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1 - Introduction. In this paper we introduce a class of

locatfion estimators which seemingly has not received

much attentiop up to now. Let xl...., xn be {.1.d. random
varfables with common distribution function F(x - &),
where F(x) has a symmetric density f(x). Consider a non-
negative and nonincreasing function a(t) defined in 10,1},
such that Il a(u) du = 1. For each t ¢ R we define the
t-order stat?stics as: xin(t) - xk i1f there ®xist exactly
(1 - 1) Xj's such that IXJ - t] < [X, - t]; and we define

the new varjable
. -1 D |
T,(t) = n 121 a(i/n) X, (t).

Suppose we have an initial estimator g of . It
seems reasonable to measure the reliability of each
observation X, according tc its distance to 8; thus we
may construct a new estimator of 0 as a weighted average,
where the observations close to & receive larger weights,
f.e., as Tn(g).

A natural possibility 1s to look for the estimator
; which is finvariant for the tranformation Tn(.), i.e.,

which satisfies
(1.1) Tn(e) = 3,

We shall call the estimator defined by (1.1) a “fixed-
point" estimate, to d!stingufsh it from Tn(B) which we

shall call a "oneestep" estimate.
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It can be verified that the value of © which minimizes

g (X;,(8) - 0)% a(i/n) satisfies (1.1).

i=1

The case in which a(u) = (1 - Zm)'1 I(fu <1 - 2a) may
be considered as 3 kind of "trimming"” around the estimator
ftself. Gnanadesikan and Kettenring [2] considered a similar
proposal in the context of multivariate data analysis. More
recently Shorack [ 8] studied a class of estimators which
contains the one-step version of these trimming estimates.

in section 2 we shall prove the asymptbtic normality
of the estimates defined by (1.1), we shal) calculate their
asymptotic variances and we shall show that they are equi-
valent to a suftabie M-estimator (Huber [4]) defined as a

n
solution © of the equation Zl v (X, - ) = 0, where
i=
(1.2) Ux) = x a{F(|x|) - F(-|x])).

Similar results are cbtained for the ones tep estimates,
in section 3.

In section & we obtain by Monte Carlo methods the
varfances of soie fixed-point estimators and of their one-
step versions, for the Normal and Cauchy distributions.

The resuts seem to indicate that it 1s not possible to find

robuyst estimates within this class

2~ Asymptotic distributions. For notational convenience,

¢efine For ail ¢ ¢ R

(2.1) L () = oMET (t) - )



1/2

.20 wy(e) e w2 § gy )

where wis gfven by (1.2). We may write (1.1) as
(2.3) Ln(e) = 0,
We shall need the following assumptions:

A1) The distribution function F has a symmetric density f.

A2) 1(f) = [ 0O /F ()2 F(x) dx < =,
.1 -
B1) L a{u) du = 1, a(u) > O.

B2) a(u) 15 monotone nonincreasing

B3) There exists a ¢ (0,1) such that a(u) = 0 for

l -a<uc<l.

B4) The function a has a finite number of discontinuities.

Let ¥ be defined by (1.2). The following "assumption” is in

fact a conseaquence of B2, £3 and B4:

C1) v= ¢ - ¥, where ¥ and ¢ are monotone nondecreasing

and

I " [J— (x+h) -9 (:ux-h)]Z dfF(x) = o1) for h +» 0,

We shall also need:

€2) There exist coefficients A(vX, F) such that
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J-. (. 2(x-n) - v3(x))dF(x) = h A(¥Z,F) + o(h) (h + 0).

We define A(v9, F) = A(9*, F) - A(v", F).
70 study the asymptotic behavior of the solution &
of (1.1) we shall need the following linear expansion of

Ln(t) and Tn(t):

THEOREM 2.1: Assume conditions Al, A2, Bl, B2, B3,

B4, °Y and C2. Then for any K > 0 and €= 0 we have

-1/2

(2.4)  p Vim  sup o lLy(n t) - L,(0) - t A(v,F) | = 0.

(2.5)  p 1Im , suppyi Il (78 e) - m (0) -t ACHF) | = 0.

He start by proving some auxiliary lemmas.

LEMMA 2.2: The sequence Rn(t) = Ln(t) - En(t) tends to
zero in probabiiity for each t e R,

PROOF: There 1s no ioss of generality in taking o = O,

so tihat the xi'shavea symmetric distribution. To simplify
notation put F (x) = F([x]) - F{-[x]), Uryy =-E, (|X4,(0)])
(which are the order statistics of a uniform distribution),

S; = sgnxin(O) and call G the inverse function of F+,Tﬁen

n .
(2.6) R_(0) = n"1/2 L 6(Uy) Tali/n) - alu(y))l sy

Put 6,(u) = G(u) I{u < 1 - a/2) and R =B +C.,
‘where B/ is the expression (2.6) with G replaced by Gy
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we shall prove that Bn and Cn tend to zero in probability.
The symmetry of the xi's implies that their signs
are mutually indenendent, and independent of their absolute

values, and hence of the U(1)‘s, so that

n n .
E(R2) = 7! Lo LB U)) 81Uy Hali/n) - a(ugy))

J

[a(j/n) - a(U(j))l} E(S, 55) =

’1 n |2 2
= - , 4 -
n -j}, E{[GI(U(.')).. Ha(i/n) a(U(”)l }
By B4,q9iven ¢, there exists a set D & (0,1) which
is a finite union of open intervals, each one containing

a diséontinuity point of a, and having total Lebesque

measure < eg. Then

£(e2) < 18(1-0/2)1% (.4 sup a2 + n"} T Ela(i/n)-a(Uu,,\)1%)
) < . (1)
i/ngD
and since a is uniformly continuous outside D, the second
term in brackets tends to zero by the Glivenko-Cantelli
Theorem,
At the same time, by B3:

n
IC.| < n~1/2 121 6(Ucyy) ali/n) U4y > 1-a/2; i/n < 1-a}.

nl
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Putting ¢ = sup {G(u + a/2) a(u)|u < 1-a/2} < =,

we have

P{sup G(U ) a(1/n) > ¢} < P{su U,,y~i/n 2}
1<i<n (1) < plifin' (1) / I > af

which tends to zero by the Glivenko-Cantelli Theorem,

Bes{des
n
E(n-1/2 121 1H|uggy - /0] > a/21}

n
< 4a? a7t LB - i/n12) = o(n"1/2),

LEMMA 2.3: For any t we have

24y - m (n"V2 4y =0

p 1%m (Ln(n'l/ n

n+wo

-1/2 t) when @ = 0,
n-l/z

PROOF: The distribution of R (n

is the same as that of Rn(O) when 0 = - t. But since

for any t,en = -n'llzt is a sequence of alternatives contiguous

to e = 0 (see Chapter 6 of Hajek [3]) we obtain, applying

Lemma 2.2, that

- - -1/2
p 1im Rn(O} 0 when e, = -n t.

N>w
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The following result wes proved by Bickel [1]:

LEMMA 2.4; If v is any function verifying Cl and C2,

then for any K > 0

p 1fm sup [Mn(n'l/zt) - Mn(O) -t A(v,F)] = 0.
n+o |ti<k

1/2

PROOF of THEOREM 2.]1: Let Hn(t) = n Tn(t), so that

Ln(t} '.Hn(t) -ty 131 a{i/n)

and hence

(2.7) L (n"VE ) = m (M2 ey ot (14 )

where ug is a2 numerical sequence such that

(2.8) 1fm u, = 0.
N-+co

Then from Lemmas 2.3 and 2.4 we obtain

-1/2

(2.9)  p 1tm (H (n"1%t) - W _(0) - t A°(s,F)] = 0

1

where

(2.10) A°(v,F) = A(¥,F) + 1,
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-1/2
t) is a monotone nonde-

Now B2 implies that Hn(n
creasing function of t, so that arquing as in the proof
of Theerem 2.1 in Jureckova [7] we can show that the
convergence in (2.9) is uniform for bounded t, so that

for each K > 0 we have

ve 11) p 11m sup {Hn(n'lizt) - Hn(O) -t A°¢ ,F)| = 0

N+ LK

-

and using (2,7), (2.8) and {(2.10) we obtain

(2.12) p 1im sup L (n'llz

t) - L (0) - t A(e,F)| =0
p-+oo |t]<K

n

which p..ves (2.4); (2.5) follows from this last formula

and Lemma 2.2.

Now we are ready to prove the asymptctic normality of

solutions of (1.1).

THENREM 2.5: Suppose thnat én is a8 sequence of solutions

-
of (1.1) such that n'/“(6 - o) is bounded in probability.

Then nl/z(én - @) has an_asympiciic normal distribution

with mean 0 and variance B(w.F)/A(w,F)Z. where

)
- -

(2.13) 3(yg.F) = I w(x)z dF(x).

e -]

PRGOF: Since the solutions of (1.1) are translation

jnvariant, we can assume that ©® = 0. Then {2.5) implies
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(2.14) L (n"MZ) «m (o) ¢ A(u,F) t h(t)

where for each K > 0

(2.15) p Yifm sup [h_ (t)] =0
R+ lt]<K n

Then since Ln(én) = 0 we have
1/2 & _ 1/2 =
nt/Z 6, = M (0)/A(Y,F) - b (n1/2 5 )

Now, since nl/2 én is bounded in probability, (2.15)
impifes that p 1im q4n1/2 én) = 0, and hence

N-+o

(2.165 p 1im In1/2 8 - M _(0)/A(¥%.F)] = 0.
oo n n
We know by the Centr:! Limit Theorem that the
distribution of H (0} ronverges to a normal law with mean
0 and variance B(v,F). hence from (2.16) we obtain the

desired result.

REMARK: According to the former Theorem, a sequence

~

e, of solutions of (1.1) such that n“z(én - 8) is bounded
in probabjlity, has the same 1imit distribution as the
M-estimator corresponding to the psi-function (1.2). Let
us point out that (1.1) does not in general possess a

unique solution. We have not succeded in proving that any
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sequence of solutions en'Verifzes the required boundedness

condition. hkowever, we s33°'1 show that it js possible to
choose a sequence of scluticns satisfying the boundedness

condition.

THEOREM 2.€: Assume that A{y,F) # O and that §_ 1is

a sequence of estimators such that n”z('én -¢) is bounded

in probability. Let én pe the solution of {1.1) nearest

t E"‘ 1§gﬂ,n1/2(én - 8) is bounded in probability.

o

PROOF: We can again assume © = 0. Take any ¢ > 0.
Since Mn(ﬁfﬁconverges in Yaw to a2 normal distributiorn,

we can find K such that
PEIM (6)] < K} > 1 - ¢/3 fer alln.

Let hn(t} be defined as in (2.14); then according

to (2.15) there exists r, such that

'

P (sup. jh ()] < 1) =1 - &/3 for all n > n,

‘tlixl

where Ky = (2K+1)/A{y,F).

Put

A= {IM (0)] < K} N {sup Ch (2)] < 1),
, t]<K
@ 1<K
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Then
(2.17)  P(A) > 1 - (2/3)¢ for n > ng.
But using (2.14) we have 1in An

(2.18) L (-n"MZ k) > K+ 2k+1-15K>0

and similarly

-1/2

(2.19) Ln(n Kl) < -K < 0.

Then sfnce the function Ln(t) is piecewise continuous

and jumps only upwards, we obtain from (2.18) and (2.19)

(2.20) A, C {therec exist t such that L (t ) =0

and Inllzin; < Kyl

We can also find KZ such that
(2.21) P (In}2 ¥ | < K) > 1 - e/3.

Put
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fhen from (2.22) and (2.17) we have
(2.23) P(B ) > 1 -¢ forn > ng

and from (2.20) and (2.22) we have

1/2
B, S {[n o, < K; *+ Ky}

so that from (2.23) we get

P (|"1/2 Sn‘ < Kyt KZ) 21 - forn>n,.

3 - "One-step" estimates. In this section we consider

the asymptntic behavior of Tn(g) when & is an M-estimate.

THECREM 3.1: Let 8n be an M-estimator corresponding

to a8 function v, satisfying C1 and C2, and assume that
0

172 ,%
n (en - ®) converges in distribution to a normal law

(see Huber {4]). Assume also the same conditions as iﬁ
1/2

Theorem 2.1. Then n (Tn(gn) - @) converges in distribu

tion to a normal law with mean O and variance given by
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(3.1)  B(v,F) + (B(yg.F) [(A(w,F)+1)/A(vy,F)I% -

- 2 B(‘pawOiF) (A(¢5F)+1)/A(W0)F)

where B(y,F) is defined in (2.12) and

» cr—

(3.2)  B(w,u,,F) = {“ v(x)vg(x) dF(x).

PROOF: Assume again that @ = 0. Using (2.9), (2.10),

1/2(8n - @) converges

Lemma 2.2 and the assumption that n
in distribution to a normal law, we obtain, recalling
the definition of Hn at the beginning of the proof of

Theorem 2.1

(3.3) p lim [nl‘/2 Tn(gn) - Mn(O) - nl/zgn(A(w,F)+l)] = 0.

N+

Put

n
. =172 | ]
MnO(t) n izl vO(Xi t).

Since Yo satisfies C1 and C2, and since n”2 Bn is

bounded in probabiifty, we obtain from Lemma 2.3

p im [m,(8,) - M o(0) - n1/2% A(yg.FN = 0.

N+oo



~14-

Then, since Mno(gn) = 0 we have

2
ll&g

(3.4) p 1im f{n "

N+o

- 0o { =
MnU‘J)/A'“O’F)] 0.
Hence, from (3.3) and (3.4) we obtain
/ . 1/2 , .
(3.5) p ;iz-ln‘/ T (&) = M (0) - M o{0)(A(y,F)+1)/A(y4,F)) = O.

But the joint asymptotic distribution of (Mn(O),MnO(O))

is bivariate normal with zero means and covarfance matrix

rB(QJ,F‘t B('«l’st’F}

|

B({’ni .F} By vFl
[Blesug (vy

Hence Mn(O} v MnO(U) {A(w,F)+l}/A(¢D,F) converges 1in
distribution to a normal law with mean G and variance
given by (3.1)}. Then by (3.%) the thecrem is proved.

Remsrk: If e 1s an L-estimator, i.e.

‘En = nl 1 a(i/n) X(i) -where the X y,'s are the sample
order statistics- then under general cenditions e, is
asymptotically equivalent to the M-estimator Kn corresponding

to the function y, aiven by wo'(x) = h(F(x)) {see Jaeckel [6] ).
Then 1t is easy to prove thet under the same conditions as

in Theorem 3.1, n“2 (Tn(En) - @) has the same asymptotic

distribution as nI/Z(Tn(ﬁn) - 9).
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4 - Two particular families. We have computed the

asymptotic variances and studied by- Monte Carlo
methods the small-sample behavior for two particular

classes of a-functiors. We define for 0 < a < 8 <1

2/(a4B) if u < a
ag (u) = { (2/(a+8))((B-u)/(B-a)) if o <u <8

0 ifB<u<l

L

This family contains "trimming" as the special case

a ® B,

let wABc(x) be the psi-function corresponding to Hampel's
M-estimator defined in (Huber (5), page 1064). Let aABc(u)
be the a-function which for the distribution N(O,1) is
equivalent to the psi-function ¢(x) = wABC(xlh), where

qg fs the 0.75-point of N(O,1).

For some members of these families (both "fixed-point"

2

and "one-step") we computed the variances o

for samples of size n = 20 and n = 40 for the Normal and
Cauchy distributions, by means of a Monte Carlo simulation.
The computation of the fixed-point estimate for finite
samples was performed »v taking the sample median as an
initia) estimate, and ther iteratively applying the
function Tn defined in section 1. If this procedure
converges, it must do so in a finite number of steps; in
practice, we have aiways observed it to converge rather

quickly.



ARs it can be seen from these results, it does not
seem possible to find estimates of this class which are
robust in the sense that they are efficient for both
the normal and log-tailed distributicns.



TABLE 1

vapTances of nl/% e
- n = = n = 20 n = 40
N(O,1) Cauchy N{0,1) Cauchy N(O,1) Cauchy
a.a
a = 0.80, B = 0.95
Fixed-point 2.856 3.205 1.60 £.51 1.79 3.74
Ane-step 1.51 5.11 1.57 3.44
a = 0.90, g = 0.95
Fixed-point 1.506 £ .BE2 1.¢6 >13 1.25 8.326
One-step 1.26 >13 1.33 7.99
ApBC
A= 2.5, B=45,C=29.5
Fixed-point
One=step 1.025 1.00 >50
1.00 >80
A=1.2,B=135,C=28.0
Fixed-point 1.166 1.11 >20
Cne-step 1.15 >20
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