(f) in the direct sum J, =0 $Jn(0),

We shall employ the standard definition of differential operator of order n: s
namely a morphism of sheaves, E —]2-—> # is such an object, if and -only if there is

an & linear map D: Jn(E) —> 7 meking the diagram

3,(®)

commutative, Note that the mapping D is completely determined by D , i.e. Jn(E)
is generated as an O 'module by dn(E) > as is clear from 1.1, Associated to

the operator ‘D .we have the "symbol" o{(D): J, ®E —> 7, given by restricting

Given a function f and a section Q of E we employ the notation

dn(f)-a to denote the section c(D)(dn(:E‘) ® a) thereby obtaining the formula:

1.2 D{f.ax) = £D(a) + dn(f)-a *ef, 1,1,



§2. Complexes of differential operators of order 1,

Given a space X we denote by C(X) +the category of complexes of (%(
modules with differential operators of order 1, An object {I'} of C{X) is a
collection of C%( modules, .7: ieZ , with differential operators of-order 1
Di: .71 _ J'-L 1 satisfying Di +17D:|‘.=0' A canonical example of such an object is
the deRham complex Q'X . By a morphism of complexes f: & —> & we mea.;i 8
collection of - O-linear maps- f;: 31 -_—> .Bi such that f.,¢ D, = Dy f; . The

set of morphisms is denoted Hom(J",& ) .

Given a complex J° we employ the standard notation J'[i] to denote the
complex F[i] =T with :d: PO[i] —> " [1]  defined tobe (-1)' times

s i
the differential J° 0 —> F#H*L

C(X) is readily seen to be an abelian category which satisfies axioms AB5 )

and AB3  of [6].

Proposition 2,1: If J"eC then J° has a natural structure of graded module

over the graded r::Lng i, with the property

2,2 D((p.o,!) = dg.a + (-l)lcp-Doz
where ¢ is a local section of ﬂl and O iAs; a local section o'f"v-,r] .

Proof': For oe ﬂo =0 and oze.?a, @2 1s well defined. The natural pairing
. -
Ql & J’J —_— J’J L is given by the symbol of DJ. . By iterating the symbol one

obtains the O multilinear map (91)31 ® .7'] —_— .71 *J denoted

v, ®..09 & —> ;- (<p2- (e _(q:i-,a))), To see that this induces an ¢ linear
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map :zi sJ‘j —_ .7i+j it suffices to check that for any function £ and o &

section of an J'J that
af: (df.a) = 0
But note that

2.3 0 = De(fa) = ﬁ(f-Doe + df.a) = df.De + D(df.qa)

or

p(af-a) = -daf-D(a)

and

0= D2(f2a) = 2fdf.Da + 2fD{df.a) + 24f.{df-a) = 24f.(df.a)

‘The formula 2.2, follows immediately fram 2,3, and 1.2,

Remark 2.4: If $: F —> & is a morphism of complexes then ¢ is automatically

an §° module map,

Thus the category C(X) admits another description, namely as the category

of graded Q' modules J with differential d4d: & —> 7'+l satisfying

a(p-a) = dp.a + (-1)F p.a0
for ¢ , (resp. @) a local section of oF, (resp. 7). (The map Ji —
factors through J 1(31 ) G 1linearly in an cbvious ms,nner;) Many constructioms

L Y
are more evident from this point of view,
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Viewing the elements of C as Q' modules, one may introduce a natural
. . R )
"internal® tensor product and an‘internal Ham into the category, Namely

(F @%) =T ® & is the complex defined by
a° '

(Fes)=- o 7R

i+j=k

where R 1s the subsheaf. genera.‘ced by elements of the form

\a(i-a)+L”

tﬂa®5+(l) a®¢.B, with 9e0®, el ™ and ped .

differential operator is the standard D =D ® 1 + (-1)* 1 ® D. (One must check

that D(p-a@ ® B) = (-1)&“(1'&) D(a ® p-B) , & straightforward calculation,)

leen a spa.ce X we may v:\.ew X as a ripged space (X, 9 ) > 8 point. of view
wh:.ch is most convenient for the study of the category C(X). Given a. mpr,phism of-

spaces 1Y —> X » the pair (f,df) , (4f: ay —>ay ) defines a hamomorphisx

of ringed spaces, Viewing spaces as ringed spaces in this manner one bas associated

f£f.: c(Y) —> ¢(X) and

to a morphism f: ¥ —> ¥ the natural functors '

* - . -
f:CX)—>C(Y). Namely, given Je C(Y), & 1is a sheaf of a4y modules, so that

the sheaf theoretic. direct image f*(.?') carries & natural ﬂ'x graded structure

via d4df: QX

by the differentials in J ,  make f,(J) & differential Yy

element of C(X). Similarly given e C(X) , we note that f‘l(.x-) » (the sheaf

—> Yy . Further the morphisms d:'f*(J‘p ) —> f*(.'?Pﬂ'-) induced .

module, i,e, an

theoretic inverse image) is a sheaf of gra;ded f_l(nx) modules, while ‘QY is a
sheaf of graded f'l(nx) algebras, and one obtaing a sheaf of graded QY modules,.

- * .

£(8) =17 e 1, & - £ (#) equipped with the differential
f (ax\ .

da®p) =da® B + (‘-l)P a®dp for «e f‘l(jp) and Be ﬂY ‘defines an elemen%“

of C(Y). One bas the formula Hom(f'$,7) —> Ham($£,7) . Note that
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*

£ (nx) =Qy , and that if G denotes the camplex which is O, in degree zero
+

and zero in other degrees then f (%() = Q‘Y[X is the complex of relative

differentials, this may be seen by noting that Ql

X
* 0l . el ~
£{a) = (C%() ® ‘1(9 ) Y =01,/0 x:* 9"y - In the special case that f is ar

acts trivially on qc so that

3%
immersion f (C%() =G, .

Similarly cne may define Homk(.?' ;% ) to be the sheaf of morphisms of degree k
of graded Q° modules, i,e, the sheaf obtained from the presheaf which associates

to an open set U , the collection of $e H‘c:m(.;"gI ’ .&]5"'3) such thet
Jje= ‘

$p-0) = (1% gu(a)

for all ¢e Ql; aeJJ (The global sections of the shea.f‘ Hc:mk are denoted by

k+1

Ham .} The differential operator D : Hom™ (I »&") —> Hom (& ,&) is given

by the standard formula

D (#) =nge# + (-1)¥"T g gD,

The fact that for ¢e¢ o" and aeJ‘j cne has

D(#) (9 -a) = (-1)1 &g . p(g)

is obtained by & straightforward calculé.tion,

Remark: We note that the cycles in Hamk(:" »¥ ) are precisely the morphisms

of camplexes J° —> J4'[k]. The boundaries are of course the hamotopies

J —> &[k] , so that the homology group Hk(Hom(J' »%)) 1is simply the homotopy

classes of morphisms.
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It is especially easy to calculate J' @4 . and Ha'(F,4) when I o &

is simply the complex Q°:

Proposition 2.5: 1) ¢ 08 — &
2) Hom (Q°,& ) —> &

3) If X is nomsingulsr,  Hom™ (7" ,0") —> Homo(:m”k,nm).

Proof: 1) The natural morphisms Q' & & ——> 4 ) 9®a —;->'qp + Q& , and -

& —=q° @4  , @ x> 1 @®Q are inverse to one another.
2) The standard map ‘Hom" (Q, &) —> i, —> (1) is an isomor-i')}:i:s:a‘,

3) . Instead of proving this result directly, we shall prove a more useful

generalization in the following lemma,

S o
Definition 2.6:  Let 7 be any O module, and denote by (2™ )" @ M the

graded Q° module with structure

@e (™ H" e m s (P13 gy

. - % '_._".' % R
where c: 9’ ® (" i) —> (@P7Y) is contraction, (If a, @, B are

m-i-j

-3 ¥
o™ ana @

local sections of @Y, ( then ¢ is defined by

cla®p) (B) =9 (BAa).) .

.

m-i ¥ : . th
Note that (Q° 7)) ® % =0 <imless O <i<m, and that the m  level
is %, (X nonsingular.) Further, if % =0", and X is nonsingular, then
- *
@ Med" =a, [2]. In view of this facty the following lemms generalizes  3) of

the preceding proposition,
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Lemma 2.7: Let X be nonsingular. Let J be a graded ﬂ'x module, and

7 an (%( module, then
Hcmg @, @) en)—> Homy (T, m

*
Proof: One has a natural map Hank(.'?‘ , (Qm") e”n —> Hano(.‘}m "k, 7) obtained
by restricting ¢$e Hccrnk to yield ~§m—k: Jm K —> % . -The map is clea.riy injective;
indeed, if lim-k =0 , then for any ae.?m'k‘i and @¢ gi we have
0 = §¥{e-a) = (—l)ik @-8() . Thus the section &{a) of (Qi)* @M is annihilated
by every section ¢ of ni and is hence 0. To cobtain surjectivity, assume

] . Iy . .
A K — > % is given, Define (-1)1.‘3-§m_ 2 PE s @Y em oy

k-J
=X =1 * 5 ~k-3 * - i %*
2.8 FEI 5 @) el 0TI —— (09) e A EIE L () o n
Clearly Qm-k =X, and the §° linearity of & is checked easily in coordinates,

as follows, Let STIRRTL be & local basis for nl then the map 2.8 is

deseribed by

> £ e ®e ® > T e > T e ®Meq)
o e;®e B0 e ®e -0 Te; ® (eJOl

where O is a local section of J’m k-J and we employ the multi-index notation
ey = enlA Aenj where J = fnlgn

arbitrary besal element for Q-  then

<. Snj]. Now let e. be an

2 e I

pa—> 2 e ® Ml ~e)0) =Se o ®Meg @)

e

where the sum extends over K NI = ¢ and e is the s:‘:gn .0of the permutation

KI

required to put KI in ascending order,
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Comparing this with

*
eIZeJ

® \(e;0) (e; @ e7) @ A(e;0) - 5.1 Mepa)
z (eJOt =§ c(e; ®e;) @ (eJa = I €5.1,T ©5-1 (eJ-a

J>1
we obtain the asserted ' linearity,

. - * .
Corollary 2.9: Let Q be an injective @ module then (") ®Q is an
injectivé{ Q° module, i,e, if O —> W —> N is an exact 'sequen'ce of

graded 0°  modules then Hom'(N', (@™ *)" ® Q) —> Hom' (7 ,(@*)" Q) —> 0

is exact,
Proof': The diagrams

Han (v, (@) @Q) —> Ha 0, (@) 8Q)

Ik o

Hom, ("7, Q)

> Homy (B, Q) —> 0

are commutative,

2.10 One further fundamental construction deserves mention, One may associate

to every &  module E a canonical camplex g'(E) with

.

0 j<o

]

¢ (E)

& (&)

E, CNE)-= Jl"(E)
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which is universal for O linear maps of E into the zero'th level oi: & complex
of differential operators of order 1. OQur complex C{E) is the samé as the
complex C; constructed in Spencer [.16]: Once C°(E) is constructed, one will
clearly have that C'(BE) [-i] will b(e'u a complex which is universal for maps of E
to the ith level of a complex with differential operators of order 1. To
visualize the form which C'(E) must take, we note that for E = _Gx ‘the complex
€' = C'{0) has the following description: ¢d =gl tegd and the dj.f.f‘;erential
¢d — C'j'l'l is given by (g,4) ——> (ap + (—1}'j ¥ dy). ~c.}iven any complex 7’
and morphi;m‘ c l&—> J’O defined by 1 —> g, A extends unique]_.y to Cj -—->‘J'j
vié; i )L(CP,;;) = @.dx + . N.B. The complex Q' is not universél for maps
o -A> 7 , although en extension can be made to give a unique element of
HomO(g-’y-) but this element will be a cycle, i.e. a morphism of complexes, if
and only if A{l) is a cyecle. .

To obtain the construction of C'(E) we proceed as follows. Let Jo,(E) = E,;

define JYE) = Jl(Jn-l(E)), and note the natural sequence

3B 0 —> 3%(m) — IHE) —> B(E) —> ...

which is not & complex but which clearly has the property that given any J € C
and a.;ly ¢ linear map A: E —> 30 there is a unique morphism of sequences

X: 3°(E) = 7; extending A. If one sets KO(E) = 0 and defines K° to be ‘the
smallest O submodule of Jn(E) containing d(Kn-l) and dd(.:rn _2); then
clearly C(E) = J(E)/'K is a complex. Given,any morphism of sequences

¥: J(E) = T vwhere J' is a complex, one must have i’(‘K') = 0, o

so that there is a unique induced morphism of complexes,, A: C (E) —>J°.

To obtain a more manageable expression for C'(E), we note that' C"(0)

carries two O module structures: :the standard "or left" structure,

ool le g —> gl g oI given by f(p,¢) =(ﬂp,f¢) and the "1[2" or "right"
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structure given by (@,¢)f = (fp,fy + @df) . Given any G module E , ¢°(E)

has an expression analogous to that for -J l(E)’ namely, viewing C'(0) as a

"

> module

“71'

cC'(B) =c"'{0)®, E

7120
with the O module structure on C'(E) given by the "Trl" structure on C*(@®).

The differential on C'(E) is given by (g;¢) ® ¢ —> (dp+ (-1)%, iy) ® g

Remark 2,11: In the event that X is nomsingular the functor E —> C*(B) is

exact, being essentially tensor product with the locally free & module C’(O).

Proposition 2,612: The category C(X) of complexes of Gx modxiles with

differential operatars of order 1 has enough injectives,

Proof: Since C(X) is an abelian category which satisfies AB 5) and AB.:-&),
.of [6] it suffices to show that C(X) has generators, ([6], §1.10). As U
runs thrquglg the\open sets of X +the sheaves GU (extended by zero) defipe a
system of éénerators for the category of C%( modules, and the complexes

C’(GU) [i] clearly form a system of generators for C(X), as i ranges over the

integers, and U ranges over the open sets.

While the appearance of injective complexes is not at all eviden'{ from the
preceding proposition, one can easily check that if Q" is injective then each
Qi is an injective C module provided X is nonsingular, We show below that
Q' is injective as a graded i module whether or not X has singularities,

We must first generalize the construction 2,10,
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Proposition 2,13: Let 7 |Ybe any graded Q' module, There exists a complex
C*(%) and a morphism ¥: % —> C"(M) of graded Q° modules such that given

any graded module map $: %' —> K° with X' a complex, ¢ factors uniquely:

-

n —> K’

where is a morphism of complexes,

Proof': C*' (%) is clearly the quotient of the complex & C° (Wf’) [-a] by &
suitable subcomplex R, More instructively, we may obtaina ¢* () by noting first
that C'(Q°) is clearly just C°(G). Indeed, a map O° —=> K* of graded Q'
modules is determined by an ¢ linear map O —> KO ; which wniquely defines a

morphism C'{G) —> K° .

- Now, note that C'(3®) has again two graded Q' module structures given

explicitly by

™ or left: g, ¥) = (@Ag, XAy)
M, or right: (ps¥)x = (p~a, (-l)i (y~ra + prda))

where & and (¢,§) are respectively local sections of o' and Cj(G) = 9'3']‘ & oY

The differential in C°(C) is, of course, linear in the @, structure, Note

2
that C*(®) is a free 9° module of rank 2 in either structure, with the global
sections (0,1) ¢ T(c%(0)) =T (™) @ (2% ana (1,0) € r(c}(0)) = r(a® & r(at)

as a basis, Given any %, a graded Q° module, the complex
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Wn

(M) =0 (0) 8y o

is the universal object we seek,

Remark 2,1k: In view of the freeness of C'(®) as an Q° module, t-‘he fm;'.tqr
% —> ¢ (W) 1is clearly exact. In fact the complex C'(% ) has the S
disarmingly simple description o () —~-> W?"l @ W(J (as 71';0 mpdules)

where we identify (p; '¢) = (1,0) ® @ + (0,1) ® ¢ and the differentiation is given
by d(p,4) = ($,0). This splitting is, of course, not a wl*'o splitting, In
particular “the T, splitting e (Q*) = Aol is quite distinct f‘rum the I,

splitting C9(a") —> 09" @9 the relationship being given by

{

(0r4), = (9:(-1)7 (ap-¥)) .

Proposition 2,15: " Let Q° Dbe an injective complex with differential operators,

“then Q' is an injective graded Q' module,

Proof': Given 0 —>E' —> J & morphism of graded Q° . modules and an
f° morphism E° —l—-> Q° we obtain the exact {(cf.2.14) commutative diagram
—> ¢ {(T)

> C*(E*) 2N Q

'To .

1

7
X
!

~

where the morphism X is & morphism of complexes and A = Aei - Since Q' is an
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injective complex the map A extends to c (T, yielding an extension of X to T

One further remark on the structure of injective complexes is useful,

Proposition 2,16: Let Q' be an injective complex, then Q' is acyclic, and

the complex I'(Q') is also acyclic,

Proof': We show that the complex I'(Q') has no cohomology, then given any open

set U, I'(U,Q") is acyclic since the restriction of Q° +to U is injective on U.
and the acyclicity of Q' follows, Suppose Ce F(Qi) is a cycle, and consider

the morphism of complexes Q°[-i] —> Q" A(p) = @-& . But we have a na.tur.e,l
injectign of complexes, Q°[-i] —> C'(Q*) [-i+1], ﬂj —_— Q'j eg’jﬂ' , defined
by ¢ —= (9,;0). Therefore one can extend A to.give '):: C'(Q')[-i+l] —_Qr

& morphism of complexes, since Q° 1is injective, Noting that

a = i((l,o)) = i(d(o,l)) = d(i((o,l))) » We see that @ must bowmd in I (Q') ,

as asserted,
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§3 Hyperext

We construct the functor hyperext which is to provide the dual to the
hypercohamology of a complex, The construction is quite analogous to the
hypercohomology canstruction (ef, [9], O , 11.4) which we briefly review, Given

any complex E' ¢ C(X) cne may find a resolutiom

O —_— E" — Q-} O —_— Q-"l

—_-> ..4.l

where the Q'’% are injectives (cf.2.12). Given 0 —>E° —> Q' and
O——>F —> P injective resolutions, & morphism f: E* —> 7' 1lifts to a
morpnism F: Q' —> P°*  of double complexes, and the lifting T is determined
up to a homotopy in the following strong sense: If £ and T' both 1ift f then

there exist morphism of complexes Qi:' Q,'l —_— P‘l'l such that

i"§ + g a" =% - %

Note that if d -denotes the-total differential in the double complexes

”~

¢ + g =% - %

since d'é = &' ., Thus ¢ 1is a hamotopy of degree O with respect to the first
filtration, Given any complex E° , the first spectral sequence of hypercohamology
of E° is the first spectral sequence of the double complex I(Q'‘) "where - Qe

is an arbitrary injective resolution of E* , The hypercohamology segquence
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B = (@) L g, ) o @) = PPre))

is functorial in E° , and independent of the choice of injective resolution, in
view of the special form of homotopies, (cf. [3], p. 321.)

The second spectral sequence of this double complex

By’ % = H (H] (0(Q"))) = B ")

is also functorial and independent of the choice of Q, but is not interesting
since H% (r(e®)) = 0 for all p .and q in view of 2.16. The label "second
spectral sequence of hypercohomology” is therefore reserved for the local-global

spectral sequence
Bt = B(GENE)) = B Y(E)

where H? are the cohomology sheaves of E°.

Now, given two complexes E',¥" e C(X) the spectral sequencesfor hyperext
are obtained as follows. Taking an injective resolution 0 —>J° —> Q'°, one
forms the double complex kK*’% = Homp(E’,Q'q) where the differential

a': HomP(E',Q'q) —_ Homjp-bl(E’,Q'q) ig defined by
13 - _1yPtatl
até = dQ°§ + (-1) ed,
. . . f a .atp,q & ~atp,qt+l .
while the differential 4": Hom(E™,Q" ) —> Hom(E™, Q" ) is given by
ae = (-1)% 3

where ,jq is the map Q*'% — Q"qﬂ'. Note that d'd" = d@"d', so that the
total differential d of the double complex is defined by d = 4' + (-]de" on

the (p,q) level. Recall that elements of Hom" are required to possess Q'

linearity, a property which is preserved by d' and d". The two spectral sequehce
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of the double complex K°°

and gD - # ml (k) => Bx)

are clearly bifunctorial in E° (contravariant) and J° (covariant) and are
independent of the particular injective resolution of J° ., We define the bifunctor
Extp(E',J”)’ to be the abuttment HP((K‘) of these spectral sequences, Given
e * .
E: —>E; we denote by e : Ext (E., ) —>Ext (B2, ) and
1 2 » " == 2 == V1
e, Ext ( , Ei) —>Ext ( , Eé) the natural transformations of functors.

The first spectral sequence above is called the first spectral sequencé of
hyperext, while the term "second spectral sequence" is reserved for the local

global séqﬁence obtained as follows,

Define the sheaf Ext"(J ,4 ) by taking an injective resolution
00— & —> Q" > forming the double complex of sheaves ‘Kp,q = Hompﬁi',Q‘q)
and letting Ext° to be the cochomology sheaves of the single complex X' ,

Local Ext 1is related to Ext by a spectral sequence

3.2 B0’ = WP, Ext M7 8 ) = Ext™ YT ,8)

.

-

In fact 3,2 1is the second spectral sequence‘of hypercohamolqu faor the

complex K°:
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3.2 B9 = (B8 ) s UK

as may be seen from the first spectral sequence HUX, KP) > §p+q(K').
The sheaves XK' are flasque (standard argument cof. ([4], II, 7.3.2) so that

h

q,..Py _ Pt .. . 't .
EYK") =0q>0 and H *(K') is the p+g cohomology of the complex I'(K"),

ice. Extt HT,&).
Remark 3.3: Notice that for E'=Q°, one has

Ext’ (2°,77) = H'(7")

Ext (9,7°) HF)

In fact if Q°° is any injective resolution of J  then Hom'(n’,Q"j) = I’{Q"j)

and Hom‘(g',Q'j) > @'? in view of 2.4, (2), and the cohomology of thesé

complexes is H(7") and®l7°) .

Remark 3.h4: The bifunctors Ext and Ext are cohomological, i.e.
given E° and an exact sequence 0 —>J l '—§—> .?'é i> g 3 —> 0 one obtains

a long exact sequence

5 3 ¥ By

i - . . * i . . * i . . * i . :
. —> ExtTNE T3 > Ext (B 73} —> Ext (E',7)) —> Ext' (B, 3 —> e

by appropriate choice of injective resolutions. Similarly, given g~ -and

0 — El §——> E2 —Y-> E3 —> 0, there is a long exact sequence

i-1 5" i ¥ i g i 5
en —> Ext’ (Ep7°) => Eﬁb_l(Eé,f') > Ext' (B),7") => _Egc_gl(Ei,J") 2 ...

This is obtained by taking 0 —>J —> Q"' any ihjective resolution and

.

forming the sequence of double complexes
3.6 0 —> Hom'(E'B,Q") — Hom'(Eé,Q,") —_ Hom‘(E‘l,Q") —> 0

which is exact in view of 2.15. The exact sequence of single complexes formed

from 3.6 has 3.5 as its cchomology seguence.
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&4 The Yoneda Pairing

et R Dbe a ring,

Definition k4, 1: Let A, B, C be spectral sequences of R-modules, A pa:ring

AxB —> C of spectral seguences is

1) For each r, p, 9, p', q°' there is a bilinear pairing
AP»a , gP'saf > PtP,at’
Ir r r
denoted axb —> a.b , which satisfies

t 1 ] §
df*’P ,q.+q (&'b) = di,q(a:)‘b +(_1P+q a'di ,q (b)

2) The pairing on level r+l coincides with the pairing induced on the cohomology

of level r .,

3) There is a pairing on the abutments A" x B® —> ™™  competible with the
filtrations, i.e,
n-+m

)

n m
F_{A F(B)—>F C
REOFS NED _

4) The induced pairing on the associated graded objects

.

n n+m
r (A r Bm —_—> gr c
gr (A7) x gr (B7) ar,, ()
is compatible with the pairings on the E, terms, (i.e. the pairing'of the E2

terms is assumed to satisfy Z(A) x 2 (B) —> z_(c), B (A) x Z_(B) —> B_(C)
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end Z_(A) x B_(B) —> B_{C) thereby inducing a pairing of the E, terms:)

The construction of the Yoneda pairing which follows is'essentially standard,

See Hartshorne [10], for example,

Proposition 4, 2: et B, I, & ¢ C(X), then there is a natural pairing of

the first spectral sequences for hyperext
Ext (7 ,¥ ) x Ext (B',F) —> Ext (E',%) .

Proof: let 0 —>F —> Q" and 0 —> % —> P'°  Dbe injective
resolutions, Denocte by Humr’s(Q",P") the sheaf maps &: Q'’* —> pr+r, -+8

which are §Q° 1linear in the sense that
(r+s)3
d(pet) = (-1) o §(a)

for @el(a’) . Then Hom'*(Q"",P*) =® ® Hom®’% (Q"*,P'*) has a natural
T r s>0

structure of double complex by defining the total differential d by the formula

r+s+l

dé = ded + (-1) §od , & ¢ Hom'’®

One can check that d§ is again Q° 1linear, Note that the differentials in our
double complexes commute and the total derivative d in a double complex is.
d=da' +(-1)Pa" on the (p,q) elements, This leads to the formulae

r+s+1

a'¢ =d'ed + (-1) §eoqd’

and (a"8)(@) = (-1)*(@"(2(@) + (-1)¥*T g(a"(@)) , ael(@®*)



Note that one has a natural pairing

t  J t
Hom' ’5(Q",P'") x How' (B°,Q°%) —> Hon" ' (g;p»5*s')

by composition of morphisms, that is @x ¢ —> @ey. This is a differential

pairing in the sense that

d(pey ) = dge y4(-1)"" gedy

indeed

a(ge w ~dogpoy + (_l)r+r'+s+s'+1 @o ¥ °d
while

dpe y = dogey + (_l)r+s+l pod °§

@eay = prd ey + (1T M goy g

Such a differential pairing of double complexes gives rise to a pé,iririg of the

first (and second) spectral sequences of the double complexes,

Moreorver » one has a natural morphism of double complexes
Homr’s(Q,",P"‘) _— Hcmr(.?",P"S) cbtained by composing a map Q°° —> prTs. 8
with the inclusion I ——> Q"O . This morphism induces an isomorphism of first
spectral sequences, Indeed the fact that 0 —> & —= P** is a resolution
of & by injective g° modules, while Q°° is a resolution of JF implies that

.

the 4" cohomology of the two complexes is identical, (standard argument , )

Moreover, since both double complexes are bounded below by s >0, the first
spectral sequences of these double complexes are reguia.r 9l , o, 11,3.3) » and

the spectral sequences are therefore isomorphic [9]J 0, 11.1,5).
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Remark 4, 3: 1) The double complex @ (Hom ’®) used in the preceding proof
ral
820

can be replaced by @ (Homr’ ®) , which also has the same first spectral sequence,

]
T,8
although the proof beccmes mcre arduous since this latter complex is not regular,

ok The Yoneda pairing exhibits the following functoriality properties, Given

morphisms B —2—>E; , 7} £ 7., & —E—> 3 one tas the basic formulse

1) ae () =e (@) aeExt (7,4) , BeExt (EyT)
2) g, (a).-p = g, ((a.B) aeExt (7,4 ), BeExt (E,7)
3)  £(@)B =a1,(p) aeBxt (T,,d); BeExt (E,7,)

which express the fact that composition of morphisms is associative. We check 3).

Fix injective resolutions 0 —> .7; ~—>Q;" and 0—>§—>P , and let

¥, Qi: —> Q" denote a 1i% of £: § —>J, , so that ¥ is & morphism of
double camplexes, Then given & ¢ Hom"(Qé‘, P'*) and Be H@'(E',Qi') we have

(GeT)ef = G (FB), and 3) follows,

4.5 The relationship of the Yoneda pairing with the connecting morphisms
f f
* .
8y, 5 O is also readily calculated, Assume O > J’i 1 > 7‘2 2 > .73 > 0

is exact then

8 (a)p = (-1)""* a5, (p)

where OteE_Jgt_r+S (Jl,.&) and PeExt (E,.73) .
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§5, Duality Theorem

Throughout this section X denotes a compact ncnsingular space of
dimension m ., Given E* eC(X)’ we have the natural Yoneda pairing of first

spectral seguences

I

(E;, @°) x Ext (@", E") —> Ext(a’, @)

which may be rewritten as a pairing

@(E',g') x H(E") —> H(a").
in view of 3,3 . In particular we have for each r, p, q,
5.1 R

and on the abuttments

5.2 FExtTlxE go-Pa

L —>F _H

an
atb

Q).

‘We note the following facts about the spectral sequence for E(Q’):

(5.3) BV — BT — | —> BN —> BN = €

[~ ]

0o p>mn
and (5.4) F_E™a) =

P £°0) p<m .

Indeed, Hq(ap) =0 if g>m , and 5:3 and 5.4 follow immediately except for

m,m m,m

the observation E;7" —> E, which is evident from the exact sequence
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dm-.'l. m

et A B () — Eg’m —>0

*
and the fact that E° (@) = =%@°)  =¢ .

Thus the pairings 5,1, 5.2 , are into C , and we note for further reference

that 5.4 implies that

5.5 F, Ext?"HE",0") and Fb(f“'l’“q(m°)) are orthogenal if a+b > m,

Note, moreover, that the vanishing of the differentials d’l':'r’m+r’1

in the
sequence for H (0') implies that the differentials in the Ext sequence are dual

to the differentials in the sequence H(B') , i.e.

5.6 (a.0)-B = (-1)Pratl a.d p

m-p-r ,m-gq+r-1
r

if acEX?, pex since

0 =a (@)= (40)8 + (-1)F T a.ap

Theorem 5,7: Let X be a compact nonsingular space, Let E'eC(X) be a
quasicoherent c‘omple}‘c, (each El' is a quasicoherent GS( module) then the-

pairings 5.1 and 5.2 are perfect., In particular
~ - *
Ext (€ ,0°) —> (@@ FE )",
is an iscmorphism of filtered vector spaces, 1i.e,

K ooe ooy K N
FoExt® (B7,07) —> E" )/Fm—p-i-lgam (E°))
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Proof: Iet 0 —> Q' —> Q" be & resolution. of Q° by injective

complexes, The pairing at level El may then be described as
5.8 HE (HanP(E',Q ")) x 52 9E™P) — g(d®) = ¢ |

We claim that this pairing is perfect, being in fact standard Serre duality. To

check this fact we compute H%I .

Congider the left exact functor F from graded Q° modules to groups defined
by F(F) = Hom (E',7°). We note that RIF(n") = H%I (BwP(E°,Q°")) since Q'
is an injective resolution of Q° in the category of Q° .modules (2,15 ) . ¥
to calculate these groups we may replace Q°'° by any resolution of Q° by a°
injectives, Let O —> & — Po _— Pl". be any qk injective resolution of

@™ , and consider the resolution

0—> (@™ ") e — (@™ Y e’ — @)Y et — ...

1

Q°

of @° by Q° injectives, (ecf. 2.9 ).

- ¥ -
Now Ham®(E*, (8" %) ®PY) =Z> mam(F®, ?%) by 2.7  and hence

5.9 By (HmP(E°,Q" 7)) &5 nl(son(E™ P2 )) T Extd (EVR,0")

: %
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making this identification, the pairing 5.8 is simply the standard Yoneda pairing
and is well known to be perfect, cf, Hartshorne [10] for X algebraic, and

S
Suominen for X analytic, [17] . Thus the pairing of spectral sequences at leveil

El ‘is perfect, - But both of the spectral sequences in question are biregular,

In fact both spectral sequences are defined by double complexes Kr’ s with
s >0 sothat Ef’q =0 if q < 0, By the perfectness of the pairings
1-:5"1 =0 if ‘g¥m (this is simply the fact that HX(X,¥) = O and Exti(7,0") = 0
for ¢ >m and J quasi-coherent,) Moreover in both s;aquences Zcpn"q = Zf’q‘ for

r>q+l and Bﬁ’q=}3£’q for r>m-q+1 ., Hence

5.10 . Ei’q = Ez’q‘ r > max(q+1, m-q+1)

“

and the pairing is perfect. on E, . Moreover, on the abuttment we clearly have

F_.. EP =0 and since Ecpo’q =0 for q>m,

EP = £P so that the filtratiom
P+l st

F
p-m
is finite, (and in fact of length < m+l .) The perfection of the peiring on the

abuttment then follows from the result on the.associated graded,

Problem: The duality theorem, at least for coherent complexes should ideally
not require compactness of X ., The statement should of course be modified . from

the pairing of Ext and H to E’ to a pairing of Ex’sc eand H to Ec )

. . ~ - *

L he analytic duality theorem Ext3(E,Q") —> (HYE))" is stated in
Suominen only for the case of coherent E, If E is qué.si-coherent and E = lim E_

. A S f
where E_ 1is coherent then 1im H(X,E_ ) = H(X, lim E_), since X is compact,while

o S a o an 4

lim Ext(Ea,Qm) = Ext(Lim Ea,nm), Thus duality extends to the quasi-ccherent case,
< — ‘
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(e denocting compact supports,) If X is Stein, for example, the pairing is

still "perfect” at level E, by standard duality, but the duality is between
topological vector spaces, Moreover the differentials d{’ 9 need not have closed
imege sc that the duality for E2 is no longer automatic, An example is furnished
by X=C-%Z and E° = ﬂx » which still possesses duality, topological duality

on El' and vector space dvusality on E2 and the abuttment,

The duality theory for lecally free complexes is considerably simpler than the
result for éua.si-coherent complexes and deserve_:s special mention, First of all if
L of ' is a locally free complex (i.e. each 7 is locally free) then the
Ext (7 ,9°) have a simpler description, Note first that for any JZ ,4 one “as a

natural homomorphism

.11 H' (Hom® (¥ ,4)) —> Ext" (7" ,4")
defined by taking O —> & —> Q'" an injective resolution, setting
K' = @ Hm'(7,9'%) , sothat the homomorphism 5.11 is the map

CH (Hom® (77 ,4)) —> H (K") = Ext* (T ,¥)
(ef, 3.2' ) arising from the natural map of complexes
Hom* (T ,& ) —> X’

The mpping 5.11 is in general neither injective nor surjective,

.

Proposition 5.13: Let J €C(X) be a locally free comple3c, then the natural man

B (Hom' (7" ,0°)) —> Ext" (F,0")

is an isomorphism,
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Proof': Let 0 —> Q° —> Q" be a resolution by injective complexes. .The
sequence of complexes

5.14 0 —> Ham' (F",0° ) —> Ham* (7,0 °0) —> Hom' (7* ;47 Y

) —> Ll

is exact, Indeed, the cohomology groups in the sequence are the derived functors
of Ham'(J, ) evaluated at Q' , and may be calculated by replaqing Q" by an
arbitrary resolution of‘ aQr by injective Q' modules P'*, for example

pras _ (nm'r)'*-e P yhere 0 —> Q™ —> P'  is an injective resolution, The

+

cohomology of 5.14 is then the cohomology of
0 —> Ha(P " ,0®) —> Hon(P* " ,P%) —> Ham(P™,Pt) — ...

which is clearly acyclic since the .’fm 4 are locélly free,

Thus 5.14 defines a resolution of Hom'(J ,0°) and consequently the map

Hom" (J',Q" ) —> r_?;:, Hom (J°,Q" ")
induces an isamorphism of cohomology sheaves, Therefore

E(Han'(i‘ ,0°)) _ Ext (T ,0°)  as a.séerted,

Remark 5.15: We know that Ham® (7' ,0°) —> Hom(F 2,0%) by 2.5 .

Thus for J 1locally free Ext(ZJ ,0°) is simply calculated as the hypercohamology
- . R P

of the camplex (.?m ) ® s’zm . The differential operator in this complex is Just

the usual "adjoint" to the differential in J°, cf, ([1], §5 and §11),

Moreover, the Yoneda pairing Ext(F ,0") x H(F') —> H(2") is simply the

cup product



-33-
H(Hom® (" ,0° )) x BIF) —> H(Q")

_and the perfection of the pairing at level El is standard Serre duality,
- - =
w(x, 5P (7 ,07)) = 83X, ()" ®a") veing paired with 2 2x,7P) into

H(X,a") by cup product,

5,16 Finally, we note that in the jocally free case the C  differential forms,
}'{° , may be used to calculate all the pairings in question, Namely, if

& e C(X) define (& ® £-’8)" =g7'5(4) . If & is locally free, then
E*’S($ ) is & fine resilution of ‘& eand the global double camplex rE S ))
nas for total cochomology g(lf‘) . The Yoneﬁa. pairing may be directly calculated as

the cup pairing

Hom’(,?",E") b 4 1"(5' ® E*) —> T(E")' )
Q°

gxa®p —> f#{a) ~B
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§6. Poincare duslity

The Yoneda pairing may well be perfect even though the complexes are not

quasi-coherent, A typical example of this is classical Poincare duality ...

Let X be a complex manifold and ¥ —£—> X a oclosed subvariety of X, U=X -1

Consider the exact sequence of complexes

6.1 0 —> gy —> q > f‘lcz;(_ —>0

where (resp., f'lﬂx) is the (sheaf theoretic) restriction of Qe to U,
(resp. to Y¥) , -extended by zero, Note that g(x,nl}) =H, (U,nU) so that the

hypercohomology sequence of the above sequence may be written
i-1,.-1 i -1
{ d .
6.2 oo —>H (S ax) — =H"c (U,QU) —_— _Hi(ﬂx) —_— _Hi(f (“x)) —_ ..

Since X is nonsingular the ssquence 6,1 is a resolution of the sequence
0 —> GU —_— ¢ — CY —> 0 vwhere { denotes the sheaf of constants, Conse-
quently the hypercchamology sequence above is simply

—-——>-H§(U,C) _ Hi(x,a:) —_— Hi(Y,Cl) > ... .

On the other hand we have the Ext sequence

6.3z ) < ™ Opn) < B a0 < B e e ) -

which pairs with the sequence 6,2 into C , (cf, 4.4,4,5) and this pairing is pert:
-1
even though 'QU and T QX are not guasi-coherent. Fixing an injective resclution

0—>Q* —>Q'* , we recall that Ext(nﬁ (°) 1is the cohamology of Hcm‘(ﬂﬁ,Q") .
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But Han'(nI‘J,Q“) —> I'(U,Q"*) by identifying a homomorphism with the imege of the
constant section 1 over U , The restriction of the sheaves Q' to U gives an
injective resolution on U of @, , so that Ex’c(ﬂt},n') —> H(U,2' ) . Similarly,
Hm(f‘lni,Q") = I"Y(Q") is the sections of Q'° with support in Y and
Ext(f'lgx,g') = EY (ﬂx) . Thus the sequence 6.3 is the local hypercohomology

sequence:

Y

Lo BV o) < B N uay) <— 1) o B a) <

Since X is nonsingular O —> ¢ —> Qx is a resolution and hence the
sbove sequence is simply the local cohamology sequence
om-i+l

<— BHE,0) < B (u,0) <— B (x,0) o— B ix,0) «— L.,

The pairings B (x,6) x BH(X,¢) —> ¢

) x H(U,8) —> ¢

are well known to be perfect and it follows that the pairing -HYE’“‘i(x,c)xH(Y,c) —> e
iz perfect by the f‘ive lemma, (One should check that the pairings above are in fact
the classical DeRham-Poincare duality pairings, ) This is easy to verify, Let

EU denote the sheaf of Gw forms on U extended by zero to X ., Then .

0 —>q, —> EU is a fine resolution of @ and . F(X,El‘]) = I‘C(U,Et'r') can

be used to calculate E_c (U,QU) . The Yoneda peiring is calculated by

Hom(E)»Q") x T (B)") —> I{Q"")

and the fact that Hom(EU,Q") —_— Hom(QU,Q") gives an isomorphism of spectral

sequences, . Let E°* denote the sheaf of € -forms on X and let E°* 2 Q"
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1ift the identity map QX —_—> ﬂx . Note that one has a natural map of double
complexes I'(U,E**) —> Hom(EU.,Q' ") given by "wedge product”, i.e, aeI(U,B**)

defines the map E, —>Q'* , B —=> Aa«pB) ., Observe that

U
MU ") —> Hom(EU,Q") _ Hom(QU,Q' *) =T{(U,Q'*) is simply the map induced
by A and yields an isomorphism of spectral sequences, Thus the Yoneda pairing of
spectral sequences is that given by wedge product, The peiring - to € is then
achieved by integrating aver X the wedge products of forms on U with forms
compactly supported eon U , and is well known tao be perfect., Analogous remarks

apply to the pairing H(X,t) x H(X,¢) —> ¢.)

Remark 6,4: Note that when X is a complex manifold ocne has for any subvariety

Y of dimension d that
H(Y,8) —> K" P(x,e)

as is evident from the duality between H‘?(x,qn) and Hzm'p(Y,rI!) noted above,
In fact the local cohomology sequence is simply the hamclogy sequence of the pair

(X,Y):

e > H(Y,0) —> B (,0) —> H (X,¥; ¢) —> ...

T R g

ey ™ H?-P(X,G‘:) —_— Hzm‘P(X:¢) — Hem_P(U:'ﬁ) —'"7'>l cees
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ﬂl DeRham cohamology of infinitesimal neighborhoods,

Let Y —zf> X Dbe a closed subvariety of X defined by the ideal sheaf I ,
Let U=X-Y, Consider the closed subvariety Y(n) defined by the ideal sheaf
In+l ; (the nth order neighborhood of ¥, ) Let nY (n) be the sheaf of holamorphic

differentials on Y(n) . Define ):n by the exact sequence

—> 0

0 —> — —_—
% " v (n)
or more explicitly by £ = In+ln}'{ + d(InﬂQ‘ 'l) . It will be convenient to define
Y<m) to be the "subvariety" defined by the ideal sheaf 1lim I%'% = OU and <o
<——
. . . -1
employ the notation £ = in T, =q and ny(w) = ax/zw =fa . (of course,

< .
Q'Y(w) # lim gY(n )) . Then for n =0,1,..,,% one has the hypercohamology sequence
. <~

e T B ——> ey —— Plag ) #(g) —> .

and for o« >m>n a homomorphism from the sequence for m to that for n j.nc“-.uced_,

by the inclusion Y®) —» y(®)

Theorem T7.1: Let X bea campact complex menifold, In the commutative d'ia,gra.m

T I EE) = P — i oy, —>

0 A 0

—> B(z,) —> E-P(“x> —_ ___};P(QY(,,

H Il

—> H(Ue)—> B0 — P10 —> ...

)) —_> ...




the vertical arrows are isomorphisms; and consequently the top row is exact,

The equality signs in the above diagram result from the nomsingularity of X
(cfc §6l )o

Remark 7.2: The above theorem asserts that "in the limit" the deRham cohomology
of _Y(n.) calculates the classical cohomology of Y, The limiting process need not
be "essentially constant,” that is no finite value of n need give the 'right"
cohomologye of Y. An example of this phencmenon was di§cwered by R. Slutzki
based upon an example of Reiffen, [14] . Taking X = 11’2 and Y a reduced singular

curve, the deRham complex

0 1
Q ~——> — —
QY(n ) > ﬂ‘r(n) > 0
has HO = CY and will calculate the "correct” cohomology of Y if and only if
H:L = 0 as can be seen from the exact sequence

0 —> K'(C,) —> Hr{a,,)) —> B(HD) —> B2 (o)) — B ) —> 0

f
Y

caming fram the spectral sequence il (Hq(ﬂy(n ) == EPJrq(QY(n)) . (Note that "l-Il

2) .
In the event that Y is nonsingular, the hypercohomology .-].:In(ﬂY(n))

calculates the classical cohamology of Y for all n ., More generally, if every
point pe¥Y has & neighborhood V In X with a hamotopy‘ ' H v x[0,1] —> V with
@(x,t) holamorphic in x for fixed t , @(x,0) = p , w(x,1) = x .and, moreover,
fop{x,t) ¢ I'EVx[O,l] for all fel , then -}-I-(gy(n)) calculates classical
cohamology, This is seen by using ¢ to construct a homotopy for ﬂx which

preserves - 21:1 .
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is supported on the singular locus of Y and hence Hl(Hl) =0 for i>0,)
The nonvanishing of H:L is a local gquestion, and is equivalent to the nonvanishing

of H2 for the complex 0 — 22 - zi —_> zﬁ —> 0 , 1i,e, one must show

1
that In+lﬂ.§ # a(1"ar) to obtain an example, Letting Y be defined by the affine

equation f = xu + ys + y3x2 » oOne may easily check that fndx dy 4is not of the

form d(fng dx + fnh dy) for any g,h , {Note that

Ao,y 510432 3

+y {mod xhy so that if one seeks

_ id _ i . .
g =2 aijx ¥y ,h=2Z bijx ¥ by recursively solving for aij and bij one cobtains

three linear equatios in 301 and bl0 which have no simultaneous solution )

To prove theorem 7,1 we need only establish the dual assertion, namely that in

—> lim Ext®(q y5@) —> 1im Ext®(0,0) —> lim Ex‘tp(zn,n) —

Y{(n

— \L — J/ — J/
7.3 D o "
T B (R gy,0) ———> Ext¥(a,0) > Ext(5,),0) —> ...
. — Hf;’,(x,m) > HP(,e) > B(u,n) — .,

The vertical a;rows are isomorphisms, (Again the equality signs come from
§6 .) TFrom this dual assertion we also see how to calculate ﬁﬁe homology
Hf(Y,C) as a suitable limit of analytic calculations, Moreover, since 1im is
exact, we know that the top row in 7.3 is exact and to show that the map;.ZQe

isomorphisms we need only check that

7.h lim Extp(;:n,n) —> Ext¥(z_,2) = E*(u,¢)

—_—

This result is in fact true in a more general setting, namely let X Dbe a

compact complex reduced analytic space and let Y be d'closed subvariety containing



40-

the singularitlies of X , U =X-Y ,

To prove this we replace the gquestion by a local yuestion, by a procedure

analogous to the local reduction in [8],

Theorem 7.5: Let X De a reduced analytic space and Y a subvariety containing

the singularities of X , U =X-Y, Then the sheaf homomorphisms

lin Bxtd (5,0) —> ExsX(5,,0) = 3% (¢,)

analogous to 7.4 , are isomorphisms,

Assuming this theorem one obtains 7.4 immediately., Indeed for X compact we

have

7.6 Lin B(X,Ext1(5, ,0)) <— K'(X, lim Ext(g ,0)
—> = — =

Thus the morphism of biregular spectral sequences (cf, 3.2)

tim BExt?™ (5 ,0) ——— Ext (5, @)

1 T

Lim BP(Exe (S L)) —> HP(x,Extd (5, 9))
—_— -

is an isamorphism, being an isomorphism at level E2 in view of 7,5 eand T.6.

Theorem 7.5 1is local, and we may therefore assume that r = sup {(minimwn)
T xeX

number of generators of Ix c Gxg is a finite number, and we proceed by induction

on r ,
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Remark T7.7: To prove theorem 7,5 we may clearly replace the sequence of
canplexes Zr'l by any cofinal sequence of complexes, In particular let

Il:)__ I,2...25I 2 ... bea sequence of ideals, cofinal with the powers of I,

2 k

which satisfy a&(I @) € I 8y , (e I, = I') and consider the subcamplexes
i fel

of Q.x defined for n > 1 by

.. . o __ . i
I Q°: 0 >In+mg >In Q >

m
nmes +m-1 e T L 0.

These complexes are cofinal with the {.'n s since

+
n lﬂ. 52{1 _ In+ln, - d(In+la‘) SInQ'

I

We proceed with the inductive proof, Assume that r =1, i.,e. that I = (£),

We show that  lim Ext(z ,a ) —> #% (Lin I'nax) and the isomorphism with
N ==ceeza n _—

Rq:i.,(CU) follows by Grothendieck's theorem 2 in [8] . Note first that
1im Ext}(g ,0.) = lim Bx} (T
— = —_— =

= 14 q, m-s -n
Ry s ) -gExt (™ e 5 I70) .
Fixing an injective resolution 0 —> Q" —> Q" , we note that
I"n ® Q" is a resolution of I-nﬂ' by injective 0° modules and we seek 'bo
canpute the total cohomology of double complex lim Hcmr(Im"n' , I eqs) .,

. , L —
From the inclusion 0 —> I "' —> Q* we have

0 <— lim Hom' (I%° 0 , I ® Q'8) <— lim Ham" (0,1 7Q'%) = 1im I™® & Q*5
—> —_ . —>
in view of the injectivity of Ian,'s and 2,5, (2} . The kernel of this map is

zero, JIndeed, a section & of Llim ™= ® Qr,s represented by a section 8 of
—>
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1™ ®Q°’% yields the element " Pp—> P g (g~ 8) of
lim Han (I°7°Q, I @ Q'% ) which is zero only if £ =0, But the mapping
—_

£ 1im I7Q7’% —= 1im 17°Q"’%  is the limit of the isomorphisms
—_— — )

1P O 19T | 5o that £ = O implies Q = O,

Thus lim Ext(%_,8 ) —> H3(lim I7°Q"), But the injections
- —_—

0—>1I —> 108 Q* induce isomorphisms in cohamqlogy so that

lim Extd(Z 0y ) —> E4(1im 1) , as asserted,
—_— = B _

Proceeding to the case of general r , we note that since the theorem is local,

one may assume I =g, ® g, where Jy = (f) and Jo = (fl""’fr-l) . The

sequence of ideals - Jr]l_ + Jg is cofinal with the powers of I , Let Y'j be the
ntm-. ntm-

subvariety defined by J, and let U, =X-Y, . Let A: = (5] nNay e s
L

B: = g0 g ; C = (Jl;ﬁm"". A+ Jnm") Q' ., Note the exact seguences

J.0 J n 1 2

o ——.—> An —_— Bl,n & BQ,n —_ Cn —> 0
and the hyperext sequences‘:
7.8 —> BxtP(c_,0) —> ExtP(B. _,q) ® ExtP(B, _,0) —> ExtP(A_,0) —>
. S n) l,n, e,nJ ‘ n: R

We know by induction that lim ExtP(Bj n,s’z) o R‘?ij*(ll}U ) . Moreover, by
P . . H
- J

——
o]
—_—

the Artin-Rees lemma (cf, [13]) we know that the sequence of ideals

ntn-.
i

r-1 generatars ({f-f.} , ‘and defines Y, U YE . By induction we therefore have

J n J‘e‘m" is cofinal with the powers of the ideal J .J, . This ideal has

, P/, SR, -
lim Ext™ (A7 , @) —> Rii,, (€5 44 ) -

But considering the diagram
—_— 1 2 ’
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N 14 p — s P . P N 1 P _—
. >}_1g§£t_ (c ,0) >E§E§E (By %) e_limExt (By,40) —> Lim Ext™(a_,0) -->

| Voo T

> 'Rpji*(cU) ® : RpieJé (¢U2) —_— RP112*( %anE):>

—> RP1,(g))

in which the bottom row is the Mayer-Vietoris sequence, we find that

lim Ext®(C_,0) —> RP1,(€,) by the five lemma, Since

lim Ext® (£,,0) —> Lim ExtP(C_,0) , by cofinality, our proof is camplete,
—._.> —_— __> _— -

Theorem T7,10: Let X be a nonsingular camplete algebraic variety over ¢ , Y =
closed subvariety and U =X -Y , Let X', Y' and U' denote the corresponding

analytic spaces, In the commutative diagrams

o —>ln B¥(g) —> EP(q,) ———>ift_n;gp(sz¥(n)) — ...

R | 1

—_— HIC)(U‘,(C) —> X', ¢) > B(YLe) —>

and

eeo ™2 lim Extp(ﬂﬂn):ﬂx) —_ Ep(%() — _lig Eép(znsﬂx) _— .

Ll T

> wP(x',e) > ®(u',e) > ..

. — HPY,(X',G)

the vertical arrows are isomorphisms,
Proof: This may be seen most easily by noting that for each finite n the groups
EP(ES) s Extp(gn,ﬂx) » etc, are isomorphic to the corresponding groups calculated

with analytic forms, [GAGA] , and one reduces to 7.1, 7.3. 1In fact a direct proof
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in the algebraic case is "easier"” than the analytic case, As in the analytic case

the two assertions are dual to one another and it suffices to prove that

'ni,n}'{) - __'IEP(U,QU) since

1im ExtP(5 ,0,) —> E°(U',§)  or that lim ExtP(rM
—_— — n _— _—

this latter group calculates classical cohomology [8]7.

But note the hyperext spectral sequence, 3.2,

E?_’b - Extb(lmanm;,am) =— Ext® (M 8:,0:)
{ |
Ext (I, o)
and the morrhism of spectral sequences
Lim Efﬂ’.a+b (In-!m-,- 2,a%) S _Ea+b(U’aU)
—_ ’W
lim Ext® (%78, o®) > #(U,a®)

—_

which in the algebraic case is already an isanorphism at level E (ef,

l 4
[}"[], Theorem 2.8,) This El isomorphism fails, in the analytic case,

Remark 7,11: One should note the other description of 1lim Eq'(ﬂ'y(n )) which
<— .

has been conscientiously ignored in this note, Namely

.22 Ln B () < En )

where the morphism is induced by the maps lim Q° —_— 0 . This follows from
< ¥(n) Ct(n)

two observations, first that lim gq(nﬁ'z(n)) is the abuttment of a spectral sequence

<—— - .

with Eli’q = lim Hq(X,ﬂ )) , that is, the "dual" spectral sequence to that for

< .

1lim Ext(ﬂy(n),ﬂ)_ To show that 7,12 is an isomorphism it suffices to establish that
—_— .

the map H(X,1lim oF

— ¥

p
Y(n

) —> 1im H4(x,0®, \) at level E. is an isomorphism, which
- ¥(n) 1

a stendard Mittag-Leffler argument ([9] , O, 13.3) .

n)
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