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Abstract

The significant presence that many-core devices like 
GPUs have these days, and their enormous computa
tional power, motivates the study of sparse matrix oper
ations in this hardware. The essential sparse kernels in 
scientific computing, such as the sparse matrix-vector 
multiplication (SpMV), usually have many different 
high-performance GPU implementations. Sparse ma
trix problems typically imply memory-bound opera
tions, and this characteristic is particularly limiting 
in massively parallel processors. This work revisits 
the main ideas about reducing the volume of data 
required by sparse storage formats and advances in 
understanding some compression techniques. In par
ticular, we study the use of index compression com
bined with sparse matrix reordering techniques in CSR 
and explore other approaches using a blocked fonnat. 
The systematic experimental evaluation on a large set 
of real-world matrices confinns that this approach 
achieves meaningful data storage reductions. Addi
tionally, we find promising results of the impact of the 
storage reduction on the execution time when using 
accelerators to perform the mathematical kernels.

Keywords: blocked formats, matrix storage reduc
tion, memory access, reordering techniques, sparse 
matrices

Resumen

La importante presencia que tienen hoy en día los dis
positivos multinúcleos como las GPU, y su enorme 
poder computacional, motivan el estudio de las opera
ciones matriciales dispersas en dicho hardware. Las 
rutinas matemáticas esenciales para la computación 
científica en álgebra dispersa, como la multiplicación 
matriz dispera vector (SpMV), suelen tener muchas 
implementaciones de alto rendimiento diferentes en 
GPUs. Los problemas de matrices dispersas normal
mente ünplican operaciones acotadas por la memoria, 
y esta característica es particularmente limitante en 

procesadores masivamente paralelos. Este trabajo re
visa las ideas principales sobre cómo reducir el vol
umen de datos requerido por los formatos de alma
cenamiento dispersos y avanza en la comprensión de 
algunas técnicas de compresión. En particular, estu
diamos el uso de compresión de índices combinada 
con técnicas de reordenamiento de matrices dispersas 
en CSR y exploramos otros enfoques utilizando un 
formato a bloques. La evaluación experimental sis
temática en un gran conjunto de matrices del mundo 
real confirma que este enfoque logra reducciones sig
nificativas en el almacenamiento de datos. Además, 
encontramos resultados prometedores del impacto de 
la reducción del almacenamiento en el tiempo de eje
cución cuando se utilizan aceleradores para realizar 
las operaciones matemáticas.

Palabras claves: acceso a memoria, formatos a blo
ques, reducción de almacenamiento de matrices, ma
trices dispersas,técnicas de reordenamiento

1 Introduction

The sparse algebra field has constantly evolved since 
the fifties when the pioneer works by R. Willoughby et 
al. and other authors [1] made the first steps in sparse 
matrix research. This early and rapid development is 
already reflected in I. Duff’s review of the state of the 
art of sparse matrices in 1977 [2],

Nowadays, the sparse matrices are a key building 
block in many scientific computing problems in di
verse fields such as circuit simulation [3] or analysis of 
social networks graphs [4], The most relevant opera
tion on sparse algebra is the product of sparse matrices 
with dense vectors (SpMV) since it is the main kernel 
of iterative methods to solve sparse linear systems of 
equations.

The importance of the routine motivated a great 
number of works dedicated to improve its performance 
on the different hardware platforms. In modem tunes, 
this work has been centered around platforms that 
integrate many lightweight cores and provide high 
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memory bandwidth like GPUs, FPGAs or even some 
multi-core CPUs. The GPUs, in particular, have domi
nated the HPC held in numerical linear algebra in the 
recent past, since the introduction of CUDA, because 
of its impressive peak performance in floating-point 
operations (FPOs). However, this peak performance 
is archived only when a high memory throughput can 
be maintained since the memory latency is the main 
bottleneck in HPC platforms.

Apart from the problems generated by the memory- 
bounded nature of the sparse matrix problems, they 
present other performance restrictions like load imbal
ance, (the number of nonzero entries to be processed 
by each computing unit varies significantly), indirect 
access to memory, (indexing data structures to access 
the floating-point values), and low data locality. How
ever, despite only archiving a fraction of the peak per
formance in this devices, it is still possible to exploit 
this devices superior memory bandwidth. In this line 
there is a line of work in developing techniques that 
allow to transfer less data [5, 6] or to adapt the routines 
to the specific matrices [7, 8].

This work is a revised and extended version of [5], 
the new contributions are as follows:

• We further expand the analysis of the compres
sion techniques previously proposed by imple
menting an optimized version of CSR which uses 
the most promising idea. This format divides the 
matrix in three submatrices in order to improve 
the storage.

• We compare both, the original CSR and our op
timized version against a well known blocked 
format. In this line, we evaluate the compression 
of this format in a large set of matrices in order to 
explore different non-zero patterns. We also ex
plore the usage of the RCM reordering heuristic 
on this format.

• We present a detailed theoretical study of the 
index overhead of CSR, optimized-CSR and 
bmSparse formats.

• Finally, we evaluate the impact of the reductions 
of storage obtained in the execution time by per
forming a small proof of concept.

The rest of the article is structured as follows. In 
Section 2 we summarize some basic concepts about 
sparse matrices, in particular, concepts related to 
sparse matrix storage and reordering techniques. Next, 
in Section 3, we revisit several works that are strongly 
related to our objectives. Later, in Section 4 we present 
a systematic evaluation of two highlighted strategies 
for the reduction of index storage. In Section 5 we 
perform both a theoretical and empirical analysis of 
a blocked format, bmSparse. Section 6 present the 
execution times obtained by performing a small test.

Finally, at the end of our article, in Section 7, we of
fer some concluding remarks and identify promising 
future lines of work.

2 Basic concepts

In this section we include a brief introduction to sparse 
matrix storage and the most important concepts about 
the techniques of sparse matrix reordering.

2.1 Sparse matrix storage formats

Sparse storage formats are strategies used to store 
sparse matrices avoiding the cost of explicitly stor
ing all zeros. In general, they store the non-zero values 
of the matrices plus data structures that allow to recre
ate the column and row indices of the values since they 
are not implicit anymore. For example, the coordinate 
format (COO) stores the nonzero values of the matrix 
and their coordinates as three arrays. If the COO el
ements are ordered row-wise, then it can be said that 
the row-ind (i.e. the row indices arrray) array stores 
redundant information since it would be enough to 
store the beginning of each row. A similar alternative 
to COO that addresses this problem is Compressed 
Sparse Row (CSR), [9]. It shares the array of values 
and columns of COO, but compresses the array of row 
coordinates, storing only the index where each row 
starts in the other two arrays. The main advantages of 
CSR are its compactness, and that it allows accesssing 
all the elements of a row directly. On the other hand, 
it requires additional operations to access each value.

There are a lot of formats that use a similar idea as 
CSR like, for example, Compressed Sparse Column 
(CSC) which is analogous to CSR but compresses 
the column array. Another example is Compressed 
Diagonal Storage (CDS) which is specially designed 
for matrices with band structure. When the matrices 
have a blocked structure (i.e. they have the non-zeros 
clustered) a good strategy is the Block Compressed 
Row Format, this strategy divides the matrix in equal 
size dense blocks and stores them analogous as CSR 
but considering block rows instead of scalars. This 
format requires the elements of the same block to be 
contiguous in the array of values and uses padding in 
that array to fill the blocks with zeros since it assumes 
they are the same size. In this line, there are formats 
that use variable-size blocks like 1D-VBL (Varibable 
Block Length) [10], that uses one-dimensional blocks, 
and VBR (Variable Block Row) [11], that uses two- 
dimensional blocks.

Due to the importance of SpGEMM on data science 
and graph problems, this operation has gained impor
tance in recent years. SpGEMM performance depends 
on two matrices and the intersection of both sparsity 
patterns and cannot be known in advance thus making 
irregularity the main problem. BmSparse, the format 
proposed by Zhang et al. [12], and later optimized by 
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Berger et al. [13, 14], attacks the irregularity with a 
blocked approach of fixed size combined with the use 
of bitmaps inside each block.

2.2 Reordering techniques

The Cuthill-McKee algorithm (CM) [15] is known re
ordering heuristic used to cluster the non-zeros into a 
band. This technique applies a Breadth-First-Search 
(BFS) traversal strategy in the graph associated with 
the matrix and number the node. The starting point 
in the heuristic is defined as level 0 and, while there 
are unvisited nodes, it adds all neighbours of a level 
that have not been visited into the list of the next level. 
The order in which the nodes in each level are num
bered defines the permutation obtained, in CM the 
nodes in the same level are sorted from low to high 
degrees. A variant of the CM algorithm is called the 
Reverse-Cuthill-McKee (RCM) and is the commonly 
used algorithm to find a permutation that reduces the 
bandwidth. This strategy reverses the ordering found 
in CM which results in the same bandwidth but yields 
a lower profile. In the original version of the RCM 
proposed by A. George, those nodes in the graph with 
minimum degree are also selected as initial vertices. 
The bandwidth and profile reductions of the resulting 
matrix, obtained by the CM and RCM heuristics de
pend heavily on the choice of the initial vertex. For 
this reason, several studies have been carried out on 
how to choose the initial vertex.

3 Related work

In this section, we briefly present the most remarkable 
ideas addressed in different investigations to achieve 
more efficient sparse matrix formats.

Perhaps one of the simplest strategies to improve 
the memory access pattern in sparse methods is to save 
the diagonal of the matrix separately. This strategy 
is advantageous when applying preconditioners to the 
diagonal in iterative methods of solving linear sys
tems [16]. Sun et al. proposed the Compressed Row 
Segment with Diagonal-pattern (CRSD) format [17] 
which uses that idea. The format is useful mainly 
on matrices that have diagonal patterns on groups or 
segments of adjacent rows. It stores the components 
of each diagonal in a segment, in vectors whose in
dex corresponds to the offset with respect to the main 
diagonal.

Another simple idea proposed by Bell and Garland 
is the HYB format [18] which mixes ELL and COO 
This format seeks to mitigate specific weaknesses of 
the ELL scheme, which, while offering advantages in 
terms of data locality, it is not very efficient in cases 
where the number of nonzero elements in each row 
varies considerably. The idea is to divide the matrix 
into two parts, each one with one strategy. The part 
stored in ELLEPACK, Aell is an array of size n x k 

where the number of elements per row is close to k and 
Acoo for the rest of the elements. The election of the 
number k determines the effectiveness of the format, 
this can be decided, as in CUSP [19] library, with 
an heuristic. Other strategy that combines ELL and 
Vectored CSR is EVC-HYB [20], this format is mainly 
focused on improving the performance of the SpMV 
in GPUs. This format first sorts the rows from smallest 
to largest and later they partition the rows into two 
groups: long and short. Finally, the rows in the first 
category are stored in VCSR while the second ones 
are stored in ELL. This combines the strength of ELL 
in small and regular rows with the good results that 
VCSR gets in matrices with row of sufficient length 
and, if possible, multiples of 32 to exploit coalesced 
access on GPUs.

In recent years, various efforts in sparse ALN 
worked with reduced precisions or modifications of 
standard formats. Some examples are [21, 22], where 
the authors evaluate how the use of reduced precisions 
(such as half and single) to store some coefficients of 
the preconditioners obtained with the Jacobi method, 
improves the performance when using these precondi
tioners in iterative methods to solve systems of linear 
equations. These formats seek to reduce the overhead 
produced by data transfer. Similar ideas are applied 
in [23], but decoupling the floating-point format used 
for arithmetic operations from the format used to store 
data in memory.

A different but complementary approach is to re
duce the memory weight of the indices by reducing 
their precision. In this line, Shiming Xu et al. [24] pro
posed an optimization of the SpMV based on the ELL 
format which reduces the number of bits needed to 
represent the indices. The authors used the distance to 
the diagonal instead of the actual column index. They 
also use reorderings to try to reduce the distance to the 
diagonal in order to require less bits, to that purpose 
they use RCM method.

Another idea is the CoAdELL format [25],, which 
extends the work [26] of the same authors. The work 
focused on the division by warps of the computations 
with matrices stored in ELL-based formats. This is 
archived by compressing the storage associated with 
column indices using an encoding based on the differ
ence between the indices of two consecutive non-zero 
elements in the same rows, this strategy is called delta 
encoding.

This is achieved using a compression technique to 
reduce the storage associated with column indexes. 
The idea is to use an encoding based on the difference 
between the indices of two consecutive nonzero ele
ments in the same row, a technique that most authors 
call delta encoding. As these differences or deltas 
will have lower values than the indices, they can be 
represented with fewer bits.

Tang et al. [27] proposed a family of efficient com
pression schemes, which they call bit-representation 
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optimized (BRO). The approach was to reduce the 
number of bits required to represent indices. For the 
design of the BRO storage schemes, the authors fo
cused on particular aspects of the target architectures. 
For example, to be worth to use on the GPU the cost 
of decompression must be relatively light compared 
to the addition and multiplication performed by the 
SpMV thus using the majority of the GPU cycles into 
useful work. They proposed two index compression 
techniques called BRO-ELL and BRO-COO based 
on the formats ELL and COO and compressing the in
dices using delta encoding. For example, in BRO-ELL, 
once the column index vectors have been transformed 
into delta encoding, the authors suggest dividing each 
of these into segments (called slices) of height h. Sub
sequently, each slice is compressed by an independent 
thread according to the number of bits needed for each 
delta index. In addition to BRO-COO and BRO-ELL, 
the authors also present BRO-HYB, which is a hybrid 
format of the two previous proposals. This format is 
similar to HYB, storing the regular part in BRO-ELL 
and the irregular one in BRO-COO.

Willcock and Lumsdaine proposed Delta-Coded 
Sparse Row (DCSR), a compression scheme the uses 
delta encoding to reduce the memory cost of the in
dices. They store tge differences between the column 
positions of nonzero elements in a row, using the mini
mum number of bytes possible. For this, a set of six 
command codes is used to encode the index data. In 
another work, Monakov et al. [28] proposed a new 
format that they called sliced ELLPACK, to improve 
the performance of SpMV in GPUs. This format uses 
a simple heuristic for reordering to reduce the zero 
padding required by the previous format. It has the 
main parameter S, which is the size or number of rows 
in each slice, each one of its are stored in ELL. The 
general idea is that, since the rows are divided in slices 
of similar sizes, the zero fill-in is only to reach the 
longer row in the slice and not in the whole matrix 
limiting the imbalance. This format improves the per
formance of the SpMV.

The authors of [27] extended their previous work 
using compression methods. They proposed the use 
of an heuristic for reordering that they called BRO- 
aware reordering (BAR). This strategy groups together 
the columns with similar patterns in therm of the bits 
required to encode with the goal of reducing the total 
space and thus the number of memory transactions 
when operating the matrix. The authors formulate the 
obtention of the permutation P as a clustering problem.

Finally, the increasing importance of Machine 
Learning in many areas, plus the computational ca
pacity these methods require, motivated multiple stud
ies to optimize sparse operations that are important in 
this context. The main operations are SpMM (Sparse- 
dense Matrix Multiplication) and SDDMM (Sampled 
Dense Dense Matrix Multiplication) [29, 30, 31]. In 
the work of Hong et al. [29], they proposed and order

ing strategy based on adaptive tiling, the heuristic is 
called Adaptive Sparse Tiling (ASpT). It consists of 
grouping elements of the matrix into blocks or tiles, 
usually 2D, with which certain operation is carried 
out, for example, multiplications and convolutions. 
This technique is widely used in high-performance 
implementations of dense matrix-matrix multiplica
tions, both for CPU and GPU. This strategy is used to 
optimize the two operations, SpMM and SDDMM.

4 Systematic theoretical evaluation

In this section we study the effectiveness of different 
techniques for the sparse matrix compression focusing 
on the reduction of index storage. For the testing of 
this section we used a subgroup of the SuiteSparse 
Matrix Collection with more than 1400 matrices with 
different sizes and non-zero structures. The only com
mon characteristic is that all the studied matrices have 
a symmetric non-zero pattern. The main goal is to 
select the best techniques in order to reduce the over
head generated by the index storage. The matrices 
in CSR, which we call direct index compression, are 
used as the baseline for the comparison of the other 
strategies. In this section we focus on two well known 
compression techniques called delta-to-diagonal and 
delta encoding. We center our study in the effect of 
applying a previous reordering to each one.

An important observation is that we are focused in 
the compression of the index which is the one not com
pressed in CSR. For that reason, we do not consider 
the compression of the row vector in this work.

4.1 Direct index compression

This first part studies the original indices (i.e., in CSR) 
in order to use them as a baseline to evaluate the rest of 
the strategies. We divide the indices in three categories 
depending on the minimum number of bits required to 
store the indices. The categories are three, the indices 
which require less than 8 bits for column indices, those 
requiring 9 to 16 bits, and those requiring 17 to 32 bits. 
In this approach there are not negative values for the 
indices. In the same way, we classify the matrices. To 
define the categories for the matrix we use the largest 
index (i.e. the index that requires more bits). Since we 
have only square matrices and they do not have empty 
rows or columns at the end, applying this strategy to a 
matrix is the same to take the matrix dimension which 
is equal to the largest column index vvalue. Therefore, 
we need to evaluate if the matrix dimension is less or 
equal to 28 - 1, 216 - 1 or 232 - 1.

The top image in Figure 1 shows in a bar chart the 
result of the direct-index classification. From the 1407 
matrices studied we get that 116 require 8 bits, 931 
require 16 bits, and 360 require 32 bits. This means 
that only a bit more than 25% of the total matrices 
require 32 bits to store their indices.
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Figure 1: Index size distribution of the studied matrices 
for direct-indexing.

Figure 2: Index size distribution of the studied matrices 
for delta-to-diagonal compression.

In this and the following studies, we expand the 
evaluation over the matrices that require 32 bits. The 
specific idea is to evaluate how many rows of each of 
that matrices fall in the three categories. The bottom 
image of Figure 1 presents these results. It shows the 
percentage of the total rows that imply 8, 16, and 32 
bits for each matrix. It is clear that most rows are in 
the two top categories, the 16 or 32-bit classes. In 
this type of figures each value of the x-axis represents 
an entire matrix and the proportion of colors shows 
the percentage of each class of rows. It is easy to see 
that there are only a few matrices with a large number 
of rows storable with 8-bit indices. It is important 
since in this matrices we could use a hybrid strategy 
that uses different integer sizes according to the rows 
classification.

4.2 Delta-to-diagonal encoding

This strategy uses the distance of the column to the 
diagonal instead of the column index itself and stores 
this value in the CSR representation. For that reason, 
the category of the row will be given by the distance of 
the first (or last) non-zero to the diagonal. This value 
is equivalent to the bandwidth of each row, p (A/). We 
present the same results as before, in the top part of 
Figure 2 we show the number of matrices in each 
family (8, 16 or 32 bits). It is important to see that, 
unlike previously, where we only needed to work with 
positive indices, we require signed integers in this 
technique. For this work, we assume that the ranges 
are symmetric relatively to zero (i.e. the column index 
of the diagonal values). This means that we get the 
next ranges [—27,27], [—21S,215] y [—231,231].

As in the previous case, we expand the study taking 
the matrices of the 32-bit class focusing on the per
centage of rows that could be stored in fewer bits. The 
bottom side of the Figure 2 shows that the number of 
rows that require fewer bits increased when we com
pare with the previous representation. Additionally, 
the number of matrices that can be represented with 
8 -bits is grater than the previous approach.

4.3 Delta-to-diagonal encoding with reorder
ing

This variant uses a reordering before performing the 
diagonal encoding. We follow the proposal of Xu et 
al. [24], using the RCM heuristic on each sparse matrix 
and, after that, perform the replacement of each index 
by the difference with the diagonal (i.e. the encoding 
presented in Section 4.2) in the reordered matrix.

The number of matrices that can be represented with 
8,16 and 32 bits, with and without reordering, can be 
compared by observing Figures 2 and 3. The charts 
show that the use of the RCM heuristic offers sub
stantial benefits by significantly reducing the number 
of matrices that require 32 bits to store their column 
indices from 353 to 63. In other words, there are 290 
matrices (i.e. 82%) that required 32-bit indices in the 
direct compression but with this strategies do not need 
anymore. Many of this matrices move to the 16-bit 
class as illustrated by the increment of the number of 
sparse matrices in this class paired with the decrement 
mentioned previously. In fact, 154 matrices initially 
classified in the 16-bit class move to the 8-bit class 
when the RCM is applied. The detailed explanation of 
how many matrices moved from one class to another is
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Figure 3: Index size distribution of the studied matrices 
for delta-to-diagonal compression after applying RCM 
reordering.

presented in the Figure 4. We name this a composition 
matrix and it is useful to analyze the benefit of the 
reordering technique. Each row represents the number 
of matrices that originally could be represented using 
the number of bits that are specified in the row. Also, 
each row is subdivided into the three categories ac
cording to the bits required after the RCM application. 
On the other hand, each column represents the number 
of original matrices that after the reordering require 
this value of bits. The composition matrix shows that, 
although the numbers of the upper triangle are usually 
low in all but one we have nonzero values. This means 
that in a few matrices, the effect of applying the re
ordering is negative making that the bits needed for 
column indices increases. Specifically, 15 sparse matri
ces move from 8 to 16 bits, and 2 matrices move from 
16 to 32 bits. While these numbers are significantly 
smaller than the number of matrices that benefit from 
the reordering this shows that there are problems with 
the approach and, in some cases, it could handicap the 
compression.

Figure 5 shows an example of the problem men
tioned above, the matrix FIDAP/ex25 moves from the 
8-bit to the 16-bit category after the application of the 
RCM heuristic. In the original scheme, its 848 rows 
can be represented with 8 bits but, after the reordering, 
only 475 rows can be represented with 8 bits and 376 
rows require 16 bits. The original matrix has a block
diagonal (also called periodic nonzero pattern) which 
is lost after RCM is applied.

At this point, it is not possible to define a general 
rule to predict if there will be (or how much) storage 
savings after using the RCM reordering heuristic com-

With reordering

Figure 4: The Composition Matrix shows the number 
of matrices that move form one category to the other 
after reordering with RCM, applying delta-to-diagonal 
encoding.

bined with delta-to-diagonal encoding. However, it 
is important to consider the nonzero structure of the 
matrix before the transformation. In some cases, us
ing a reordering technique breaks a convenient pattern, 
even increasing the number of bits required to store 
the indices.

As in the case without reordering, we present an 
expanded study focusing on the matrices of the 32- 
bit category, this study focus on the evaluation of the 
percentages of rows that can be stored with less bits. 
The results can be observed in the bottom part of Fig
ure 3. The figure shows that, in general, after applying 
the RCM heuristic, the matrices in the 32-bit category 
have only a few rows storable with a smaller integer 
size.

4.4 Delta encoding

This strategy modifies the value with which we substi
tute the column index and uses the difference between 
two consecutive indices which is called delta encoding. 
This idea is similar to those presented in works such as 
Maggioni et al. [25], where the authors proposed the 
CoAdELL format, Kourtis et al. [32] for the CSR-DU 
format, and other efforts [27, 33], Unlike the previous 
strategy, which considered both positive and negative 
distances, the distances in this encoding are all positive 
values. This gives us an extra bit to store the indices 
and allows the representation of larger differences.

As in the previous parts, the upper image of Figure 6 
shows the categorization of sparse matrices according 
to the number of bits required to store their largest 
column index. The results of delta encoding can be 
compared with delta-to-diagonal by focusing on Fig
ure 2). The benefits achieved by the former are clear. 
Specifically, the number of matrices in the 32-bit cate
gory is reduced, and, in the same line, the number of 
matrices in lower categories (specially in 8 bits) grows 
impressively. Similar to the previous experiments, we 
focus on the matrices in the 32-bit class aiming to un
derstand the percentage of rows of each matrix that 
could be stored using 8 or 16 bits. The results of this
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nz = 24369 nz = 24369

1000

11OO

Figure 5: An example of a matrix that moves from the 8-bit to the 16-bit category after applying RCM using 
delta-to-diagonal encoding.

Figure 6: Index size distribution of the studied matrices 
for delta encoding.

Figure 7: Index size distribution of the studied matrices 
for delta encoding after applying RCM.

study are summarized in lower part of Figure 6. As 
in delta-to-diagonal encoding without reordering, the 
results do not allow considering a hybrid strategy to 
store the column indices for most matrices.

4.5 Delta encoding with reordering

Considering the benefits obtained by performing the 
RCM reordering heuristic in delta-to-diagonal encod
ing studied previously it is natural to try the same 
approach with the delta encoding strategy. This idea 
is similar to the ones explored in [27]. Again, fig
ure 7 summarizes the experimental results obtained by 
this strategy. The figure presents a similar prospect 
that the one obtained with delta-to-diagonal. The us

age of the RCM heuristic significantly improves the 
compression and archives even better results than in 
delta-to-diagonal Comparing this strategy with and 
and without using the reordering, we can see that in 
the former, the number of matrices that require 32 bits 
is reduced in the order of 75%.

By observing the composition matrix presented in 
Figure 8 it is possible to observe some matrices that 
increment the number of bits needed for its representa
tion after the RCM. The numbers in this case are a bit 
higher than the previous approach. In this, the upper 
triangle corresponds to 22 matrices that move from the 
8 to the 16-bit class and 4 that move from the 16 to the 
32-bit class.

-7-



Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

With reordering

200

100

Figure 8: Composition Matrix for the delta encoding 
strategy, showing the number of matrices that form 
each category with and without reordering

Finally, same as previous approaches we end our 
analysis by focusing the study on the 32-bit category, 
which is the most important from the compression 
perspective. The bottom side of figure 7 presents the 
percentages of rows that require each number of bits 
for the 56 matrices in this category. The results are no 
different than those obtained in previous experiments.

4.6 Summary of the experimental evaluation

Table 1: Summary of the classification results for the 
evaluated strategies

Variant 8 16 32
4.3.1. CSR column index 116 931 360
4.3.2. Delta-to-diagonal 230 821 356
4.3.3. Delta-to-diagonal with RCM 371 961 75
4.3.4. Delta encoding 347 841 219
4.3.5. Delta encoding with RCM 488 863 56

The Table 1 summarizes the results and lists the 
number of matrices in each category for all the ap
proaches. This table presents some noteworthy ob
servations. First, all techniques reduce the number 
of matrices that require 32 bits. Although in some 
techniques, like delta-to-diagonal encoding the gap is 
small, in some others like delta encoding with RCM 
the improvement is substantial. While RCM does not 
have the specific objective of improving the strategies 
like for example [34], it notably improves the matrix 
classification. This affirmation is clear when we fo
cus on the number of matrices in the 32-bit category. 
These results motivate the use of methods for compres
sion that use different integer sizes mentioned in the 
next sections.

5 Block sparse storage format

In the previous section we explored opportunities of 
index memory reductions over compress sparse stor
age (i.e. CSR or CSC), we complement it with a block 
sparse storage paradigm.

5.1 bmSparse: both a benchmark and a case 
of study

The bmSparse format [12] is a blocked format that 
groups the values into 8x8 blocks, which are repre
sented by a key-bitmap pair (each one a 64 bits inte
ger), storing only the blocks with at least one non-zero 
element. The key is a 64-bits integer that is used to 
store the row and column index of the block. On the 
other hand in the bitmap each bit represents an element 
of the block represented in row-major order in which 
if the bit is 0 the element is zero and it is non-zero 
otherwise.

As said previously, bmSparse uses the coordinates 
to refer to blocks. This means that Ay references to 
the block ij, this is the block between (8 x z‘,8 x j) 
and (8 x (z‘+ 1),8 x (/ + 1))). To store a matrix the 
bmSparse format uses four vectors: keys, bmps, values 
and offsets. The first two were explained previously 
while the third and fourth work similarly to values and 
row-ptr vectors of CSR but for blocks instead of rows.

Since a storage format is, in a way, a compression 
scheme, bmSparse can be used as a benchmark for 
comparison. As it is a block oriented, if our format is 
any good it has to beat bmSparse at least in some of 
the matrices with a non-blocked structure.

To approach this evaluation we first present a the
oretical study and later perform an evaluation in a 
sizeable set of matrices.

5.2 Theoretical analysis of bmSparse

The aim of this section is to analyze the storage cost 
of three formats, CSR, bmSparse and our proposal, 
optimized CSR. To this end it is important to identify 
the variables that affect the final storage size. In CSR 
there are only two variables that affect the storage, 
they are the number of non-zeros (nnz) and the number 
of rows (n). On the other hand, the optimized CSR 
depends of the same variables of CSR plus three new 
variables: the number of rows in which the column 
indices can be stored in 8, 16 and 32 bits. Finally, for 
bmSparse there is other metric in place, the number 
of blocks. While this variable depends only of the 
non-zero pattern, it is strongly related with the number 
of non-zeros and more slightly with the dimension. 
This correlations over the matrices of the SuiteSparse 
collection are presented in Figures 9 and 10.

It is clear that a theoretical calculation based on the 
characteristics of the matrix is only possible in CSR. 
This format uses a pointer to the start of each row 
(size N) plus two vectors to store the values and the 
column indices (size NNZ). The values can be stored 
in different data types (half, simple, double) and thus 
the cost is not fixed. Since this work is focused on 
index compression and all the formats use the same 
structure to store values we focus the analysis in the 
index storage. The above results in the equation (1).



Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

100000000

1

NNZ
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to be better than CSR we need that the following equa
tion is fulfilled.

_______16 *nnz(M)_______ 
8( -P > > 4 x (rows(M) +1 + nnz(M))

which is true with avg{nnz-perMock) between 3 and 
4 depending of the relation of and rows{M).

5.3 Empirical results

Taking into account the analysis presented above we 
performed an experimental evaluation of the storage 
required for each of the three formats. As presented 
in the title of the section we use bmSparse bot as a 
benchmark for comparison and as a case of study since 
the ideas can be applied to the format with little modi
fications To this end we use the open implementation 
of bmSparse provided in [14],

First, we evaluated the storage required by the three 
formats, CSR, optimized-CSR and bmSparse in a set 
of above 500 instances. In all the formats we only 
evaluated the index-related cost (i.e. the size presented 
in the previous section). In Figure 11 we present the 
ratio of reduction obtained with botii optimized-csr 
and bmSparse.

Figure 10: N umber of blocks against number of rows 
of evaluated matrices.

Size{M) = nnz(M) x 4 + (rows(M) +1) x 4 (1)

For the optimized CSR we can also find an expres
sion but it is dependent on the non-zero pattern since it 
affects how we store the column indices. The variation 
with CSR is that we can store the column indices in 
less bits thus the factor related with this metric is the 
only one affected. This is presented in equation (2)

Size(M) =#mz32 X 4 + #nnsi6 x2 + #nnz$
+ (rows(M) + 1) x 4 + 4 '

where the final 4 comes from the vector which points 
to the start of each section of the matrix and nnzi is 
the number of non-zeros which their column index is 
stored in i bits. It is easy to see that the storage related 
to the column will be always less or equal than in CSR 
since L,:=s,16,32 (#«»+)

Finally, bmSparse has a simple equation. For each 
block there are two int64, one for the indices and one 
for the bitmap, plus the values storage. Equation (3) 
shows the storage required.

Size(M) = mz{M\/avg[mzpb‘} x 16 (3)

where avg(nnzpb) is the average of non-zeros on each 
block. From this equation it follows that for bmSparse

Figure 11: Factor of reduction when comparing the 
storage against CSR (i.e. sizecsr/'sizeOptimized and 
sizecsr/size bmsp arse)

The first obvious conclusion is that our format get 
a way better compression both that bmSparse and the 
original CSR. In general, our new optimized-CSR re
duces the storage in around 20% and up to 3.99x. On 
the other hand, at first impression, bmSparse appears 
to be a bad compression scheme. However, comparing 
bmSparse with a CSR-based format is not a completely 
fair comparison since this implementation of the for
mat uses a similar approach to COO in the keys. For 
example, a further (and relatively easy) optimization 
of bmSparse could be to move the keys to a 32-bits 
integer and store the row index in a similar way to 
CSR.

Since bmSparse benefits from the clustering of the 
non-zeros it is reasonable to think that RCM will have 
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a good impact in the same way it has in the delta
encoding compression. To test this hypothesis we 
performed the storage evaluation of bmSparse after 
applying RCM. The comparison with previous results 
is presented in Figure 12

Improvement of applying RCM to bmSparse

0.40

Figure 12: Factor of reduction when comparing the 
storage of bmSparse after applying RCM.

The results presented in Figure 12 show that 
bmSparse can improve its compression by applying 
RCM. Moreover, since the storage cost of this format 
depends heavily of the distribution of the non-zeros a 
hybrid approach to store the denser parts of the matrix 
in bmSparse and the scattered non-zeros in other for
mat like CSR or COO. This strategy would be ideal 
for operations like SpMV in which both parts of the 
matrix could be processed separately and the results 
summed afterwards. This is an alternative approach to 
the one used in [35] and we leave it as future work.

6 Experimental evaluation

In this section, we present the results of execution 
time of the proposed storage strategy. Since the delta 
encoding had the best results on Section 4 we used this 
approach to the new proposed format.

To study the impact of the new proposed storage for
mat on the execution time we implemented the format. 
The basic idea of this format is to reorder the rows 
depending of the bits needed to store the column in 
delta encoding so rows in the same category (8, 16 and 
32 bits) are grouped together, then we store in a vector 
which row each category starts. To test the impact 
we evaluated the execution time required to make the 
transfer from CPU to GPU. While this is not a direct 
test of the kernels it works as a small proof of concept 
since, to execute a routine, it is needed to move the 
matrix from the CPU were is loaded to the GPU where 
the mathematical kernel is executed.

We selected a group of different matrices with dis
tinct characteristics to test our implementation against 
CSR. These matrices are presented in Table 2. Fig
ure 13 presents the speedups of execution time ob
tained by these same matrices.

The experimental evaluation was performed in a 

server that has an Intel(R) Core(TM) Í7-6700 CPU 
@ 3.40GHz with 64GB of RAM, 64kB of LI cache, 
256kB of L2 cache, and 8MB of L3 cache. The GPU 
is a NVIDIA RTX 3090 Tl. The version of the CUDA 
Toolkit is 11.4. The experiments are performed using 
double-precision floating-point data.

Table 2: Set of matrices used in the experimental eval
uation.

Matrix Diin NNZ NNZ avg
bcsstm25 15439 15439 1
t3dl e 20360 20360 1.00
polLlarge 15575 33074 2.12
poli3 16955 37849 2.23
fdl5 11532 44206 3.83
bips98 1450 11305 44678 3.95
rajat06 10922 46983 4.30
circuit 3 12127 48137 3.97
cryglOOOO 10000 49699 4.97
stdl Jac2 db 21982 498771 22.69
stdl ,Iac3 db 21982 531826 24.19
Zdjac3 db 22835 713907 31.26
c-big 345241 2341011 6.78
Goodwin 095 100037 3226066 32.25
rajat31 4690002 20316253 4.33

Figure 13: Speedup of the execution tune in the mem
ory transfers against CSR.

The results show a general improvement in the cost 
of the transference with only one example which is not 
statistically significant with only a loss of 6%. On the 
other hand, there are three matrices, fdl5, stdl Jac2_db 
and c_big, with get speedups above 60% with factors of 
1.68 and 1.9 and 1.66 respectively. This suggests that 
the storage reductions could have a direct impact in 
the execution cost of executing mathematical routines 
on GPU, specially on matrices which can move most 
of their rows to lower categories.

7 Final remarks and future work

We performed an extensive evaluation of different 
strategies to reduce the storage cost of sparse matri
ces. Our approach included more general strategies 
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focused in the CSR format but also explored more 
specific approaches like bmSparse.

Our work focused on systematic evaluation of the 
different approaches, specifically in the compression 
ratios. We found two promising strategies to reduce the 
overhead introduced by the explicit storage of the in
dices by reducing the storage required for the columns. 
This approaches included the use of the RCM heuristic 
to reorder the matrices plus the compression by storing 
distances instead of the indices. We also addressed 
other format, bmSparse, to study the impact of the 
compression strategies outside of CSR. Both studies 
were performed in large enough sets with hundreds of 
matrices from Suite Sparse Matrix Collection. Finally, 
we performed a small experimental evaluation focused 
on execution time which gave promising results.

Considering the experimental results we can make 
three important affirmations. First, the approaches 
to compress the indices by storing distances strongly 
reduce the storage required by most sparse matrices. 
Moreover, the previous application of reordering tech
niques is, in general, a good idea that improves the 
result. Secondly, the reduction of storage comes with 
a reduction of the execution time of the memory trans
fers thus impacting in mathematical kernels that use 
accelerators like, for example, GPUs. Finally, this 
strategies are not CSR-specific and can be used in 
conjunction with other formats and result in hybrid 
approaches with great reductions on storage. This 
compression strategies will have even more impact in 
contexts in which the data is stored in smaller formats 
such as half precision.

As part of future work, we have different exiting 
lines. An important line of work is to expand our 
implementation to develop GPU kernels that address 
the sparse matrix-vector multiplication. It would be 
also interesting to evaluate delta-to-diagonal imple
mentations which we did not address in this work. The 
RCM method is an heuristic designed to improve the 
bandwidth of a matrix and not specifically the tech
niques. It is interesting to explore other heuristics 
directly focused on improving, for example, the delta 
encoding. An interesting line of work is to explore 
trajectory-based heuristics as the ones mentioned at 
the end of Section 4 but focused on this objectives 
instead of the concentration of non-zeros around the 
diagonal. Another interesting line is the creation of a 
hybrid format that uses this techniques to improve the 
performance of more specific formats like bmSparse. 
The general idea would be to use the format in the 
areas of the matrix in which it gets good performance 
and our optimized-CSR in the rest. In bmSparse for 
example this would be to store the dense blocks with 
that format and the other with the new proposal. In 
this approach the SpMV would be performed indepen
dently and the result of each submatrix summed at the 
end. Finally, we want to develop a public software li
brary that uses our optimized-CSR and experimentally 

evaluate some mathematical kernels.
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