
Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

- ORIGINAL ARTICLE -

Leveraging index compression techniques to optimize the
use of co-processors

Aprovechamiento de las técnicas de compresión de índices para optimizar el uso de
coprocesadores

Manuel Freire1* , Raul Manchal1 , Agustin Martinez1, Daniel Padrón1, Ernesto
Dufrechou1 , and Pablo Ezzatti1

1 Instituto de Computación (InCo), Facultad de Ingeniería, Universidad de la República, Uruguay
{mfreire,rmarichal.amartinez.daniel.padron.edufrechou,pezzatti}@flng.edu.uy

Abstract

The significant presence that many-core devices like
GPUs have these days, and their enormous computa
tional power, motivates the study of sparse matrix oper
ations in this hardware. The essential sparse kernels in
scientific computing, such as the sparse matrix-vector
multiplication (SpMV), usually have many different
high-performance GPU implementations. Sparse ma
trix problems typically imply memory-bound opera
tions, and this characteristic is particularly limiting
in massively parallel processors. This work revisits
the main ideas about reducing the volume of data
required by sparse storage formats and advances in
understanding some compression techniques. In par
ticular, we study the use of index compression com
bined with sparse matrix reordering techniques in CSR
and explore other approaches using a blocked fonnat.
The systematic experimental evaluation on a large set
of real-world matrices confinns that this approach
achieves meaningful data storage reductions. Addi
tionally, we find promising results of the impact of the
storage reduction on the execution time when using
accelerators to perform the mathematical kernels.

Keywords: blocked formats, matrix storage reduc
tion, memory access, reordering techniques, sparse
matrices

Resumen

La importante presencia que tienen hoy en día los dis
positivos multinúcleos como las GPU, y su enorme
poder computacional, motivan el estudio de las opera
ciones matriciales dispersas en dicho hardware. Las
rutinas matemáticas esenciales para la computación
científica en álgebra dispersa, como la multiplicación
matriz dispera vector (SpMV), suelen tener muchas
implementaciones de alto rendimiento diferentes en
GPUs. Los problemas de matrices dispersas normal
mente ünplican operaciones acotadas por la memoria,
y esta característica es particularmente limitante en

procesadores masivamente paralelos. Este trabajo re
visa las ideas principales sobre cómo reducir el vol
umen de datos requerido por los formatos de alma
cenamiento dispersos y avanza en la comprensión de
algunas técnicas de compresión. En particular, estu
diamos el uso de compresión de índices combinada
con técnicas de reordenamiento de matrices dispersas
en CSR y exploramos otros enfoques utilizando un
formato a bloques. La evaluación experimental sis
temática en un gran conjunto de matrices del mundo
real confirma que este enfoque logra reducciones sig
nificativas en el almacenamiento de datos. Además,
encontramos resultados prometedores del impacto de
la reducción del almacenamiento en el tiempo de eje
cución cuando se utilizan aceleradores para realizar
las operaciones matemáticas.

Palabras claves: acceso a memoria, formatos a blo
ques, reducción de almacenamiento de matrices, ma
trices dispersas,técnicas de reordenamiento

1 Introduction

The sparse algebra field has constantly evolved since
the fifties when the pioneer works by R. Willoughby et
al. and other authors [1] made the first steps in sparse
matrix research. This early and rapid development is
already reflected in I. Duff’s review of the state of the
art of sparse matrices in 1977 [2],

Nowadays, the sparse matrices are a key building
block in many scientific computing problems in di
verse fields such as circuit simulation [3] or analysis of
social networks graphs [4], The most relevant opera
tion on sparse algebra is the product of sparse matrices
with dense vectors (SpMV) since it is the main kernel
of iterative methods to solve sparse linear systems of
equations.

The importance of the routine motivated a great
number of works dedicated to improve its performance
on the different hardware platforms. In modem tunes,
this work has been centered around platforms that
integrate many lightweight cores and provide high

-1 -

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

memory bandwidth like GPUs, FPGAs or even some
multi-core CPUs. The GPUs, in particular, have domi
nated the HPC held in numerical linear algebra in the
recent past, since the introduction of CUDA, because
of its impressive peak performance in floating-point
operations (FPOs). However, this peak performance
is archived only when a high memory throughput can
be maintained since the memory latency is the main
bottleneck in HPC platforms.

Apart from the problems generated by the memory-
bounded nature of the sparse matrix problems, they
present other performance restrictions like load imbal
ance, (the number of nonzero entries to be processed
by each computing unit varies significantly), indirect
access to memory, (indexing data structures to access
the floating-point values), and low data locality. How
ever, despite only archiving a fraction of the peak per
formance in this devices, it is still possible to exploit
this devices superior memory bandwidth. In this line
there is a line of work in developing techniques that
allow to transfer less data [5, 6] or to adapt the routines
to the specific matrices [7, 8].

This work is a revised and extended version of [5],
the new contributions are as follows:

• We further expand the analysis of the compres
sion techniques previously proposed by imple
menting an optimized version of CSR which uses
the most promising idea. This format divides the
matrix in three submatrices in order to improve
the storage.

• We compare both, the original CSR and our op
timized version against a well known blocked
format. In this line, we evaluate the compression
of this format in a large set of matrices in order to
explore different non-zero patterns. We also ex
plore the usage of the RCM reordering heuristic
on this format.

• We present a detailed theoretical study of the
index overhead of CSR, optimized-CSR and
bmSparse formats.

• Finally, we evaluate the impact of the reductions
of storage obtained in the execution time by per
forming a small proof of concept.

The rest of the article is structured as follows. In
Section 2 we summarize some basic concepts about
sparse matrices, in particular, concepts related to
sparse matrix storage and reordering techniques. Next,
in Section 3, we revisit several works that are strongly
related to our objectives. Later, in Section 4 we present
a systematic evaluation of two highlighted strategies
for the reduction of index storage. In Section 5 we
perform both a theoretical and empirical analysis of
a blocked format, bmSparse. Section 6 present the
execution times obtained by performing a small test.

Finally, at the end of our article, in Section 7, we of
fer some concluding remarks and identify promising
future lines of work.

2 Basic concepts

In this section we include a brief introduction to sparse
matrix storage and the most important concepts about
the techniques of sparse matrix reordering.

2.1 Sparse matrix storage formats

Sparse storage formats are strategies used to store
sparse matrices avoiding the cost of explicitly stor
ing all zeros. In general, they store the non-zero values
of the matrices plus data structures that allow to recre
ate the column and row indices of the values since they
are not implicit anymore. For example, the coordinate
format (COO) stores the nonzero values of the matrix
and their coordinates as three arrays. If the COO el
ements are ordered row-wise, then it can be said that
the row-ind (i.e. the row indices arrray) array stores
redundant information since it would be enough to
store the beginning of each row. A similar alternative
to COO that addresses this problem is Compressed
Sparse Row (CSR), [9]. It shares the array of values
and columns of COO, but compresses the array of row
coordinates, storing only the index where each row
starts in the other two arrays. The main advantages of
CSR are its compactness, and that it allows accesssing
all the elements of a row directly. On the other hand,
it requires additional operations to access each value.

There are a lot of formats that use a similar idea as
CSR like, for example, Compressed Sparse Column
(CSC) which is analogous to CSR but compresses
the column array. Another example is Compressed
Diagonal Storage (CDS) which is specially designed
for matrices with band structure. When the matrices
have a blocked structure (i.e. they have the non-zeros
clustered) a good strategy is the Block Compressed
Row Format, this strategy divides the matrix in equal
size dense blocks and stores them analogous as CSR
but considering block rows instead of scalars. This
format requires the elements of the same block to be
contiguous in the array of values and uses padding in
that array to fill the blocks with zeros since it assumes
they are the same size. In this line, there are formats
that use variable-size blocks like 1D-VBL (Varibable
Block Length) [10], that uses one-dimensional blocks,
and VBR (Variable Block Row) [11], that uses two-
dimensional blocks.

Due to the importance of SpGEMM on data science
and graph problems, this operation has gained impor
tance in recent years. SpGEMM performance depends
on two matrices and the intersection of both sparsity
patterns and cannot be known in advance thus making
irregularity the main problem. BmSparse, the format
proposed by Zhang et al. [12], and later optimized by

-2-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

Berger et al. [13, 14], attacks the irregularity with a
blocked approach of fixed size combined with the use
of bitmaps inside each block.

2.2 Reordering techniques

The Cuthill-McKee algorithm (CM) [15] is known re
ordering heuristic used to cluster the non-zeros into a
band. This technique applies a Breadth-First-Search
(BFS) traversal strategy in the graph associated with
the matrix and number the node. The starting point
in the heuristic is defined as level 0 and, while there
are unvisited nodes, it adds all neighbours of a level
that have not been visited into the list of the next level.
The order in which the nodes in each level are num
bered defines the permutation obtained, in CM the
nodes in the same level are sorted from low to high
degrees. A variant of the CM algorithm is called the
Reverse-Cuthill-McKee (RCM) and is the commonly
used algorithm to find a permutation that reduces the
bandwidth. This strategy reverses the ordering found
in CM which results in the same bandwidth but yields
a lower profile. In the original version of the RCM
proposed by A. George, those nodes in the graph with
minimum degree are also selected as initial vertices.
The bandwidth and profile reductions of the resulting
matrix, obtained by the CM and RCM heuristics de
pend heavily on the choice of the initial vertex. For
this reason, several studies have been carried out on
how to choose the initial vertex.

3 Related work

In this section, we briefly present the most remarkable
ideas addressed in different investigations to achieve
more efficient sparse matrix formats.

Perhaps one of the simplest strategies to improve
the memory access pattern in sparse methods is to save
the diagonal of the matrix separately. This strategy
is advantageous when applying preconditioners to the
diagonal in iterative methods of solving linear sys
tems [16]. Sun et al. proposed the Compressed Row
Segment with Diagonal-pattern (CRSD) format [17]
which uses that idea. The format is useful mainly
on matrices that have diagonal patterns on groups or
segments of adjacent rows. It stores the components
of each diagonal in a segment, in vectors whose in
dex corresponds to the offset with respect to the main
diagonal.

Another simple idea proposed by Bell and Garland
is the HYB format [18] which mixes ELL and COO
This format seeks to mitigate specific weaknesses of
the ELL scheme, which, while offering advantages in
terms of data locality, it is not very efficient in cases
where the number of nonzero elements in each row
varies considerably. The idea is to divide the matrix
into two parts, each one with one strategy. The part
stored in ELLEPACK, Aell is an array of size n x k

where the number of elements per row is close to k and
Acoo for the rest of the elements. The election of the
number k determines the effectiveness of the format,
this can be decided, as in CUSP [19] library, with
an heuristic. Other strategy that combines ELL and
Vectored CSR is EVC-HYB [20], this format is mainly
focused on improving the performance of the SpMV
in GPUs. This format first sorts the rows from smallest
to largest and later they partition the rows into two
groups: long and short. Finally, the rows in the first
category are stored in VCSR while the second ones
are stored in ELL. This combines the strength of ELL
in small and regular rows with the good results that
VCSR gets in matrices with row of sufficient length
and, if possible, multiples of 32 to exploit coalesced
access on GPUs.

In recent years, various efforts in sparse ALN
worked with reduced precisions or modifications of
standard formats. Some examples are [21, 22], where
the authors evaluate how the use of reduced precisions
(such as half and single) to store some coefficients of
the preconditioners obtained with the Jacobi method,
improves the performance when using these precondi
tioners in iterative methods to solve systems of linear
equations. These formats seek to reduce the overhead
produced by data transfer. Similar ideas are applied
in [23], but decoupling the floating-point format used
for arithmetic operations from the format used to store
data in memory.

A different but complementary approach is to re
duce the memory weight of the indices by reducing
their precision. In this line, Shiming Xu et al. [24] pro
posed an optimization of the SpMV based on the ELL
format which reduces the number of bits needed to
represent the indices. The authors used the distance to
the diagonal instead of the actual column index. They
also use reorderings to try to reduce the distance to the
diagonal in order to require less bits, to that purpose
they use RCM method.

Another idea is the CoAdELL format [25],, which
extends the work [26] of the same authors. The work
focused on the division by warps of the computations
with matrices stored in ELL-based formats. This is
archived by compressing the storage associated with
column indices using an encoding based on the differ
ence between the indices of two consecutive non-zero
elements in the same rows, this strategy is called delta
encoding.

This is achieved using a compression technique to
reduce the storage associated with column indexes.
The idea is to use an encoding based on the difference
between the indices of two consecutive nonzero ele
ments in the same row, a technique that most authors
call delta encoding. As these differences or deltas
will have lower values than the indices, they can be
represented with fewer bits.

Tang et al. [27] proposed a family of efficient com
pression schemes, which they call bit-representation

- 3 -

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

optimized (BRO). The approach was to reduce the
number of bits required to represent indices. For the
design of the BRO storage schemes, the authors fo
cused on particular aspects of the target architectures.
For example, to be worth to use on the GPU the cost
of decompression must be relatively light compared
to the addition and multiplication performed by the
SpMV thus using the majority of the GPU cycles into
useful work. They proposed two index compression
techniques called BRO-ELL and BRO-COO based
on the formats ELL and COO and compressing the in
dices using delta encoding. For example, in BRO-ELL,
once the column index vectors have been transformed
into delta encoding, the authors suggest dividing each
of these into segments (called slices) of height h. Sub
sequently, each slice is compressed by an independent
thread according to the number of bits needed for each
delta index. In addition to BRO-COO and BRO-ELL,
the authors also present BRO-HYB, which is a hybrid
format of the two previous proposals. This format is
similar to HYB, storing the regular part in BRO-ELL
and the irregular one in BRO-COO.

Willcock and Lumsdaine proposed Delta-Coded
Sparse Row (DCSR), a compression scheme the uses
delta encoding to reduce the memory cost of the in
dices. They store tge differences between the column
positions of nonzero elements in a row, using the mini
mum number of bytes possible. For this, a set of six
command codes is used to encode the index data. In
another work, Monakov et al. [28] proposed a new
format that they called sliced ELLPACK, to improve
the performance of SpMV in GPUs. This format uses
a simple heuristic for reordering to reduce the zero
padding required by the previous format. It has the
main parameter S, which is the size or number of rows
in each slice, each one of its are stored in ELL. The
general idea is that, since the rows are divided in slices
of similar sizes, the zero fill-in is only to reach the
longer row in the slice and not in the whole matrix
limiting the imbalance. This format improves the per
formance of the SpMV.

The authors of [27] extended their previous work
using compression methods. They proposed the use
of an heuristic for reordering that they called BRO-
aware reordering (BAR). This strategy groups together
the columns with similar patterns in therm of the bits
required to encode with the goal of reducing the total
space and thus the number of memory transactions
when operating the matrix. The authors formulate the
obtention of the permutation P as a clustering problem.

Finally, the increasing importance of Machine
Learning in many areas, plus the computational ca
pacity these methods require, motivated multiple stud
ies to optimize sparse operations that are important in
this context. The main operations are SpMM (Sparse-
dense Matrix Multiplication) and SDDMM (Sampled
Dense Dense Matrix Multiplication) [29, 30, 31]. In
the work of Hong et al. [29], they proposed and order

ing strategy based on adaptive tiling, the heuristic is
called Adaptive Sparse Tiling (ASpT). It consists of
grouping elements of the matrix into blocks or tiles,
usually 2D, with which certain operation is carried
out, for example, multiplications and convolutions.
This technique is widely used in high-performance
implementations of dense matrix-matrix multiplica
tions, both for CPU and GPU. This strategy is used to
optimize the two operations, SpMM and SDDMM.

4 Systematic theoretical evaluation

In this section we study the effectiveness of different
techniques for the sparse matrix compression focusing
on the reduction of index storage. For the testing of
this section we used a subgroup of the SuiteSparse
Matrix Collection with more than 1400 matrices with
different sizes and non-zero structures. The only com
mon characteristic is that all the studied matrices have
a symmetric non-zero pattern. The main goal is to
select the best techniques in order to reduce the over
head generated by the index storage. The matrices
in CSR, which we call direct index compression, are
used as the baseline for the comparison of the other
strategies. In this section we focus on two well known
compression techniques called delta-to-diagonal and
delta encoding. We center our study in the effect of
applying a previous reordering to each one.

An important observation is that we are focused in
the compression of the index which is the one not com
pressed in CSR. For that reason, we do not consider
the compression of the row vector in this work.

4.1 Direct index compression

This first part studies the original indices (i.e., in CSR)
in order to use them as a baseline to evaluate the rest of
the strategies. We divide the indices in three categories
depending on the minimum number of bits required to
store the indices. The categories are three, the indices
which require less than 8 bits for column indices, those
requiring 9 to 16 bits, and those requiring 17 to 32 bits.
In this approach there are not negative values for the
indices. In the same way, we classify the matrices. To
define the categories for the matrix we use the largest
index (i.e. the index that requires more bits). Since we
have only square matrices and they do not have empty
rows or columns at the end, applying this strategy to a
matrix is the same to take the matrix dimension which
is equal to the largest column index vvalue. Therefore,
we need to evaluate if the matrix dimension is less or
equal to 28 - 1, 216 - 1 or 232 - 1.

The top image in Figure 1 shows in a bar chart the
result of the direct-index classification. From the 1407
matrices studied we get that 116 require 8 bits, 931
require 16 bits, and 360 require 32 bits. This means
that only a bit more than 25% of the total matrices
require 32 bits to store their indices.

-4-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

Figure 1: Index size distribution of the studied matrices
for direct-indexing.

Figure 2: Index size distribution of the studied matrices
for delta-to-diagonal compression.

In this and the following studies, we expand the
evaluation over the matrices that require 32 bits. The
specific idea is to evaluate how many rows of each of
that matrices fall in the three categories. The bottom
image of Figure 1 presents these results. It shows the
percentage of the total rows that imply 8, 16, and 32
bits for each matrix. It is clear that most rows are in
the two top categories, the 16 or 32-bit classes. In
this type of figures each value of the x-axis represents
an entire matrix and the proportion of colors shows
the percentage of each class of rows. It is easy to see
that there are only a few matrices with a large number
of rows storable with 8-bit indices. It is important
since in this matrices we could use a hybrid strategy
that uses different integer sizes according to the rows
classification.

4.2 Delta-to-diagonal encoding

This strategy uses the distance of the column to the
diagonal instead of the column index itself and stores
this value in the CSR representation. For that reason,
the category of the row will be given by the distance of
the first (or last) non-zero to the diagonal. This value
is equivalent to the bandwidth of each row, p (A/). We
present the same results as before, in the top part of
Figure 2 we show the number of matrices in each
family (8, 16 or 32 bits). It is important to see that,
unlike previously, where we only needed to work with
positive indices, we require signed integers in this
technique. For this work, we assume that the ranges
are symmetric relatively to zero (i.e. the column index
of the diagonal values). This means that we get the
next ranges [—27,27], [—21S,215] y [—231,231].

As in the previous case, we expand the study taking
the matrices of the 32-bit class focusing on the per
centage of rows that could be stored in fewer bits. The
bottom side of the Figure 2 shows that the number of
rows that require fewer bits increased when we com
pare with the previous representation. Additionally,
the number of matrices that can be represented with
8 -bits is grater than the previous approach.

4.3 Delta-to-diagonal encoding with reorder
ing

This variant uses a reordering before performing the
diagonal encoding. We follow the proposal of Xu et
al. [24], using the RCM heuristic on each sparse matrix
and, after that, perform the replacement of each index
by the difference with the diagonal (i.e. the encoding
presented in Section 4.2) in the reordered matrix.

The number of matrices that can be represented with
8,16 and 32 bits, with and without reordering, can be
compared by observing Figures 2 and 3. The charts
show that the use of the RCM heuristic offers sub
stantial benefits by significantly reducing the number
of matrices that require 32 bits to store their column
indices from 353 to 63. In other words, there are 290
matrices (i.e. 82%) that required 32-bit indices in the
direct compression but with this strategies do not need
anymore. Many of this matrices move to the 16-bit
class as illustrated by the increment of the number of
sparse matrices in this class paired with the decrement
mentioned previously. In fact, 154 matrices initially
classified in the 16-bit class move to the 8-bit class
when the RCM is applied. The detailed explanation of
how many matrices moved from one class to another is

-5-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

Figure 3: Index size distribution of the studied matrices
for delta-to-diagonal compression after applying RCM
reordering.

presented in the Figure 4. We name this a composition
matrix and it is useful to analyze the benefit of the
reordering technique. Each row represents the number
of matrices that originally could be represented using
the number of bits that are specified in the row. Also,
each row is subdivided into the three categories ac
cording to the bits required after the RCM application.
On the other hand, each column represents the number
of original matrices that after the reordering require
this value of bits. The composition matrix shows that,
although the numbers of the upper triangle are usually
low in all but one we have nonzero values. This means
that in a few matrices, the effect of applying the re
ordering is negative making that the bits needed for
column indices increases. Specifically, 15 sparse matri
ces move from 8 to 16 bits, and 2 matrices move from
16 to 32 bits. While these numbers are significantly
smaller than the number of matrices that benefit from
the reordering this shows that there are problems with
the approach and, in some cases, it could handicap the
compression.

Figure 5 shows an example of the problem men
tioned above, the matrix FIDAP/ex25 moves from the
8-bit to the 16-bit category after the application of the
RCM heuristic. In the original scheme, its 848 rows
can be represented with 8 bits but, after the reordering,
only 475 rows can be represented with 8 bits and 376
rows require 16 bits. The original matrix has a block
diagonal (also called periodic nonzero pattern) which
is lost after RCM is applied.

At this point, it is not possible to define a general
rule to predict if there will be (or how much) storage
savings after using the RCM reordering heuristic com-

With reordering

Figure 4: The Composition Matrix shows the number
of matrices that move form one category to the other
after reordering with RCM, applying delta-to-diagonal
encoding.

bined with delta-to-diagonal encoding. However, it
is important to consider the nonzero structure of the
matrix before the transformation. In some cases, us
ing a reordering technique breaks a convenient pattern,
even increasing the number of bits required to store
the indices.

As in the case without reordering, we present an
expanded study focusing on the matrices of the 32-
bit category, this study focus on the evaluation of the
percentages of rows that can be stored with less bits.
The results can be observed in the bottom part of Fig
ure 3. The figure shows that, in general, after applying
the RCM heuristic, the matrices in the 32-bit category
have only a few rows storable with a smaller integer
size.

4.4 Delta encoding

This strategy modifies the value with which we substi
tute the column index and uses the difference between
two consecutive indices which is called delta encoding.
This idea is similar to those presented in works such as
Maggioni et al. [25], where the authors proposed the
CoAdELL format, Kourtis et al. [32] for the CSR-DU
format, and other efforts [27, 33], Unlike the previous
strategy, which considered both positive and negative
distances, the distances in this encoding are all positive
values. This gives us an extra bit to store the indices
and allows the representation of larger differences.

As in the previous parts, the upper image of Figure 6
shows the categorization of sparse matrices according
to the number of bits required to store their largest
column index. The results of delta encoding can be
compared with delta-to-diagonal by focusing on Fig
ure 2). The benefits achieved by the former are clear.
Specifically, the number of matrices in the 32-bit cate
gory is reduced, and, in the same line, the number of
matrices in lower categories (specially in 8 bits) grows
impressively. Similar to the previous experiments, we
focus on the matrices in the 32-bit class aiming to un
derstand the percentage of rows of each matrix that
could be stored using 8 or 16 bits. The results of this

-6-

Journal of Computer Science & Technology. Volume 24. Number 1, April 2024

nz = 24369 nz = 24369

1000

11OO

Figure 5: An example of a matrix that moves from the 8-bit to the 16-bit category after applying RCM using
delta-to-diagonal encoding.

Figure 6: Index size distribution of the studied matrices
for delta encoding.

Figure 7: Index size distribution of the studied matrices
for delta encoding after applying RCM.

study are summarized in lower part of Figure 6. As
in delta-to-diagonal encoding without reordering, the
results do not allow considering a hybrid strategy to
store the column indices for most matrices.

4.5 Delta encoding with reordering

Considering the benefits obtained by performing the
RCM reordering heuristic in delta-to-diagonal encod
ing studied previously it is natural to try the same
approach with the delta encoding strategy. This idea
is similar to the ones explored in [27]. Again, fig
ure 7 summarizes the experimental results obtained by
this strategy. The figure presents a similar prospect
that the one obtained with delta-to-diagonal. The us

age of the RCM heuristic significantly improves the
compression and archives even better results than in
delta-to-diagonal Comparing this strategy with and
and without using the reordering, we can see that in
the former, the number of matrices that require 32 bits
is reduced in the order of 75%.

By observing the composition matrix presented in
Figure 8 it is possible to observe some matrices that
increment the number of bits needed for its representa
tion after the RCM. The numbers in this case are a bit
higher than the previous approach. In this, the upper
triangle corresponds to 22 matrices that move from the
8 to the 16-bit class and 4 that move from the 16 to the
32-bit class.

-7-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

With reordering

200

100

Figure 8: Composition Matrix for the delta encoding
strategy, showing the number of matrices that form
each category with and without reordering

Finally, same as previous approaches we end our
analysis by focusing the study on the 32-bit category,
which is the most important from the compression
perspective. The bottom side of figure 7 presents the
percentages of rows that require each number of bits
for the 56 matrices in this category. The results are no
different than those obtained in previous experiments.

4.6 Summary of the experimental evaluation

Table 1: Summary of the classification results for the
evaluated strategies

Variant 8 16 32
4.3.1. CSR column index 116 931 360
4.3.2. Delta-to-diagonal 230 821 356
4.3.3. Delta-to-diagonal with RCM 371 961 75
4.3.4. Delta encoding 347 841 219
4.3.5. Delta encoding with RCM 488 863 56

The Table 1 summarizes the results and lists the
number of matrices in each category for all the ap
proaches. This table presents some noteworthy ob
servations. First, all techniques reduce the number
of matrices that require 32 bits. Although in some
techniques, like delta-to-diagonal encoding the gap is
small, in some others like delta encoding with RCM
the improvement is substantial. While RCM does not
have the specific objective of improving the strategies
like for example [34], it notably improves the matrix
classification. This affirmation is clear when we fo
cus on the number of matrices in the 32-bit category.
These results motivate the use of methods for compres
sion that use different integer sizes mentioned in the
next sections.

5 Block sparse storage format

In the previous section we explored opportunities of
index memory reductions over compress sparse stor
age (i.e. CSR or CSC), we complement it with a block
sparse storage paradigm.

5.1 bmSparse: both a benchmark and a case
of study

The bmSparse format [12] is a blocked format that
groups the values into 8x8 blocks, which are repre
sented by a key-bitmap pair (each one a 64 bits inte
ger), storing only the blocks with at least one non-zero
element. The key is a 64-bits integer that is used to
store the row and column index of the block. On the
other hand in the bitmap each bit represents an element
of the block represented in row-major order in which
if the bit is 0 the element is zero and it is non-zero
otherwise.

As said previously, bmSparse uses the coordinates
to refer to blocks. This means that Ay references to
the block ij, this is the block between (8 x z‘,8 x j)
and (8 x (z‘+ 1),8 x (/ + 1))). To store a matrix the
bmSparse format uses four vectors: keys, bmps, values
and offsets. The first two were explained previously
while the third and fourth work similarly to values and
row-ptr vectors of CSR but for blocks instead of rows.

Since a storage format is, in a way, a compression
scheme, bmSparse can be used as a benchmark for
comparison. As it is a block oriented, if our format is
any good it has to beat bmSparse at least in some of
the matrices with a non-blocked structure.

To approach this evaluation we first present a the
oretical study and later perform an evaluation in a
sizeable set of matrices.

5.2 Theoretical analysis of bmSparse

The aim of this section is to analyze the storage cost
of three formats, CSR, bmSparse and our proposal,
optimized CSR. To this end it is important to identify
the variables that affect the final storage size. In CSR
there are only two variables that affect the storage,
they are the number of non-zeros (nnz) and the number
of rows (n). On the other hand, the optimized CSR
depends of the same variables of CSR plus three new
variables: the number of rows in which the column
indices can be stored in 8, 16 and 32 bits. Finally, for
bmSparse there is other metric in place, the number
of blocks. While this variable depends only of the
non-zero pattern, it is strongly related with the number
of non-zeros and more slightly with the dimension.
This correlations over the matrices of the SuiteSparse
collection are presented in Figures 9 and 10.

It is clear that a theoretical calculation based on the
characteristics of the matrix is only possible in CSR.
This format uses a pointer to the start of each row
(size N) plus two vectors to store the values and the
column indices (size NNZ). The values can be stored
in different data types (half, simple, double) and thus
the cost is not fixed. Since this work is focused on
index compression and all the formats use the same
structure to store values we focus the analysis in the
index storage. The above results in the equation (1).

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

100000000

1

NNZ

Figure 9: Number of blocks against NNZ of evaluated
matrices.

1000 10000 100000 1000000 10000000

0000000
• • •__ •_ I

z

5000000 * • •

. • . •
< •• » •

1 UVUUVV Kaw
«innnnn • ■ ■ • ^jT _ ■

100000

Number of rows (N)

to be better than CSR we need that the following equa
tion is fulfilled.

_______16 *nnz(M)_______
8(-P > > 4 x (rows(M) +1 + nnz(M))

which is true with avg{nnz-perMock) between 3 and
4 depending of the relation of and rows{M).

5.3 Empirical results

Taking into account the analysis presented above we
performed an experimental evaluation of the storage
required for each of the three formats. As presented
in the title of the section we use bmSparse bot as a
benchmark for comparison and as a case of study since
the ideas can be applied to the format with little modi
fications To this end we use the open implementation
of bmSparse provided in [14],

First, we evaluated the storage required by the three
formats, CSR, optimized-CSR and bmSparse in a set
of above 500 instances. In all the formats we only
evaluated the index-related cost (i.e. the size presented
in the previous section). In Figure 11 we present the
ratio of reduction obtained with botii optimized-csr
and bmSparse.

Figure 10: N umber of blocks against number of rows
of evaluated matrices.

Size{M) = nnz(M) x 4 + (rows(M) +1) x 4 (1)

For the optimized CSR we can also find an expres
sion but it is dependent on the non-zero pattern since it
affects how we store the column indices. The variation
with CSR is that we can store the column indices in
less bits thus the factor related with this metric is the
only one affected. This is presented in equation (2)

Size(M) =#mz32 X 4 + #nnsi6 x2 + #nnz$
+ (rows(M) + 1) x 4 + 4 '

where the final 4 comes from the vector which points
to the start of each section of the matrix and nnzi is
the number of non-zeros which their column index is
stored in i bits. It is easy to see that the storage related
to the column will be always less or equal than in CSR
since L,:=s,16,32 (#«»+)

Finally, bmSparse has a simple equation. For each
block there are two int64, one for the indices and one
for the bitmap, plus the values storage. Equation (3)
shows the storage required.

Size(M) = mz{M\/avg[mzpb‘} x 16 (3)

where avg(nnzpb) is the average of non-zeros on each
block. From this equation it follows that for bmSparse

Figure 11: Factor of reduction when comparing the
storage against CSR (i.e. sizecsr/'sizeOptimized and
sizecsr/size bmsp arse)

The first obvious conclusion is that our format get
a way better compression both that bmSparse and the
original CSR. In general, our new optimized-CSR re
duces the storage in around 20% and up to 3.99x. On
the other hand, at first impression, bmSparse appears
to be a bad compression scheme. However, comparing
bmSparse with a CSR-based format is not a completely
fair comparison since this implementation of the for
mat uses a similar approach to COO in the keys. For
example, a further (and relatively easy) optimization
of bmSparse could be to move the keys to a 32-bits
integer and store the row index in a similar way to
CSR.

Since bmSparse benefits from the clustering of the
non-zeros it is reasonable to think that RCM will have

-9-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

a good impact in the same way it has in the delta
encoding compression. To test this hypothesis we
performed the storage evaluation of bmSparse after
applying RCM. The comparison with previous results
is presented in Figure 12

Improvement of applying RCM to bmSparse

0.40

Figure 12: Factor of reduction when comparing the
storage of bmSparse after applying RCM.

The results presented in Figure 12 show that
bmSparse can improve its compression by applying
RCM. Moreover, since the storage cost of this format
depends heavily of the distribution of the non-zeros a
hybrid approach to store the denser parts of the matrix
in bmSparse and the scattered non-zeros in other for
mat like CSR or COO. This strategy would be ideal
for operations like SpMV in which both parts of the
matrix could be processed separately and the results
summed afterwards. This is an alternative approach to
the one used in [35] and we leave it as future work.

6 Experimental evaluation

In this section, we present the results of execution
time of the proposed storage strategy. Since the delta
encoding had the best results on Section 4 we used this
approach to the new proposed format.

To study the impact of the new proposed storage for
mat on the execution time we implemented the format.
The basic idea of this format is to reorder the rows
depending of the bits needed to store the column in
delta encoding so rows in the same category (8, 16 and
32 bits) are grouped together, then we store in a vector
which row each category starts. To test the impact
we evaluated the execution time required to make the
transfer from CPU to GPU. While this is not a direct
test of the kernels it works as a small proof of concept
since, to execute a routine, it is needed to move the
matrix from the CPU were is loaded to the GPU where
the mathematical kernel is executed.

We selected a group of different matrices with dis
tinct characteristics to test our implementation against
CSR. These matrices are presented in Table 2. Fig
ure 13 presents the speedups of execution time ob
tained by these same matrices.

The experimental evaluation was performed in a

server that has an Intel(R) Core(TM) Í7-6700 CPU
@ 3.40GHz with 64GB of RAM, 64kB of LI cache,
256kB of L2 cache, and 8MB of L3 cache. The GPU
is a NVIDIA RTX 3090 Tl. The version of the CUDA
Toolkit is 11.4. The experiments are performed using
double-precision floating-point data.

Table 2: Set of matrices used in the experimental eval
uation.

Matrix Diin NNZ NNZ avg
bcsstm25 15439 15439 1
t3dl e 20360 20360 1.00
polLlarge 15575 33074 2.12
poli3 16955 37849 2.23
fdl5 11532 44206 3.83
bips98 1450 11305 44678 3.95
rajat06 10922 46983 4.30
circuit 3 12127 48137 3.97
cryglOOOO 10000 49699 4.97
stdl Jac2 db 21982 498771 22.69
stdl ,Iac3 db 21982 531826 24.19
Zdjac3 db 22835 713907 31.26
c-big 345241 2341011 6.78
Goodwin 095 100037 3226066 32.25
rajat31 4690002 20316253 4.33

Figure 13: Speedup of the execution tune in the mem
ory transfers against CSR.

The results show a general improvement in the cost
of the transference with only one example which is not
statistically significant with only a loss of 6%. On the
other hand, there are three matrices, fdl5, stdl Jac2_db
and c_big, with get speedups above 60% with factors of
1.68 and 1.9 and 1.66 respectively. This suggests that
the storage reductions could have a direct impact in
the execution cost of executing mathematical routines
on GPU, specially on matrices which can move most
of their rows to lower categories.

7 Final remarks and future work

We performed an extensive evaluation of different
strategies to reduce the storage cost of sparse matri
ces. Our approach included more general strategies

- io-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

focused in the CSR format but also explored more
specific approaches like bmSparse.

Our work focused on systematic evaluation of the
different approaches, specifically in the compression
ratios. We found two promising strategies to reduce the
overhead introduced by the explicit storage of the in
dices by reducing the storage required for the columns.
This approaches included the use of the RCM heuristic
to reorder the matrices plus the compression by storing
distances instead of the indices. We also addressed
other format, bmSparse, to study the impact of the
compression strategies outside of CSR. Both studies
were performed in large enough sets with hundreds of
matrices from Suite Sparse Matrix Collection. Finally,
we performed a small experimental evaluation focused
on execution time which gave promising results.

Considering the experimental results we can make
three important affirmations. First, the approaches
to compress the indices by storing distances strongly
reduce the storage required by most sparse matrices.
Moreover, the previous application of reordering tech
niques is, in general, a good idea that improves the
result. Secondly, the reduction of storage comes with
a reduction of the execution time of the memory trans
fers thus impacting in mathematical kernels that use
accelerators like, for example, GPUs. Finally, this
strategies are not CSR-specific and can be used in
conjunction with other formats and result in hybrid
approaches with great reductions on storage. This
compression strategies will have even more impact in
contexts in which the data is stored in smaller formats
such as half precision.

As part of future work, we have different exiting
lines. An important line of work is to expand our
implementation to develop GPU kernels that address
the sparse matrix-vector multiplication. It would be
also interesting to evaluate delta-to-diagonal imple
mentations which we did not address in this work. The
RCM method is an heuristic designed to improve the
bandwidth of a matrix and not specifically the tech
niques. It is interesting to explore other heuristics
directly focused on improving, for example, the delta
encoding. An interesting line of work is to explore
trajectory-based heuristics as the ones mentioned at
the end of Section 4 but focused on this objectives
instead of the concentration of non-zeros around the
diagonal. Another interesting line is the creation of a
hybrid format that uses this techniques to improve the
performance of more specific formats like bmSparse.
The general idea would be to use the format in the
areas of the matrix in which it gets good performance
and our optimized-CSR in the rest. In bmSparse for
example this would be to store the dense blocks with
that format and the other with the new proposal. In
this approach the SpMV would be performed indepen
dently and the result of each submatrix summed at the
end. Finally, we want to develop a public software li
brary that uses our optimized-CSR and experimentally

evaluate some mathematical kernels.

Competing interests
The authors have declared that no competing interests exist.

Funding
Manuel Freire received funding from the UDELAR CSIC-
INI project CompactDisp: Formatos dispersos eficientes
para arquitecturas de hardware modernas.

Authors’ contribution
• Conceptualization (MF, RM, ED, PE)
• Software (AM, DP)
• Supervision (ED, PE)
• Redaction - original manuscript (MF, RM, ED, PE)
• Redaction - review and editing (MF, ED, PE)

All the authors have read and approved the final version

Acknowledgements
This work is partially funded by the UDELAR CSIC-INI
project CompactDisp: Formatos dispersos eficientes para
arquitecturas de hardware modernas. The authors also thank
PEDECIBA Informática and the University of the Republic,
Uruguay.

References
[1] F. G. Gustavson, W. Liniger, and R. Willoughby, “Sym

bolic generation of an optimal crout algorithm for
sparse systems of linear equations,” J. ACM, vol. 17,
no. l,pp. 87-109, 1970.

[2] I. Duff, “A survey of sparse matrix research,” Proceed
ings of the IEEE, vol. 65, no. 4, pp. 500-535, 1977.

[3] T. Davis and E. P. Natarajan, “Algorithm 907: Klu, a
direct sparse solver for circuit simulation problems,”
ACM Trans. Math. Softw., vol. 37, pp. 36:1-36:17,
2010.

[4] A. Chakraborty, T. Dutta, S. Mondal, and A. Nath,
“Application of graph theory in social media,” Interna
tional Journal of Computer Sciences and Engineering,
vol. 6, pp. 722-729, October 2018.

[5] M. Freire, R. Marichal, E. Dufrechou, and P. Ezzatti,
“Towards reducing communications in sparse matrix
kernels,” in Conference on Cloud Computing, Big Data
& Emerging Topics, pp. 17-30, Springer, 2023.

[6] M. Freire, R. Marichal, S. Gonzaga, E. Dufrechou, and
P. Ezzatti, “Enhancing the sparse matrix storage using
reordering techniques,” in Latin America High Perfor
mance Computing Conference (CARLA 23), pp. 66-76,
2023.

[7] E. Dufrechou, P. Ezzatti, and E. S. Quintana-Orti, “Se
lecting optimal SpMV realizations for GPUs via ma
chine learning,” Int. J. High Perform. Comput. Appl.,
vol. 35, no. 3, 2021.

[8] E. Dufrechou, P. Ezzatti, M. Freire, and E. S. Quintana-
Orti, “Machine learning for optimal selection of sparse
triangular system solvers on gpus,” J. Parallel Dis
tributed Comput., vol. 158, pp. 47-55, 2021.

- 11 -

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

[9] Y. Saad, Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics, sec
ond ed., 2003.

[10] A. Pinar and M. T. Heath, “Improving performance of
sparse matrix-vector multiplication,” in Proceedings of
the 1999 ACM/IEEE Conference on Supercomputing,
SC ’99, (New York, NY, USA), p. 30-es, Association
for Computing Machinery, 1999.

[11] Y. Saad, “Sparskit: a basic tool kit for sparse matrix
computations - version 2,” 1994.

[12] J. Zhang and L. Gruenwald, “Regularizing irregularity:
Bitmap-based and portable sparse matrix multiplica
tion for graph data on gpus,” in Proceedings of the 1st
ACM SIGMOD Joint International Workshop on Graph
Data Management Experiences & Systems (GRADES)
and Network Data Analytics (NDA), GRADES-NDA
’18, (New York, NY, USA), pp. 1-8, Association for
Computing Machinery, 2018.

[13] G. Berger, M. Freire, R. Marini, E. Dufrechou, and
P. Ezzatti, “Unleashing the performance of bmsparse
for the sparse matrix multiplication in GPUs,” in Pro
ceedings of the2O21 12th Workshop on Latest Ad
vances in Scalable Algorithms for Large-Scale Systems
(ScalA), pp. 19-26, November 2021.

[14] G. Berger, M. Freire, R. Marini, E. Dufrechou, and
P. Ezzatti, “Advancing on an efficient sparse matrix
multiplication kernel for modern gpus,” Concurrency
and Computation: Practice and Experience, p. e7271,
2022.

[15] E. Cuthill and J. McKee, “Reducing the bandwidth of
sparse symmetric matrices,” in Proceedings of the 1969
24th national conference, pp. 157-172, ACM Press,
1969.

[16] M. Bollhoefer and Y. Saad, “On the relations between
ILUs and factored approximate inverses,” SIAM J. Ma
trix Anal. Appl., vol. 24, no. 1, pp. 219-237, 2002.

[17] X. Sun, Y. Zhang, T. Wang, X. Zhang, L. Yuan, and
L. Rao, “Optimizing SpMV for diagonal sparse ma
trices on GPU,” in 2011 International Conference on
Parallel Processing, pp. 492-501, IEEE, September
2011.

[18] N. Bell and M. Garland, “Implementing sparse matrix
vector multiplication on throughput-oriented proces
sors,” in Proceedings of the Conference on High Perfor
mance Computing Networking, Storage and Analysis,
pp. 1-11, 2009.

[19] N. Bell and M. Garland, Cusp library, 2012.

[20] D. Guo, W. Gropp, and L. N. Olson, “A hybrid format
for better performance of sparse matrix-vector mul
tiplication on a GPU,” The International Journal of
High Performance Computing Applications, vol. 30,
pp. 103-120, July 2015.

[21] H. Anzt, J. Dongarra, G. Flegar, N. J. Higham, and E. S.
Quintana-Orti, “Adaptive precision in block-jacobi pre
conditioning for iterative sparse linear system solvers,”
Concurrency and Computation: Practice and Experi
ence, vol. 31, p. e4460, March 2018.

[22] F. Goebel, H. Anzt, T. Cojean, G. Flegar, and E. S.
Quintana-Orti, “Multiprecision block-jacobi for iter
ative triangular solves,” in Euro-Par 2020: Parallel

Processing, pp. 546-560, Springer International Pub
lishing, 2020.

[23] T. Grützmacher, T. Cojean, G. Flegar, F. Gõbel, and
H. Anzt, “A customized precision format based on
mantissa segmentation for accelerating sparse linear
algebra,” Concurrency and Computation: Practice and
Experience, vol. 32, July 2019.

[24] S. Xu, H. X. Lin, and W. Xue, “Sparse matrix-vector
multiplication optimizations based on matrix band
width reduction using NVIDIA CUD A,” in 2010 Ninth
International Symposium on Distributed Computing
and Applications to Business, Engineering and Science,
IEEE, August 2010.

[25] M. Maggioni and T. Berger-Wolf, “CoAdELL: Adap
tivity and compression for improving sparse matrix
vector multiplication on GPUs,” in 2014 IEEE Interna
tional Parallel & Distributed Processing Symposium
Workshops, IEEE, May 2014.

[26] M. Maggioni and T. Berger-Wolf, “AdELL: An
adaptive warp-balancing ELL format for efficient
sparse matrix-vector multiplication on GPUs,” in 2013
42nd International Conference on Parallel Processing,
IEEE, October 2013.

[27] W. T. Tang, W. J. Tan, R. Ray, Y. W. Wong, W. Chen,
S. hao Kuo, R. S. M. Goh, S. J. Turner, and W.-E Wong,
“Accelerating sparse matrix-vector multiplication on
GPUs using bit-representation-optimized schemes,” in
Proc, of the International Conference on High Perfor
mance Computing, Networking, Storage and Analysis,
ACM, 2013.

[28] A. Monakov, A. Lokhmotov, and A. Avetisyan, “Au
tomatically tuning sparse matrix-vector multiplication
for GPU architectures,” in High Performance Em
bedded Architectures and Compilers, pp. 111-125,
Springer Berlin Heidelberg, 2010.

[29] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and
P. Sadayappan, “Adaptive sparse tiling for sparse ma
trix multiplication,” in Proceedings of the 24th Sympo
sium on Principles and Practice of Parallel Program
ming, ACM, February 2019.

[30] C. Yang, A. Buluç, and J. D. Owens, “Design princi
ples for sparse matrix multiplication on the gpu,” in
Euro-Par 2018: Parallel Processing (M. Aldinucci,
L. Padovani, and M. Torquati, eds.), (Cham), pp. 672-
687, Springer International Publishing, 2018.

[31] T. Gale, M. Zaharia, C. Young, and E. Eisen, “Sparse
GPU kernels for deep learning,” in Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’20,
IEEE Press, 2020.

[32] K. Kourtis, G. Goumas, and N. Koziris, “Optimizing
sparse matrix-vector multiplication using index and
value compression,” in Proc, of the 2008 conference
on Computing frontiers, pp. 87-96, ACM Press, 2008.

[33] J. Willcock and A. Lumsdaine, “Accelerating sparse
matrix computations via data compression,” in Pro
ceedings of the 20th annual international conference
on Supercomputing - ICS '06, pp. 307-3016, ACM
Press, 2006.

- 12-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

[34] M. Freire, R. Marichal, E. Dufrechou, P. Ezzatti, and
M. Pedemonte, “Trajectory-based metaheuristics for
improving sparse matrix storage,” in Proceedings of
the 9th Latin American Conference on Computational
Inteligence (LACCI2023), (Recife, Brasil), pp. 66-76,
November 2023.

[35] G. Berger, E. Dufrechou, and P. Ezzatti, “Sparse matrix
vector product for the bmsparse matrix format in gpus,”
in Proceedings of the 21ST International workshop on
Algorithms, Models and Tools for Parallel Computing
on Heterogeneous Platforms (HeteroPar 2023), LNCS,
(Limassol, Cyprus), Springer, August 2023.

Citation: M. Freire, R. Marichal, A. Martinez, D.
Padrón, E. Dufrechou and P. Ezzatti. Leveraging
index compression techniques to optimize the use
of co-processors. Journal of Computer Science &
Technology, vol. 24, no. 1, pp. 1-13, 2024.
DOI: 10.24215/16666038.24.e01
Received: April 15, 2023 Accepted: January 29,
2024.
Copyright: This article is distributed under the
terms of the Creative Commons License CC-B Y-

^NC-SA.___________________________________

- 13 -

