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1 - Introduction. In this paper we Introduce a class of 

location estimators which seemingly has not received 

much attention up to now. Let X.,..., X_ be 1.1.d. random 

variables with common distribution function F(x - β), 

where F(x) has a symmetric density f(x). Consider a non­

negative and nonIncreasing function a(t) defined 1n (0,1), 

such that * a(u) du ■ 1. For each t ε R we define the 

t-order statistics as: X,n(t) ■ Xk 1f there «x1st exactly 

(1 - 1) X/s such that |X< - t| < |Xt - t|; and we define 

the new variable

1
Suppose we have an Initial estimator e of e. It 

seems reasonable to measure the reliability of each 

observation X. according to Its distance to S; thus we 

may construct a new estimator of Θ as a weighted average, 

where the observations close to % receive larger weights, 

1.e., as Tn(e).

A natural possibility 1s to look for the estimator 

e which 1s invariant for the tranformatlon T (.), 1.e., 

which satisfies

(1.1)

We shall call the estimator defined by (1.1) a "fixed- 

point" estimate, to distinguish it from Τη(θ) which we 

shall cal! a "oneestep" estimate.
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It can be verified that the value of e which minimizes 
n 2
I (X<n(e) - er a(i/n) satisfies (1.1). 

1-1 in
The case 1n which a(u) ■ (1 - 2a)“* I(u < 1 · 2a) may 

be considered as a kind of "trimming” around the estimator 

itself. Gnanadesikan and Kettenring {2] considered a similar 

proposal in the context of multivariate data analysis. More 

recently Shorack [8] studied a class of estimators which 

contains the one-step version of these trimming estimates.

IJn section 2 we shall prove the asymptotic normality 

of the estimates defined by (1.1), we shall calculate their 

asymptotic variances arid we shall show that they are equi­

valent to a suitable M-estimator (Huber (4]) defined as a 
n 

solution ® of the equation £ *(X. - e) « 0, where 
1-1 1

(1.2)

Similar results are obtained for the one·» tep estimates, 

1n section 3.

In sección 4 we obtain by Monte Carlo methods the 

variances of some fixed-point estimators and of their one- 

step versions, for the Normal and Cauchy distributions. 

The resuts seem to indicate that it is not possible to find 

robust estimates within this class

2- Asymptotic distributions. For notational convenience, 

define for all t e R

(2.1)
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(2.2)

where fis given by (1.2). We may write (1.1) as

(2.3)

We shall need the following assumptions:

Al) The distribution function F has a symmetric density f.

A2) 1(f) · Í (f*(x)/f(x))2 f(x) dx < «. 

.1 ··
Bl) J e(u) du » 1, a(u) > 0.

B2) a(u) 1s monotone nonIncreasing

B3) There exists α ε (0,1) such that a(u) ■ 0 for

1 - a < u £ 1.

B4) The function a has a finite number of discontinuities.

Let ♦ be defined by (1.2). The following "assumption" 1s 1n 

fact a consequence of B2, £3 and B4:

Cl) ♦ ■ ψ - Ψ’, where » and ♦” are monotone nondecreasing 

and

We shal1 also need:

C2) There exist coefficients Α(ψ—, F) such that
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We define Α(Ψ, F) - A(l+, F) - A(*“, F).

To study the asymptotic behavior of the solution e 

of (1.1) *76 shall need the following linear expansion of 

Ln(t) and Tn(t):

THEOREM 2.1: Assume conditions Al, A2, Bl, B2, B3, 

B4, ?^ and C2. Then for any K > 0 and e = 0 we have

(2.4)

(2.5)

We star* by proving some auxiliary lemmas.

LEMMA 2.2: The sequence Rn(t) ■ L (t) - V (t) tends to 

zero 1n probability for each t ε R.

PROOF: There is no loss of generality in taking θ ■ 0, 

so that the X/s have a symmetric distribution. To simplify 

notation put F+(x) ■ F(|x|) - F(-|x|), U^j ■ f+( I Xf η(θ) I) 

(which are the order statistics of a uniform distribution), 

Sf ■ sgwx. (0) and call G the inverse function of F+ .Then

(2.6)

Put G.(u) · G(u) Ku < 1 - a/2) and % " Bn + %» 

where B 1s the expression (2.6) with G replaced by Gp
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We shall prove that B^ and C tfnd to zero 1n probability.

The symmetry of the X.'s Implies that their signs 

are mutually Independent, and Independent of their absolute 

values, and hence of the U^«'s, so that

By B4,given r., there exists a set D C (0,1) which 

1s a finite union of open intervals, each one containing 

a discontinuity point of a, and having total Lebesgue 

measure < ε. Then

and since a is uniformly continuous outside D, the second 

term in brackets tends to zero by the G11venko-Cante!11 

Theorem.

At the same time, by B3:
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Putting c ■ sup {G(u + a/2) a(u)|u < l-a/2} < ·, 

we have

which tends to zero by the G11venko-Cantel11 Theorem, 

Besides

LEMMA 2.3: For any t we have

PROOF: The distribution of R (n*^” t) when θ ■ 0,

1s the same as that of R_(0) when θ » - n' '^ t. But since
-1/2for any t,® ■ -n ' t 1s a sequence of alternatives contiguous

to Θ > 0 (see Chapter 6 of Hájek 13]) we obtain, applying

Lemma 2.2, that
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The following result we $ proved by Bickel 11]:

LEMMA 2.4: Iff is any function verifying Cl and C2, 

then for any K > 0

PROOF of THEOREM 2.J: Let H it) - n1/2 T (t), so that 
π n

and hence

(2.7)

where u is a numerical sequence such that

(2.8)

Then from Lemmas 2.3 and 2.4 we obtain

(2.9)

where

(2.10)
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-1 °Now Β2 implies that Η (n ' t) is a monotone nonde- 

creasing function of t, so that arguing as in the proof 

of Theerem 2.1 in Jureckova |7j we can show that the 

convergence in (2.9) is uniform for bounded t, so that 

for each K > 0 we have

i2 11)

and using (2,7), (2.8) and (2.10) we obtain

(2.12)

whicn H.^-“s (2.4); (2.5) follows from this last formula 

and Lemma 2.2.

Now we are ready to prove the asymptotic normality of 

solutions of (1.1).

THEOREM 2.5: Suppose that Θ is a sequence of solutions 
1 *Of (1-1) such that π 'L(e - e) is bounded in probability.

Then η ^(δ - e) has an asymptotic normal distribution

with mean 0 and variance B (♦, F) / A ( Ψ, F) , where

(2.13)

PROOF: Since the solutions of (1.1) are translation 

invariant, we can assume that 0 » 0. Then (2.5) implies
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(2-14)

where for each K > 9

(2.15)

Then since Li®) = 0 we have η n

1/2 *Now, since η β is bounded in probability, (2.15)
implies that p Mm h/n^* θ ) ■ 0, and hence 

n-*·

(2.16)

We know by the Centrrl Limit Theorem that the 

distribution of H (0) converges to a normal law with mean 

0 and variance Β(Ψ,Γ). hence from (2.16) we obtain the 

desired result.

REMARK: According to the former Theorem, a sequence 
e_ of solutions of (1.1) such that n^^(e. - e) is bounded 

in probability, has the same limit distribution as the 

M-estimator corresponding to the psi-function (1.2). Let 

us point out that (1.1) does not in general possess a 

unique solution. We have not succeded in proving that any



-10-
sequence of solutions β verifies the required boundedness 

condition. However, we s.ull show that 1t is possible to 

choose a sequence of solutions satisfying the boundedness 

condition.

THEOREM 2.6: Assume that A(hF) A 0 and that Θ 1 s 

a seouence of estimators such that η1' (K -e) is bounded 

in probability. Let & be the solution of (1.1) nearest 
to e . Then π^ ιθη - e) is bounded in probability.

PROOF: We can again assume θ = 0. Take any ε > 0. 

Since M (0) converges in law to a normal distribution, 

we can find K such that

Let h (t) be defined as in (2.14); then according 

to (2.15) there exists ηθ juch that

where Kj - (2K+1)/Α(ψ,F).

Put
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Then

(2.17)

But using (2.14) we have in A

(2.18)

and similarly

(2.19)

Then since the function I (t) is piecewise continuous 

and jumps only upwards, we obtain from (2.18) and (2.19)

(2.20)

We can also find K- such that

(2.21)

Put

(2.22)
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Then from (2.22) and (2.17) we have

(2.23)

and from (2.20) and (2.22) we have

so that from (2.23) we get

3 ■ "One-step11 estimates. In this section we consider 

the asymptotic behavior of T (θ) when Θ is an M-estimate.

THEOREM 3.1: Let β be an M-estima tor corresponding 

to a function ψθ satisfying Cl and C2, and assume that 

n ' (θη " ®) converges in distribution to a normal law 

(see Huber [41). Assume also the same conditions as in 

Theorem 2.1. Then n ' (Tn(en) ■ ®) converges in distribu 

tion to a normal law with mean 0 and variance given by
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(3.1)

where B(ψ,F) 1s defined in (2.13) and

(3.2)

PROOF: Assume again that 0=0. Using (2.9), (2.10), 
Lemma 2.2 and the assumption that π^^(θ - e) converges 

in distribution to a normal law, we obtain, recalling 

the definition of H at the beginning of the proof of 

Theorem 2.1

(3.3)

Put

Since ψθ satisfies Cl and C2, and since n^'^ &n is 

bounded in probability, we obtain from Lemma 2.3
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Then, since Μ θ(£ ) ■ 0 we have

(3.4)

Hence, from (3.3) and (3.4) we obtain

(3.5)

But the joint asymptotic distribution of (Mn(0),Μ θ(0)) 

is bivariate normal with zero means and covariance matrix

Hence Mn(0) + Mn0(0) (A(*,F)+1)/A(|q,F) converges in 

distribution to a normal law with mean 0 and variance 

given by (3.1). Then by (3.5) the theorem is proved.

Remark: If p„ is an L-estimator, i.e. ---------- η
®n ■ n* £ h(1/n) Χ(η -where the ^’l‘> are the sample

order statistics- then under general conditions e is 

asymptotically equivalent to the M-estimator ?L corresponding 

to the function ψθ given by ψθ'(χ) “ h(F(x)) (see Jaeckel |6] ) 

Then It is easy to prove that under the same conditions as 
in Theorem 3.1, n^^ (T (9 ) - e) has the same asymptotic 

distribution as n^2(Tn(^n) - ®).
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* " Two particular families. We have computed the 

asymptotic variances and studied by· Monte Carlo 

methods the small-sample behavior for two particular 

classes of a-functions. We define for 0 £ a £ β £ 1

This family contains "trimming" as the special case 

α “ β.

^^ *ABC^X^ ^ ^e psi-function corresponding to Hampel's 

M-est1mator defined in (Huber (5), page 1064). Let a^gr(u) 

be the a-function which for the distribution N(0,l) is 

equivalent to the psi-function ψ(χ) * ψ.θς(χ/η), where 

q is the 0.75-point of N(0,l).

For some members of these families (both "fixed-point" 

and "one-step") we computed the variances σ

for samples of size n » 20 and n ■ 40 for the Normal and 

Cauchy distributions, by means of a Monte Carlo simulation.

The computation of the fixed-point estimate for finite 

samples was performed oy taking the sample median as an 

Initial estimate, and then, iteratively applying the 

function T defined in section 1. If this procedure 

converges, it must do so in a finite number of steps; in 

practice, we have always observed it to converge rather 

quickly.
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As 1t can be seen from these results. 1t does not

seem possible to find estimates of this class which are

robust 1n the sense that they are efficient for both

the normal and log-tailed distributions.
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