

 XX Workshop de Ingeniería de Software

> Full Papers Página | 264

Conflict resolution for aspect-oriented static modeling

Fernando Pinciroli1, Laura Zeligueta2 and Marcelo Palma2
1 Instituto de Investigaciones, Universidad Nacional de San Juan, Argentina

fpinciroli@iinfo.unsj.edu.ar
2 Research Institute, Universidad Champagnat, Mendoza, Argentina

{zeliguetalaura, mpalma}@uch.edu.ar

Abstract. Separation of concerns allows the achievement of important benefits

in all phases of the software development life cycle. Thus, it is possible to take

advantage of this technique with the consequent improvement of the

understanding of the models. However, conflicts of different types may be
produced when concerns are composed to form a single system, due to the same

fact of having them managed separately. Additionally, this problem is increased

by the number of people needed to deal with large projects. This article is focused

on the composition of concerns in structural models, in which each concern is
realized by an individual class diagram. In this paper, we present an experience

in which four systems analysts elaborated six class diagrams which belong to a

single system, and we expose the conflicts that occurred after the composition of

the diagrams. After the analysis and classification of the conflicts, a set of
modeling agreements and recommendations was elaborated in order to reduce

them. Then, the models were rebuilt and composed again, with a significant

decrease in the number of conflicts detected after the second composition.

Keywords: aspect-oriented models; class models; model composition; conflict

resolution.

1. Introduction

The aspect-oriented paradigm offers a series of benefits that are described in a vast

literature [1] [2] [3], and there is even a great amount of studies which show that, in the

cases where this paradigm was used in real-world settings, those benefits were indeed

achieved [4]. In addition, this approach solves the problems of scattering and tangling

in the source code developed with object-oriented programming [5].
All the advantages are achieved due to modularization, a very important principle

of software engineering [6] [7] where the aspect-oriented approach makes the most of

keeping the crosscutting concerns separate throughout the entire software development

life cycle [7]. Separation of concerns allows the achievement of these benefits not only

in the programming phase, but also in all phases of the life cycle [8] [9]. Thus, it is

possible to take advantage of the benefits of the reduction of size in software models,

with the consequent improvement of the understanding of the models [10].

It might be the case that separation of concerns may generate conflicts of different

types when concerns are composed to form a single system, as a result of having

managed the concerns separately [11] [12] [13]. And this risk is increased by the

number of people needed to deal with large projects.

In this article, we study the conflicts that arise after the composition of concerns in

structural models. These models are generally made with class diagrams, and each

mailto:fpinciroli@iinfo.unsj.edu.ar

 XX Workshop de Ingeniería de Software

> Full Papers Página | 265

concern is realized by an individual class diagram [14]. Every concern usually contains

classes that are also present in other diagrams, although with different members and

relationships, due to the specific nature of the concern they realize. In a system of

medium to high complexity, the intervention of several analysts is required. However,

due to the different working styles they can have, many other conflicts may take place

when all diagrams are composed into only one. We present an experience in which four

systems analysts elaborated six class diagrams of a same system and we present the

conflicts which occurred after the composition of the diagrams. Research in the field of

software engineering requires the empirical study of phenomena that take place in the

real world and, for this work, we have used a qualitative method called post-mortem

analysis [15].

In Section 2, we briefly describe the process we have followed to develop the class

models individually. Section 3 presents the strategy we chose to compose the models

for the first time. In Section 4 we discuss the findings, focusing on the main conflicts

detected after the first composition. Section 5 offers the modeling agreements which

emerged after the analysis and classification of conflict types detected and the analysts

used to rebuild their models. In Section 6 we present the new results after the second

composition and, in Section 7, we provide the final results by comparing the conflicts

between both compositions, with and without the modeling agreements. Finally,

Section 8 presents our conclusions and the final thoughts with regard to future work.

2. Elaboration of class models

In order to conduct this study in the software development life cycle stage

corresponding to static modeling, four systems analysts were summoned, each of which

developed four class diagrams corresponding to three processes that belong to a

biochemical laboratory. These three processes were selected from among the most

complex of the 85 processes automated by the software system under study: manage

protocol, transfer sample and receive sample.
Three analysts drew up one diagram each, while the fourth analyst, who we shall

refer to as “expert analyst”, given his vast experience in the problem domain, drew up

diagrams of the three processes. This distribution allowed us to compare the difference

in the number of conflicts that occur if the diagrams are made by a single person or by

a team. It was also ensured that each diagram has been developed by two analysts, to

observe the conflicts that arise when models are built from two different points of view.
Each class diagram performs a single functional software requirement, in order to

keep concerns separate throughout the entire life cycle, as proposed by various authors

[14] [16] [17]. In the symmetric aspect-oriented approach, each model is equally

important, as, as opposed to the asymmetric approach, in which a base portion of the

system is considered to be affected by crosscutting concerns [18] [19].
After individual modeling, we obtained six class diagrams, and the number of

classes shown in Table 1. The differences in the number of classes already suggest the

appearance of a significant number of conflicts.

 XX Workshop de Ingeniería de Software

> Full Papers Página | 266

Table 1. Classes obtained.

Analyst
Concern

Manage protocols Transfer samples Receive samples

#1 50

#2

23

#3

18
#4 38 32 29

The analyst #4 -the expert analyst- modeled 99 classes to build the three class

diagrams used for the experience. The entire model of the laboratory is made up of 202

classes, of which the concerns selected in this work cover approximately 50% of the

whole model.

3. First composition of the models

The purpose of this work is to study the conflicts that may occur when several

analysts intervene in the production of different parts of the static modeling within the

same system, at the abstraction level of software requirements. Thus, we have produced

a single model by applying a composition process on the six class diagrams developed

by the different analysts.
The composition techniques can be classified into two categories: specification-

based and heuristic-based techniques [20]. In specification-based techniques, the

analysts explicitly specify the relationships among the elements of the source models

before being composed [21] [22]; in heuristic-based techniques, the relationships are

guessed by a set of predefined heuristics.

There are four proposed heuristic-based composition techniques: merge [14] [17]

[23], override [14] [17] [24], select [14] and union [20]. In our work, we applied merge,

but we made a variation to the original merge technique. Instead of overlapping the

members when they have the same names, we duplicated them if they have different

data types, which in turn avoids the “structural superimposition problem” highlighted

by Tian et al. [25]. As a result, with this new alternative of composition, we now have

five forms of composition: merge by overlapping, merge by duplication (the new one),

override, select and union.

Manual composition is complicated and susceptible to human error [24], but we

wanted to conduct it that way in order to accurately analyze every conflict or matching,

classify each conflict and be able to design standard solutions to prevent or, at least,

reduce their appearance.

Although the composition was carried out manually and guided by the expert

analyst, we used Enterprise Architect to facilitate the detection of inconsistencies and

avoid errors.

The composition process was as follows:

• We first composed 3 class diagrams out of the ones created by the expert analyst

who drew up all the models. Some conflicts occurred at this stage, but all of them

 XX Workshop de Ingeniería de Software

> Full Papers Página | 267

were due to human error which, once corrected, resulted in a single, perfectly

composed model, without conflicts.

• Then, we added the three remaining diagrams, one by one, by using the technique

called “element matching” [26], and looked for elements with matching signatures

to be composed.

• Every time we composed an element or a member, we updated the statistics.

The criteria for class composition were:

• We took a class and looked for it in the model by signature: name and {isAbstract}

[27]. If it already existed, we considered it a “matching class”, if not, an “added

class”.

• In the case of an “added class”, we analyzed if it already existed in the model with

a different name or if it did not exist at all. In the first case, we considered it, then,

as a “conflicting class”; otherwise, we considered the class arose simply due to a

different analysis.

The criteria for attribute composition were:

• All the attributes of the “added classes” were considered as arising from a different

analysis.

• The attributes of the matching classes were classified into three types:

o “Matching attribute”: those whose signatures completely match [27]: name,

data type, visibility and properties.

o “Conflicting attribute”: those that match in name but not in type, or that do not

match in name but represent the same concept as another existing attribute.

o “Added attribute”: those that simply come from a different analysis.

Once the composition was completed, we obtained the results we shall present in

the next section. There, we also analyze the causes of the production of added and

conflicting classes and attributes.

4. Conflicts detected after the first composition

According to what was mentioned in Section 3, the modeling of the expert analyst

who developed all the models should not have conflicts, except for some human errors

we had already detected when reviewing the resulting models and that could easily be

corrected. According to Bussard et al. [28] this strategy could prevent inherent conflicts,

which can be also classified as semantic conflicts [25].
However, the composition of the models developed by the rest of the analysts did

present different types of conflicts, which we describe below. All the conflicts detected

could be classified as semantic conflicts.
Conflict #1: the same concept modeled in different ways. This is one kind of

“redundancy” [29]. The analysts modeled the same reality in different ways, so different

classes appeared in the composed model to represent the same concept. Table 2 shows

the number of different classes, “added classes”, with respect to the one designed by

the expert analyst, and how many of them correspond to a different modeling style. The

“Percentage of total” column indicates the fraction of added classes with respect to the

total of classes. The “Percentage on added classes” column indicates the fraction of

 XX Workshop de Ingeniería de Software

> Full Papers Página | 268

classes that appeared due to a different modeling with respect to the total of added

classes.

Table 2. Conflicts due to “added classes”.

Analyst Total

classes

Added

classes
Percentage of

total

Different

modeling
Percentage on

added classes
#1 50 41 82.00% 25 60.98%
#2 18 13 72.22% 12 92.31%
#3 23 14 60.87% 3 21.43%

Total 91 68 74.73% 40 58.82%

Conflict #2: The same class named differently. This conflict can also be classified

as “redundancy” (Table 3). Since the composition is made by combining elements with

the same names, another conflict occurs when analysts use different names to label the

same concepts. We call them “conflicting classes”. France et al. propose the use of “pre-

merge directives” to solve this issue [24].

Table 3. Conflicts due to “conflicting classes”.

Analyst Different classes Different naming Percentage
#1 41 16 39.02%
#2 13 1 7.69%
#3 14 11 78.57%

Total 68 28 41.18%

Conflict #3: Different classes with the same name. The other side of the conflict

mentioned in the previous point corresponds to the use of the same name to name

different classes. We did not detect any such cases, categorized as “naming conflicts on

aspects” [25] or as “inconsistency” [29].

Conflict #4: Attributes of different classes. The different classes from the analysts

have attributes that could be representing the same concepts, but which cannot be

composed because they belong to different classes. Table 4 shows the number of

attributes that cannot be composed.

Table 4. Conflicts due to “added attributes” belonging to “added classes”.

Analyst Total attributes Attributes of different classes Percentage
#1 99 72 72.73%
#2 65 51 78.46%
#3 61 33 54.10%

Total 225 156 69.33%

Conflict #5: The same attribute modeled in different ways. Again, this is another

kind of “redundancy” type. The analysts modeled the same reality in different ways, so

different attributes appear in the composite model to represent the same concept. Table

5 shows the number of attributes other than those specified by the expert analyst, and

how many of them correspond to a different modeling style.

 XX Workshop de Ingeniería de Software

> Full Papers Página | 269

Table 5. Conflicts due to “added attributes” belonging to “matching classes”.

Analyst Different attributes Different modeling Percentage
#1 22 10 45.45%
#2 14 6 42.86%
#3 28 5 17.86%

Total 64 21 32.81%

Conflict #6: The same attribute named differently. This is another conflict of

“redundancy”. Since the composition is made by combining elements with the same

name, another conflict occurs when analysts use different names to label the same

concepts (attributes). This type of conflict is called “naming conflicts on object-oriented

components” by Tian et al. [25]. Table 6 shows the number of identical attributes

belonging to identical classes, but to which different names were assigned.

Table 6. Conflicts due to “conflicting attributes”.

Analyst Different classes Different naming Percentage
#1 22 12 60.98%
#2 14 8 92.31%
#3 28 23 21.43%

Total 64 43 67.19%

Conflict #7: Different attributes with the same name. As with classes, it would be

possible for analysts to name different attributes with the same name. We also did not

find this kind of inconsistency present in our composed models.

Conflict #8: Different styles of relationships. Because of the number of conflicts

between classes are very high at this point, we considered it did not make sense to

analyze conflicts in relationships among classes, an analysis we hope to carry out once

we are able to reduce conflicts between classes.

5. Modeling agreements and second composition

Most conflict resolution methods require formal specifications [29] [30] [31] [32],

while Sardinha et al. offer a tool that does not require formality but only detects

conflicts in specifications of high-level requirements and not in classes [31]. Based on

the types of conflicts detected, we developed a set of modeling agreements to avoid

them or, at least, to reduce them. This experience was originally performed in Spanish

and, as a result, many of the solutions are specific to that language. Undoubtedly, it will

be necessary to adapt the modeling agreements to every different language.

In general, conflicts can be classified into syntactic and semantic categories [20]. In

Table 7 we present the recommendations we elaborated to solve the conflicts that were

detected after the first composition.

 XX Workshop de Ingeniería de Software

> Full Papers Página | 270

Table 7. Modeling agreements.

Scope Type Rule Explanation
General Syntactic UML standard UML 2.5.1 standard must be strictly followed.

Class

Semantic
Class instead of
attribute

All attributes that could be modeled as a class
must be represented that way.

Syntactic Association class
Model the association-class as a single class and

add the association-class constraint to it.

Semantic Many-to-many class

The team must agree on a suitable name; if there
isn't one, name the many-to-many class with the

two names of the connected classes, in

alphabetical order.

Semantic
Generalization or

“Type” class

Use generalization when the subtypes require

different members or relationships among them.

Use “Type” class when subtypes are not different

among them or if they are just a list.

Syntactic Use of prepositions Avoid the use of prepositions in class names.

Syntactic Use of accent mark
Avoid the use of accent marks (for languages

other than English).

Semantic Use of adjectives
Avoid adjectives if possible. Use them if strictly

necessary.

Semantic Use of plural
Avoid the use of plural names. Use them only if

strictly necessary.

Syntactic Standard characters Use only standard characters in class names.

Syntactic CamelCase Class names must follow the CamelCase pattern.

Semantic Record

Add the word “Record” as a suffix to name

classes with historical elements as objects (it

could be a prefix in languages other than

English).

Semantic Classes with items

Add the word “Item” as a suffix to name classes

with items (it could be a prefix in languages other

than English).

Attribute

Semantic Data types
Define a standard set of data types: int, bool,
char, etc.

Semantic Date and time Use separate attributes for each concept.

Semantic Logical erase
Use the name “isActive” to indicate logical

deletion.
Semantic Id# Avoid the use of Id# attributes.

Semantic Derived attributes Avoid the use of derived attributes.

Semantic Use of prepositions Avoid the use of prepositions in attribute names.

Syntactic Use of accent mark
Avoid the use of accent marks (for languages
other than English).

Semantic Use of adjectives
Avoid adjectives if possible. Use them if strictly

necessary.

Semantic Use of plural
Avoid the use of plural names. Use them only if
strictly necessary.

Syntactic Standard characters Use only standard characters in attribute names.

Syntactic camelCase
Attribute names must follow the camelCase

pattern.
Semantic Boolean attributes Use a verb as a prefix in boolean attributes.

Semantic Completeness Check all the attributes have data type.

Semantic Properties Can be used as usual.

 XX Workshop de Ingeniería de Software

> Full Papers Página | 271

Scope Type Rule Explanation

Semantic Standard names

Use standard names for the most common

attributes. i.e.:

- “name”: for the object name.

- “number”: for the object number.

- “description”: for the explanation of the

meaning of the object.

- “comments”: for comments,

observations, etc.

- Suffixes “From” and “To” for ranges.

- “value”: for value, price, etc.

- “date”: for the object creation date.

- “surname”: for family name.

“name”: in singular, for names.

Relation-

ship

Semantic Generalization

Can be used as usual, but the generalization:

- must follow Liskow’s principle.

- must be checked against cyclic and

conflicting inheritance and conflicting to avoid
the “object-oriented composition problem [25].

will be flattened before the composition and

abstract classes will disappear.

Syntactic Generalization lines
Join the generalization lines when the subtypes

belong to the abstraction.

Semantic
Composition and

aggregation
Can be used as recommended in UML.

Semantic “1..1” multiplicity
Check if it can be “1..*” with the question: “Do
we need history?”.

Semantic “1..*” multiplicity

Check if it can be “0..*” with the question: “Can

we find some case where the multiplicity can be

0?”.

Syntactic
Unknown

multiplicity
Leave blank when the multiplicity is unknown.

Semantic Navigation Can be used as usual.

Semantic Use of prepositions
Avoid the use of prepositions in relationship
names.

Syntactic Use of accent mark
Avoid the use of accent marks (for languages other

than English).

Semantic Use of adjectives
Avoid adjectives if possible. Use them if strictly
necessary.

Semantic Use of plural
Avoid the use of plural names. Use them only if

strictly necessary.

Syntactic Standard characters
Use only standard characters in relationship

names.

Syntactic CamelCase Class names must follow the CamelCase pattern.

Semantic Unary relationship Use role names at each end of the relationship.
Semantic Constraints Can be used as usual.

After our first composition, these modeling agreements were shared and explained

within the team. Then, the analysts corrected their previous six class diagrams by

applying the model agreements. These diagrams were composed again, following the

same strategy:

 XX Workshop de Ingeniería de Software

> Full Papers Página | 272

• The composition technique was merged by duplication.

• We first composed the 3 class diagrams of the expert analyst.

• Then, we added the three remaining diagrams, one by one.

• Every time we composed an element or a member, we updated the statistics.

• Finally, we compared the statistics of both compositions.

6. Conflicts detected after the second composition

In this section we present the results obtained for every type of conflict after the

second composition.

Conflict #1: The same concept modeled in different ways. The analysts modeled

the same reality in different ways. As a result, different classes appeared in the

composed model to represent the same concept. Table 8 shows the number of different

classes, namely “added classes”, with respect to those designed by the expert analyst,

and how many of them correspond to a different modeling style. The “Percentage on

added classes” column indicates the rate of classes due to a different modeling with

respect to the total of classes that were added.

Table 8. Conflicts due to “added classes”.

Analyst Total

classes

Added

classes
Percentage

of total

Different

modeling
Percentage on

added classes
#1 50 31 59.62% 28 90.32%
#2 18 13 72.22% 12 92.31%
#3 23 5 21.74% 3 60.00%

Total 91 49 44.55% 43 87.76%

Conflict #2: The same class named differently. Since the composition is made by

combining elements with the same names, another conflict occurs when analysts use

different names to label the same concepts. We shall refer to them “conflicting classes”

(Table 9).

Table 9. Conflicts due to “conflicting classes”.

Analyst Different classes Different naming Percentage
#1 31 3 9.68%
#2 13 1 7.69%
#3 5 2 40.00%

Total 49 6 12.24%

Conflict #3: Attributes of different classes. The different classes among the analysts

have attributes that could be representing the same concepts, but they cannot be

composed because they belong to different classes (Table 10).

Table 10. Conflicts due to “added attributes” belonging to “added classes”.

Analyst Total attributes Attributes of different classes Percentage

 XX Workshop de Ingeniería de Software

> Full Papers Página | 273

#1 140 72 51.43%
#2 67 55 82.09%
#3 61 10 16.39%

Total 268 137 51.12%

Conflict #4: The same attribute modeled in different ways. The analysts modeled

the same reality in different ways, so different attributes appear in the composite model

to represent the same thing. Table 11 shows the number of attributes other than those

of the expert analyst, and how many of them correspond to a different modeling style.

Table 11. Conflicts due to “added attributes” belonging to “matching classes”.

Analyst Different attributes Different modeling Percentage
#1 33 29 87.88%
#2 5 3 60.00%
#3 11 8 72.73%

Total 49 40 81.63%

Conflict #5: The same attribute named differently. Since the composition is made

by combining elements with the same names, another conflict occurs when analysts use

different names to label the same concepts (attributes). Table 12 shows the number of

identical attributes belonging to identical classes, but to which different names were

assigned.

Table 12. Conflicts due to “conflicting attributes”.

Analyst Different classes Different naming Percentage
#1 22 4 12.12%
#2 14 2 40.00%
#3 28 3 27.27%

Total 64 9 18.37%

Conflict #6: Redundancy conflicts. We were able to confirm the need to perform

an activity after composing, which is called “post-merge” by different authors [24] [27].

In our experiment, non-derived attributes in their respective source diagrams

became derived attributes when they were combined by the merging process. For

example, “age” and “date of birth” together make the former derive from the latter.

Then, after the composition of the class diagrams, we see as necessary to carry out a

new activity to correct the redundancy conflicts that may have arisen.

7. Final results

After the second composition, we collected the differences found with respect to the

first composition. It is possible to observe a substantial improvement after the

application of the modeling agreements in the production of the models elaborated

independently by the different analysts.

 XX Workshop de Ingeniería de Software

> Full Papers Página | 274

Conflict #1: The same concept modeled in different ways. Table 13 compares

Tables 2 and 8 and shows that the number of added classes was reduced by 58.62%. We

also obtained a 32.97% improvement because these classes are produced by a difference

in the analysts' modeling style, which went from 58.85% to 87.76%. We believe that it

would not be possible to improve this number with rules, but analysts should have prior

training to align their modeling styles.

Table 13. Improvement after the second composition in “added classes”.

Composition Added classes Different modeling
1st composition 74.73% 58.85%
2nd composition 44.55% 87.76%
Improvement 58.62% 32.97%

Conflict #2: The same class named differently. Table 14 compares Tables 3 and 9

and shows a significant improvement in the reduction of conflicts due to the different

naming criteria of the classes, which were unified by the rules of the modeling

agreement.

Table 14. Improvement after the second composition in “conflicting classes”.

Composition Different naming

1st composition 41.18%

2nd composition 12.24%

Improvement 70.26%

Conflict #3: Attributes of different classes. Table 15 compares Tables 4 and 10 and

presents the logical reduction due to the lower number of added classes, as commented

in point 7.1.

Table 15. Improvement after the second composition in “added attributes” belonging to

“added classes”.

Composition Attributes of different classes

1st composition 69.33%

2nd composition 51.12%

Improvement 26.27%

Conflict #4: The same attribute modeled in different ways. As previously

mentioned, the decrease of conflicts due to differences in conventions means that these

differences lie in the diverse modeling styles of the analysts involved in the project, as

can be seen in Table 16, which compares Tables 5 and 11.

Table 16. Improvement after the second composition in “added attributes” belonging to

“matching classes”.

 XX Workshop de Ingeniería de Software

> Full Papers Página | 275

Composition Different attribute modeling

1st composition 32.81%

2nd composition 81.63%

Improvement 59.80%

Conflict #5: The same attribute named differently. Table 17 shows, once again, a

significant improvement in the reduction of conflicts due to the different naming criteria

of the attributes, which were unified by the rules of the modeling agreement. It

compares Tables 6 and 12.

Table 17. Improvement after the second composition in “conflicting attributes”.

Composition Different attribute naming

1st composition 67.19%

2nd composition 18.37%

Improvement 72.66%

Finally, the matching classes and attributes increased notably. Table 18 summarizes

our findings on this issue. The percentages of the matching classes and attributes were

calculated with respect to the total of classes and attributes respectively.

Table 18. Matching classes and attributes.

Composition Matching classes Matching attributes

1st composition 23 out of 128 5 out of 225

2nd composition 44 out of 110 82 out of 268

Improvement 55.08% 92.74%

8. Conclusions

We have mentioned that separation of concerns throughout the software

development life cycle has the possibility that conflicts of different types may be

generated when concerns are composed to form a single system, given the fact that the

concerns have been managed separately.
Since each concern is realized by an individual class diagram, all of them have

shared classes, although with different members and relationships, due to the specific

nature of the concern they realize. Therefore, in Section 4 we have described the

conflicts that arose when all the diagrams were composed into only one due to the

different working styles performed by different analysts. Thus, throughout our

experiment, we were able to demonstrate that the need to establish modeling criteria

and rules is critical, in order to reduce the amount and types of conflicts that occur when

different analysts intervene to produce, separately, the models that will end up being

composed in only one.

This article is part of a larger research project [37] where a series of research is being

caried out concerning a framework process that has been developing for several years

[36] [37] [38], although there are still many lines open for future work.

 XX Workshop de Ingeniería de Software

> Full Papers Página | 276

Regarding this, we believe there is a lot to do about pre and post composition

activities [28]. We are thinking about deepening the study on the impact of changes we

do during the composition: addition, removal, modification and derivation of elements

in the composed model [21]. The production of modeling patterns will also be very

useful. Rules and conventions for naming elements are crucial since the names of the

modeling elements are the basis of composition. The study of the different conflict

types and their classification will also be a great contribution to design techniques that

allow them to be addressed and solved more effectively. The composition of

relationships is also an important area to explore [30]. Finally, the automatization of

modeling agreements, and the use of online collaborative model editors, will be of great

help to obtain an efficient model composition.

References

[1] FanJiang Y, Kuo J, Ma S, Huang W (2010) An Aspect-Oriented Approach for Mobile

Embedded Software Modeling. In: Taniar D, Gervasi O, Murgante B, Pardede E, Apduhan

BO (eds.) Computational Science and Its Applications, ICCSA 2010, vol. 6017, Berlin,

Heidelberg, pp. 257–272. doi: 10.1007/978-3-642-12165-4_21.
[2] Jalali A (2015) Static Weaving in Aspect Oriented Business Process Management.

Conceptual Modeling, Stockholm, pp. 548–557.

[3] Singh N, Singh Gill N (2012) Towards an Integrated AORE Process Model for Handling

Crosscutting Concerns. IJCA, vol. 37, no. 3, pp. 18–24. doi: 10.5120/4587-6525.
[4] Pinciroli F, Barros Justo JL, Forradellas R (2020) Systematic mapping study: On the

coverage of aspect-oriented methodologies for the early phases of the software

development life cycle. Journal of King Saud University - Computer and Information

Sciences. doi: 10.1016/j.jksuci.2020.10.029.
[5] Kiczales G et al. (1997) Aspect Oriented Programming. Proceedings of the European

Conference on Object-Oriented Programming (ECOOP), vol. 1241, p. 25.

[6] Parnas DL (1972) On the criteria to be used in decomposing systems into modules.

Commun. ACM, vol. 15, no. 12, pp. 1053–1058. doi: 10.1145/361598.361623.
[7] Dijkstra EW (1982) Selected writings on computing: a personal perspective. Springer-

Verlag, New York.

[8] Ye S, He C (2013) A comparison of methods for identification of early aspects. Proceedings

of 2013 3rd International Conference on Computer Science and Network Technology,
Dalian, pp. 275–279. doi: 10.1109/ICCSNT.2013.6967112.

[9] Rashid A, Moreira A (2006) Domain Models Are NOT Aspect Free. In: Nierstrasz O,

Whittle J, Harel D, Reggio G (eds.) Model Driven Engineering Languages and Systems,

vol. 4199, Berlin, Heidelberg, pp. 155–169. doi: 10.1007/11880240_12.
[10] Rashid A et al. (2010) Aspect-Oriented Software Development in Practice: Tales from

AOSD-Europe. Computer, vol. 43, no. 2, pp. 19–26. doi: 10.1109/MC.2010.30.

[11] Vanoli VL, Marcos CA (2007) Early Conflicts: Análisis y Resolución de Conflictos

Tempranos. XIX Encuentro Chileno de Computación, Jornadas Chilenas de Computación,
Iquique, p. 1-14.

[12] Sardinha A, Araújo J, Moreira A, Rashid A (2010) Conflict Management in Aspect-

Oriented Requirements Engineering. Information Sciences and Technologies Bulletin of

the ACM Slovakia, vol. 2, no. 1, pp. 56-59.
[13] Pryor JL, Marcos C (2003) Solving Conflicts in Aspect-Oriented Applications. Proceedings

of the Fourth Argentine Symposium on Software Engineering (ASSE´2003), Jornadas

Argentinas de Informática e Investigación Operativa, vol. 32, Buenos Aires, pp. 1-10.

 XX Workshop de Ingeniería de Software

> Full Papers Página | 277

[14] Pinciroli F (2020) Proceso marco orientado a aspectos en las etapas tempranas del ciclo de
vida del desarrollo de software para una transición en la industria. PhD tesis, Universidad

Nacional de San Juan, San Juan.

[15] Wohlin C, Höst M, Henningsson K (2006) Empirical Research Methods in Web and

Software Engineering. In: Mendes E, Mosley N (eds.) Web Engineering, Springer-Verlag,
Berlin/Heidelberg, pp. 409–430. doi: 10.1007/3-540-28218-1_13.

[16] Jacobson I, Ng PW (2005) Aspect-oriented software development with use cases. Upper

Saddle River, Addison-Wesley.

[17] Clarke S, Baniassad E (2005) Aspect-oriented analysis and design: the theme approach.
Upper Saddle River, Addison-Wesley.

[18] Bálik J, Vranić V (2012) Symmetric aspect-orientation: some practical consequences.

Proceedings of the 2012 workshop on Next Generation Modularity Approaches for

Requirements and Architecture, NEMARA ’12, Potsdam, p. 7. doi:
10.1145/2162004.2162007.

[19] Reddy YR et al. (2006) Directives for Composing Aspect-Oriented Design Class Models.

In: Rashid A, Aksit M (eds.) Transactions on Aspect-Oriented Software Development I,

vol. 3880, Berlin, Heidelberg, , pp. 75–105 . doi: 10.1007/11687061_3.
[20] Farias de Oliveira KS (2012) Empirical Evaluation of Effort on Composing Design Models.

Pontificia Universidade Católica do Rio de Janeiro, Rio de Janeiro.

[21] Kolovos D, Rose L, García-Domínguez A, Paige RF (2022) The Epsilon Book.

https://www.eclipse.org/epsilon/doc/book/EpsilonBook.pdf. Accessed 7 March 2022.
[22] Whittle J, Jayaraman P, Elkhodary A, Moreira A, Araújo J (2009) MATA: A Unified

Approach for Composing UML Aspect Models Based on Graph Transformation. In: Katz

S, Ossher H, France R, Jézéquel JM (eds.) Transactions on Aspect-Oriented Software

Development VI, vol. 5560, Berlin, Heidelberg, pp. 191–237. doi: 10.1007/978-3-642-
03764-1_6.

[23] Object Management Group: OMG® Unified Modeling Language® version 2.5.1. OMG®

Unified Modeling Language®. https://www.omg.org/spec/UML/2.5.1/PDF. Accessed 7

March 2022.
[24] France R, Fleurey F, Reddy R, Baudry B, Ghosh S (2007) Providing Support for Model

Composition in Metamodels. 11th IEEE International Enterprise Distributed Object

Computing Conference (EDOC 2007), Annapolis, pp. 253–253. doi:

10.1109/EDOC.2007.55.
[25] Tian K, Cooper K, Zhang K, Yu H (2009) A Classification of Aspect Composition

Problems. 2009 Third IEEE International Conference on Secure Software Integration and

Reliability Improvement, Shanghai, pp. 101–109. doi: 10.1109/SSIRI.2009.33.

[26] Kienzle J, Al Abed W, Jacques K (2009) Aspect-oriented multi-view modeling.
Proceedings of the 8th ACM international conference on Aspect-oriented software

development, AOSD ’09, Charlottesville, p. 87. doi: 10.1145/1509239.1509252.

[27] Reddy R, France R, Fleuery F, Baudry B (2005) Model Composition - A Signature based

approach. Proceedings Aspect Oriented Modeling Workshop, MODELS/UML, Montego
Bay.

[28] Bussard L, Carver L, Ernst E, Jung M, Robillard M, Speck A (2000) Safe Aspect

Composition. European Conference on Object-Oriented programming, ECOOP 2000,

Sophia, Antípolis and Cannes.
[29] Elasri H, Elabbassi E, Abderrahim S (2018) Semantic integration of UML class diagram

with semantic validation on segments of mappings, arXiv:1801.04482 [cs.SE].

[30] Laney R, Barroca L, Jackson M, Nuseibeh B (2004) Composing requirements using

problem frames. Proceedings of the 12th IEEE International Requirements Engineering
Conference, Kyoto, pp. 113–122. doi: 10.1109/ICRE.2004.1335670.

[31] Mostefaoui F, Vachon J (2007) Design-Level Detection of Interactions in Aspect-UML

Models Using Alloy. JOT, vol. 6, no. 7, p. 137. doi: 10.5381/jot.2007.6.7.a6.

 XX Workshop de Ingeniería de Software

> Full Papers Página | 278

[32] Weston N, Chitchyan R, Rashid A (2008) A Formal Approach to Semantic Composition of
Aspect-Oriented Requirements. 6th IEEE Intl. Req. Eng. Conference, Barcelona, pp. 173–

182. doi: 10.1109/RE.2008.42.

[33] Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting systematic

mapping studies in software engineering: An update. Information and Software
Technology, vol. 64, pp. 1–18. doi: 10.1016/j.infsof.2015.03.007.

[34] Pinciroli F, Zeligueta L, Palma M, Cappello I, Motta E (2021) Desarrollo de incumbencias

en el modelado de la vista estática. XXIII Workshop de Investigadores en Ciencias de la

Computación, WICC 2021, Chilecito.
[35] Pinciroli F (2015) AOP4ST – Aspect-Oriented Process for a Smooth Transition.

Proceedings of the XVII Workshop de Investigadores en Ciencias de la Computación,

WICC 2015, Salta, p. 5.

[36] Pinciroli F, Barros Justo JL (2017) Early aspects in ‘Aspect-Oriented Process for a Smooth
Transition’. XIV Workshop Ingeniería de Software (WIS), Congreso Argentino de Ciencias

de la Comp., CACIC 2017, La Plata.

[37] Pinciroli F (2019) Modeling the Static View in Aspect-Oriented Software Development.

Proceedings of the III International Congress on Computer Sciences and Information
Systems, CICCSI 2019, Mendoza.

	XX Workshop de Ingeniería de Software > Full Papers
	Conflict resolution for aspect-oriented static modeling
	1. Introduction
	2. Elaboration of class models
	3. First composition of the models
	4. Conflicts detected after the first composition
	5. Modeling agreements and second composition
	6. Conflicts detected after the second composition
	7. Final results
	8. Conclusions
	References

