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Abstract. In the present lectures we provide results and discussions 
concerning the processes that lead to local and global chaotic diffusion 
in phase space of multidimensional conservative systems. We investigate 
and provide a measure of the extent of the domain over which diffusion 
may occur. All these issues are thoroughly discussed by dealing with 
a toy model such as the perturbed quartic oscillator as well as with a 
multidimensional conservative map that would be representative of the 
dynamics of a resonance interaction, which is an important mechanism 
in several astronomical systems, like the Solar System or galaxies.
Most of the contents of the present lectures are based on previous works 
of the authors already published in several journals.

1. Introduction

An open issue in multidimensional Hamiltonian systems is the so-called chaotic 
diffusion, that is, those mechanisms under which either global or local actions 
of an integrable Hamiltonian change over phase space (or action space) under 
the effect of a non-integrable perturbation. This kind of phenomena arises in 
Solar System and planetary dynamics, stellar dynamics such as star clusters and 
galaxies as well as in many other dynamical problems, like chemical reactions or 
particle acellerators.

At the present any complete theory that could describe global instabilities 
in phase space of multidimensional systems is still lacking. One could acquire 
accurate values of several indicators of the stability of the motion, but they would 
only provide local information for a neighborhood of a some point of phase space. 
A given orbit in a chaotic component in, for instance a 3D potential could have, 
positive and large values of two of its Lyapunov exponents, which does not 
necessarily mean that the unperturbed integrals will vary over vast domains.

Even though near-integrable Hamiltonian systems have been largely inves­
tigated -perhaps starting with the study conducted by Poincare in the late nine­
teenth century (Poincaré 1893)-, the problem has not been completely elucidated 
yet. In fact, questions such as the stability of the motion of high-dimensional 
systems are far from being thoroughly understood. Some progress on transport 
phenomena has been made during the last two decades, but almost all the at-
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tained results concern only low-dimensional symplectic maps or in other cases, 
non conservative one-dimensional maps, and it appears rather difficult to extent 
these approaches to be applied to many-dimensional Hamiltonians or conserva­
tive maps. Moreover, it is unclear how these approaches provide information 
about the role played by the torus structure and their invariant manifolds in 
spreading or preventing diffusion in phase space (see for instance, Meiss 1992, 
Venegerolies 2008, Korabel & Klags 2004).

Developing further in this direction Chirikov (1979) pioneered a complete 
survey of this matter in a somewhat heuristic way by using a standard mathemat­
ical language. Following this improvement, Cincotta (2002) revisited Chirikov’s 
arguments, particularly that related to the so-called Arnol’d diffusion.

Regarded as a global instability, Arnol’d diffusion appears to be closer to a 
theoretical conjecture rather than to a real physical process (see Arnol’d 1964; 
Chirikov & Vecheslavov 1989; Chirikov & Vecheslavov 1993; Chirikov et al. 1985; 
Cincotta 2002). In fact, there remain so many unsolved mathematical details 
that Arnol’d diffusion, as a global instability, results a rather controversial ques­
tion (see Lochak 1999). Further, the more recent numerical evidence reveals that 
Arnol’d diffusion might operate in certain (somewhat artificial) dynamical sys­
tems (Guzzo et al. 2005, 2006; Lega et al. 2010). In fact, in a previous work Lega 
et al. (2008), investigated diffusion in near-integrable Hamiltonian Systems (or 
symplectic maps) and discuss and compute local and global Arnol’d diffusion in 
two different scenarios, the Froeschlé four-dimensional map (see Froeschlé 1971, 
1972) and a 3D Hamiltonian model previously investigated by for instance Guzzo 
et al. (2002), Froeschlé et al. (2005). Also in the lecture by Efthymiopoulos 
(2012) in this proceedings, a thoroughly discussion about Arnol’d diffusion (or 
diffusion along a singe and/or double resonance) is presented, using the same 
3D Hamiltonian system mentioned above, including rather instructive pictures 
of how diffusion proceeds. Besides an attempt to relate the size of the remain­
der of the optimal normal form construction and Chirikov’s Arnol’d diffusion 
coefficient estimate is discussed. We strongly recommend the interested reader 
to explore in the exhaustive list of references on the subject in this mentioned 
lecture.

Nonetheless, it has been shown that Arnol’d diffusion-like processes may 
play a significant role in global chaotic diffusion in phase space, (Giordano & 
Cincotta 2004); (Cachucho et al. 2010), though the mechanisms that drive the 
diffusion remain still unknown. By Arnol’d diffusion-like we mean, chaotic 
transport along resonance (or relics of resonances), that geometrically resembles 
Arnol’d diffusion, but in those scenarios most of the phase space is chaotic, 
mainly due to strong overlap of the main resonances so the systems is quite far 
from the regime under which Arnol’d diffusion is usually investigated. Roughly 
speaking, the perturbation is not small enough such that most of the resonance 
structure is preserved (see the discussions given in the present lecture).

In (Cachucho et al. 2010) Chirikov’s diffusion approach is applied to the 
(5,-2,-2) three body mean motion resonance for the (490) Verita’s family. It 
is shown that the theoretical arguments used by Chirikov to describe Arnol’d 
diffusion could also apply in this realistic problem in which the so-called guiding 
resonance domain is completely chaotic. However, the scenario of modulational
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diffusion (Chirikov at al. 1985) could perhaps be more suitable to describe the 
large diffusion observed in the eccentricity of asteroids.

In the present lecture we discuss a preliminary study of diffusion on phase 
space for a rather simple dynamical system in order to elucidate its efficiency 
to connect different chaotic components, already given in Giordano & Cincotta 
(2004) and Giordano & Cincotta (2008). Despite the simplicity of the adopted 
model, several results concerning its dynamics apply to any 3D Hamiltonian 
system exhibiting a divided phase space, such as galactic or planetary systems. 
In Section 4., two values for the perturbation parameter have been selected so 
that the dynamics of the toy model Hamiltonian resembles that of a galactic 
system (for a moderate perturbation, in which case both components are com­
parable) and asteroidal dynamics (for a large perturbation for which the chaotic 
component prevails).

Observational evidence, theoretical arguments and N-body simulations sug­
gest that a model resembling an isolated elliptical galaxy should exhibit a divided 
phase space and therefore the perturbation should be moderate (see, for instance 
Merritt & Friedman 1996; Merritt & Valluri 1996, Papaphilippou & Laskar 1998; 
Gerhard & Binney 1985; Poon & Merritt 2002; Muzzio et al. 2005).

Herein in Section 5.2. we also show, discuss and measure chaotic diffusion 
in action space by means of a conservative multidimensional map, the Coupled 
Rational Shifted Standard Map (CRSSM), whose global dynamical properties 
have been previously studied in Cincotta et al. (2003) -CGS03 hereafter-, for 
different sets of parameters, by recourse of the Mean Exponential Growth Factor 
of Nearby Orbits (MEGNO). First introduced by Cincotta & Simó (2000) and 
latter generalized in CGS03, the MEGNO is a rather efficient indicator of the 
dynamics belonging to the class of the so-called fast indicators, which has al­
ready become of widespread use. Many applications of this tool to Solar System 
dynamics, exoplanets models and as well as to many other dynamical systems 
could be found throughout the literature. The obtained results are taken from 
Cincotta & Giordano (2012).

Furthermore, we provide a simple tool which turns to be suitable for measur­
ing the variation of the unperturbed integrals. We face the difficulty to compute 
a meaningful diffusion coefficient, due to the fact that, as far as we know, it still 
remains unclear which would be the appropriate approach to be considered, in 
particular, how the variance of the variables scales with time. In fact, in case 
of normal diffusion the variance scales linearly with time, but for what is called 
abnormal diffusion, the scaling runs like tb where the parameter b is in general 
unknown and further, it strongly depends on the local dynamical structure of 
the deemed region of phase space (see for instance, Cordeiro & Mendes de Souza 
2005, Cordeiro 2006, Mestre 2012). The exhaustive numerical exploration per­
formed in Cincotta & Giordano (2012) and the results of their application are 
discussed in Section 5.5.

2. A real galaxy

A galaxy is a very complex physical system since it is composed of ~ 1011 — 1015 
stars whose space distribution (or density) generates its own gravitational field. 
Some types of galaxies present a rotating pattern, spiral arms and bars. Gas



188 P.M. Cincotta & C.M. Giordano

and dust are generally present, star formation processes occur, supernova ex­
plosions release a large amount of energy and the chemical evolution certainly 
should affect the hydrodynamics. Besides, galaxies are not isolated: gravita­
tional interaction with other galaxies and stellar clusters is always present. It is 
claimed that a super-massive black hole lies in the center of any galaxy. Thus, 
all these processes and interactions should be considered when modeling a rough 
real galaxy, which in fact seems to be a rather difficult problem to cope with. 
Further aspects are still open, like for instance if they are in a steady state or 
how to cope with the unknown dark matter, if actually dark matter does exist 
(see the lecture by Carati & Galgani 2012 in the present volume).

3. A galaxy as an idealization of a A particle Hamiltonian system

Following Binney & Tremaine (1987), let f^^xi, • • • , xn,Pi, • • • ^N^ be the 
N-particle probability density or distribution function (DF) on 2N-D phase 
space F, so it satisfies the Liouville theorem:

Let us define the 1 - particle DF:

/(1)(iTi,pi,t) = j fWd3x2 • • -d3a?Ard3p2 • " d3pA-

Assuming that:

• KítíjPí)^/^) —> 0 as |(iCi,pi)| —> oo Vfc, Vz = 1, • • • , A,

• is symmetric in sq, • • • ,xn;pi, • • • ,pn,

e the 2-particle DF could be written in terms of the 2-particle correlation 
function:

Z^2^ (®1, Pl, a?2, P2, ^) = f(1)(ír1,p1,t)f(1\ír2,P2,t) + g{x1,p1,x2,p2,t),

e the 2 - particle correlation function g ~ 0 (Two-body relaxation time: 
Tr ~ 1015 yrs.),

• A» 1,

• and Z($,^i) = NZ^^iiPi/m,t)

• (®, v) = (®i,pi/m,)

we arrive to the so-called collisionless Boltzmann (or Vlasov) equations:

-^ + [/^] = 0, H(p, x^ = — + <^x,t^ p = v.
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being $(a:, t) a smooth potential generated by the star distribution. This is the 
Liouville theorem in the 6-D phase space, p. Thus, it is necessary to solve:

-^-V^-V^f = 0, 
ot

and the Poisson equation:

V2<b = 47rGm f(x, v, t)d3v.

3.1. Steady state solutions
A steady state solution for the collisionless Boltzmann and Poisson equations 
is given by the so-called strong Jeans Theorem (Lynden-Bell 1962, Binney & 
Tremaine 1987):

The DF of a steady-state galaxy in which almost, all orbits are regular with 
incommensurable frequencies may presumed to be a function only of three inde­
pendent. isolating integrals.

An isolating integral I(xftf v(t)) = c defines a manifold in p of lower di­
mension than dim(/z). In Jeans Theorem, the three isolating integrals are, for 
instance, the three global actions or integrals of H(p, x).

An alternative version of the Jeans Theorem could be stated as follows:

If the Hamiltonian of a collisionless stellar system in steady-state equilib­
rium is Amol ’d-Liouville integrable, the DF has a constant value at every point 
in an invariant torus of the system (Efthymiopoulos et al. 2008).

But galaxies should present a divided phase space. Therefrom the imple­
mentation of Jeans theorem in more realistic stellar systems is rather difficult, 
for instance:

• It is unclear how the approximate integrals or actions should be included 
as arguments of the DF when the system is near-integrable;

• Resonances and resonance intersections are dense in phase space;

• One or two integrals do not exist for the chaotic domains of phase pace.

A generalization for non-integrable potentials is given by Merritt (1999):

The phase space density of a stationary stellar system must be constant 
within every well-connected region.

But:

• An invariant non-resonant torus is a well-connected region when t —> oo,

• A resonant elliptic torus also is a well-connected region of lower dimension 
(2D) and when t —> oo,
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e An hyperbolic tours, also has a lower dimension, and the dynamics is 
much more complicate when we add a non-in tegrable perturbation to an 
integrable Hamiltonian,

• Are the chaotic domains in phase space well-connected regions?

Therefore it is rather important to investigate chaotic diffusion in phase 
space to understand, for instance, if a single chaotic component does exist. To 
deal with this issue we can use a non-integrable Hamiltonian (toy) model or 
instead a multidimensional map. Thus, we will be considering a perturbed 3D 
quartic oscillator and a 4D symplectic map.

4. Chaotic diffusion of orbits in systems with a divided phase space 
for a 3D Hamiltonian system

In order to build up an equilibrium model for a galaxy which is assumed to be 
represented by a smooth gravitational field it is necessary to know beforehand 
its global dynamics. It seems likely that any realistic model should exhibit a 
divided phase space, that is, the motion would take place either in a stable, 
regular component or in one or more unstable, chaotic components. In 3D 
systems displaying such a dynamics, the existence of three, in general local, 
invariants, allows the presence of invariant tori where regular, quasi-periodie or 
resonant motion takes place. The disruption of these local invariants, mainly 
due to resonance interactions, leads to the appearance of a chaotic component.

However, the first attempts to investigate these matters in the astrophysical 
literature assumed that for dynamical systems with more than two degrees of 
freedom, the chaotic component is fully connected. In fairly recent studies, such 
as Merritt & Valluri (1996) and Merritt & Fridman (1996), the authors study 
whether this full connection of the chaotic component may occur in realistic 
physical times. If such were the case, it would imply that the orbit of a star 
within the chaotic domain would explore the whole region, which, in general, 
would comprise a large fraction of the energy surface. As a consequence the 
distribution function on the chaotic component would depend only on the energy 
(see Merritt (1999) for a thorough discussion).

As shown in Giordano & Cincotta (2004) we obtained numerical evidence 
that for moderate-to-strong chaotic systems diffusion does not occur over the 
whole chaotic component and only when the latter fills almost all the energy 
surface may diffusion become significant but in extremely large times. We chose 
a rather simple Hamiltonian system, the perturbed quartic oscillator in order to 
have a complete knowledge of the local and global dynamics and the transition to 
chaos, and particularly to be able to study in detail the motion in the resonance 
intersections. The forthcoming sections summarize the main results of this work.

Therefore, let us now be concerned with the perturbed uncoupled quartic 
oscillator:

H(p,q) = — + -(x4 + y4 + z4H ex2(y + z^. (1)

whose full dynamics has been investigated by Cincotta & Giordano (2002) 
and Cincotta et al. (2003) by means of the Mean Exponential Growth factor of
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Nearby Orbits (MEGNO) (a detailed formulation of this technique can be found 
in Cincotta et al., 2003 and Cincotta & Simó, 2000.)

The advantage of this 3D toy model is that it can be easily written in terms 
of action variables and that the coordinates admit of a simple Fourier expansion. 
Indeed, in terms of the unperturbed action-angle variables, (Zi, I2,I3; 0i,02, 63). 
the Hamiltonian (1) can be recast as

H(I,0) = H0(I) + eV(I,6), (2)
where

H0(n = A + Z24/3 + 1^ (3)

with A = (3/3/2 V2)4/3, 3 = tt/2Z<(1/V2), Z<(Z) denoting the complete elliptic 
integral. The perturbation, which can be assumed to be small as long as e <^ I, 
admits of the Fourier expansion

00F(Z, 3) = Ê12 ^ anmk(cos (2(n+m-l)6*i ± (2fc-l)02) 
n^^^l

+ cos(2(n—m.(0i±(2k — "Y102^ 
oo

+ ^13 52 a™nk(cos (2(n+m-l)0i ± (2Z-1)6I3) 
n,m,fc=l

+ cos (2(n—m)#i ± (2k —1)03)^,

the functions V^j and the coefficients anmk being

(4)

Vij = ^^^^DjiD^ 

1
Cu = --------- 7----------------------------r

' cosh ((s — 1/2)tt)

^nmk — ^n^m^k,

Qs+l 1

as 23’

and can be split in two, namely Vxy and Vx-, on introducing the integer vectors 
I = (k, k, 0) and k = (Aq, 0, Z3), and the new coefficients ây^ and &kik3,

Vxy(k,h; OiAl

VxAh,l3",01,031

Ê12 52 “hh cos(k0i + I262I, 
h, 1-2

^13 52 “Dk3 cos(ki0i + k303\
ki,k3

The concomitant unperturbed frequency vector is given by

^m^^NyíANtff3 (5)

The knowledge of the resonance structure of the unperturbed Hamiltonian 
Hy, is of actual relevance. Here the resonance structure on the energy sur­
face can be easily visualized by introducing a change of coordinates such that
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the unperturbed energies in each degree of freedom, hi, hi, h^, become the new 
action-like variables. We obtain

Ho(hi, hi, ^3) — hi + hi + h?j,

a,(hi,h2,h3) = V^h1/4^4,^74)

and, in terms of (hi, hi), the resonance condition, m ■ ld = 0, m E Z3/{0}, for
Hq = h can be recast in the form

(m4 + m|)^4 + 4tt73 777-2 £3 77 + Gm.^m^^Ty2 
+ 4mim.2^773 + (777-2 + ml)^4 — 777.3 = 0, (6)

where £ = (hi/h)1/4, t) = (hi/h)1/4.
Note that for those harmonics in which one of the mi is zero, the resonant 

polynomial (6) can be easily solved to yield

hi = —7/11, mimi < 0, m3 = 0, (7a)

4 1 4

hi = 1 - Í——4^H1, mim3<0, m2 = 0, (7b)
\ m.3 2

4

^2 = ( 4 3 4 ) (1 - M, mi-m.3 < 0, mi = 0, (7c)
\ 777-2 + m.3 /

with hi = hi/h, showing that those resonances associated to resonant vectors 
with at least one null mi appear as straight lines on the energy surface hi + hi + 
^3 = 1-

The width of any of those resonances can be computed by means of a simple 
pendulum approximation, which is a suitable description in the case in which 
we assume each resonance is isolated from the rest.

Let us notice that the map I 1—> h transforms the unperturbed energy surface 
into a plane, so that we can perform a second (global) change of coordinates, 
(/ii, hi, h3) H- (ei, Ci, 63), in such a way that the es-axis is normal to the energy 
plane,

ei = —(hi - 2hi + h3), (8a)
yG

e2 = ^(hi-h3), (8b)

e3 = ^(^1 + ^2 + M, (8c)

with

Í2 < ei < 1 1 e2 < 1 e3 _ 1
V 3 “ h “ V6’ V2 ~ ~ V2’ h ~~ V5" (9)
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The resonance structure of the unperturbed system on the energy surface and 
the theoretical widths of the principal resonances appearing in the perturbation 
are presented in Figs. l[a] and [b], respectively.

On applying the MEGNO to the study of the global dynamics of Eq. (1), 
one obtains the resonance structure presented in Fig. l[c]. There, the details 
of the phase space structure at a low-to-moderate value of the perturbation 
(e = 5 x 10;i) are displayed, depicting the obtained values for the MEGNO in 
a contour-like plot where resonances can be clearly distinguished.

Figure 1. [a] Resonances of the unperturbed Hamiltonian (3) for 1 < |?ni| + 
1772-21 + |m-3| < 9 for the rescaled energy h = 1 yielding the theoretical Arnold 
web on the energy surface, [b] Strongest resonances and their theoretical 
widths for e = 0.005. [c] Actual dynamics of the system revealed by the 
MEGNO for the same value of e. [d] Blow up around the origin. These 
figures were taken from Cincotta et. al, 2003 and Mestre et. al, 2009.

At this stage, a brief reference to MEGNO’s behavior is required in order 
to grasp the dynamical information comprised in such a figure. Let us then 
recall that in the case of regular motion, the MEGNO (K) tends asymptotically 
to a fixed value independent of the orbit, namely Y —> 2. Small departures
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from this value indicate the proximity of some periodic orbit, where Y < 2 and 
Y > 2 for stable and unstable periodic orbits, respectively. On the other hand, 
for irregular, stochastic motion Y grows linearly with time as t —> co, at a rate 
equal to u/2, u denoting the largest Lyapunov Characteristic Number (LCN) of 
the orbit.

Let us devote the following paragraphs to describe the procedure giving rise 
to Fig. l[c], and Figs. 2, which correspond to higher values of the perturbation.

{ Y } - Jevek ( Y / - Jevek

-0Ê -0.4 -0.2 0 02 0.4 -0.8 OÊ -0.4 -0.2 0 02 0.4

Figure 2. K(t^)-levels on the energy surface for e = 0.02 and 0.04.

For each adopted value of e, we take values of hi and h2 with 0 < hi, h2 < 
h, h^ = h — hi~ h2, where hi and h2 are of the form jh/1, 000; j = 0,..., 1, 000. 
This leads to 501,501 initial conditions for which we take (x, y, z) = (0, 0, 0). The 
equations of motion are integrated together with their first variationals over a 
total motion time tf = 3,5007”. For the tangent vector, we adopt the initial 
values 5X = hy = 6Z = 0 and 5Pi chosen at random in the interval ( — 1,1) and 
then normalized to 1. For each orbit we compute both Y^tj^ and the rate at 
which the MEGNO grows with time. The actual energies hi,h2,hs, are scaled 
to the interval [0,1] (by division through L) and then transformed to the energy 
plane (ei, 62) by means of Eqs. (8).

In Fig. 1 [c], corresponding to e = 5 x 10;i. we display the values of Y^tj^ 
binned in five intervals, two of them being very narrow and close to 2 (see figure 
caption for details).

In this picture most of the main resonances can be clearly distinguished as 
light gray channels surrounded by dark boundaries. Four main resonances are 
seen to intersect at the origin: the three lines corresponding to the (1,—1,0), 
(1, 0, —1), (0,1, —1) resonances and the curve associated to the (—2,1,1) reso­
nance.

The actual width of the resonances as well as the narrow stochastic layers 
at their edges can be clearly visualized. The center of any resonance “channel” 
corresponds to a sequence of 2D elliptic tori while its borders (“stochastic layer”) 
correspond to a sequence of 2D hyperbolic tori. We observe a strip of chaotic
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Figure 3. Fraction of chaotic motion vs. e (in logarithmic scale). The 
vertical lines refer to the values of e adopted for Fig. l[c] and Fig. 2.

motion close to hi = 0. The presence of this region is easily understood from 
Fig. la as the overlap of the strongest resonances, e.g. (2, —1, 0) and (2, 0, — 1), 
as well as of many others (not shown in Fig. l[a]).

The dynamics at the intersection of resonances can be quite intricate. To 
illustrate such a feature, let us note the complexity of the picture reproduced in 
Fig. l[d], where we present a zoom around the intersection of resonances at the 
origin in Fig. l[c]. That contour plot was obtained with a higher resolution in hi 
and hi and for a total motion time tf = 350T. There the MEGNO reveals the 
existence of several stability zones, which should be responsible for restraining 
the spread of chaotic motion, acting as barriers to diffusion. They are the well- 
known sticky tori surrounding the periodic orbit located at the center of the 
resonance. This plot is also very illustrative to see how the manifolds of lower 
dimensional tori bend in a complex fashion, giving rise to the many tight loops 
seen in the picture. These manifolds are important because they are the objects 
able to carry the motion arriving along one of the resonances either to the “other 
part” of the resonance or to a different resonance.

As the perturbation is increased, resonances become wider. Fig. 2 displays 
the actual structure of action space (e-space) for two different (rather large) 
values of the perturbation parameter, namely e = 0.02 and e = 0.04. There, 
some details of the dynamics at moderate-to-high-level perturbations are shown 
in a plot similar to that in Fig. l[c]. The character of the motion (resonant, 
quasi-periodic and stochastic) is represented in gray scale, from white to black, 
the different Y^tj^ intervals have been selected so as to sharpen the details of 
the phase space structure in each case.

Notice that for e = 0.02 a significant part of the energy surface still looks 
regular, with wide resonance domains and a broad chaotic strip, while it looks 
rather chaotic for a somewhat slightly larger perturbation. Note however that 
within the weaker chaotic region, the MEGNO is still capable of unveiling the 
relics of resonance structures.
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In Fig. 3 we present the fraction of chaotic motion as e is increased, fixing 
a threshold of Y(tj) = 2 below which orbits are regarded as regular. The global 
amount of stochasticity as a function of e is measured by counting how many 
pixels have a value of Y that exceeds the adopted threshold. The fraction of 
chaotic motion for the values of e considered above, namely 0.02 and 0.04, are 
38% and 91.7%, respectively. Further, for values of e > 0.1 the system exhibits 
completely chaotic dynamics.

4.1. Diffusion on the energy surface at moderate to high perturba­
tion

Let us now analyze the diffusion on energy surface at moderate-to-high per­
turbations, following several orbits with initial conditions in different stochastic 
domains.

Table 1. Initial conditions on the energy surface for seven orbits with high 
values of the MEGNO. The energies hi, hg are given in units of h/250, where 
h = l/(4/34) is the total energy. The exact values of ei and eg should be 
obtained by means of Eqs. (8); their approximated values have been included 
so that they can be easily visualized on the energy surfaces.

i.c. /¿I ^2 ei 62
z 20 100 -0.0816 -0.3112
zz 10 125 -0.2041 -0.2969
zzz 85 69 0.1143 -0.0565
w 58 21 0.3053 -0.3116
V 70 134 -0.2482 0.0678
vzz 104 140 -0.2776 0.2771
wi 191 15 0.3347 0.4157

For seven different initial conditions listed in Table 1 we have followed the 
wandering of the unperturbed integrals over the (ei, C2)-plane. We have picked 
two initial conditions in the chaotic strip close to hi = 0, (z) and ^ii^ -see Fig. 2, 
another in the region surrounding the more regular central zone at the origin 
(ii^ and four other initial conditions located near the crossing of resonances 
(w) — (miy all of them have very high values of the MEGNO. The origin has 
also been considered; it actually corresponds to a regular orbit.

The equations of motion have been integrated by means of a Runge-Kutta 
7/8th order integrator (the so-called Dopri8 routine, see Hairer et al, 1987).

The results corresponding to e = 0.02 for a total motion time of 3 x 106 
characteristic periods T of the system are presented in Fig. 4[a] (we refer to the 
corresponding Fig. 2 for comparison). We note that even in the case of moderate 
perturbation, diffusion is completely irrelevant over such a timescale. Only when 
the resonances labelled by the harmonics (2, —1,0) and (2,0, —1) overlap does 
fast diffusion occur along such resonances, but it is restricted to a relatively small 
region of the energy surface. For the remaining initial conditions considered the 
unperturbed integrals remain confined to rather small domains. In particular,
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Figure 4. Diffusion on the energy surface at moderate-to-liigli perturba­
tions after 3 x 106 characteristic periods T of the system for: [a] e = 0.02, 
and [b] e = 0.04; and after 3 x 108T for: [c] e = 0.02, and [cl] e = 0.04.

for the initial condition (vi^ selected near the boundary /13 = 0, the variation of 
the unperturbed integrals proves to be small, differing slightly from the expected 
behavior in case of stability. For the regular orbit at the origin, considered just 
for illustrative purposes, the wandering is restrained to a point, as expected.

The plot in Fig. 4[b] corresponds to e = 0.04 and should be compared with 
the contour plot in Fig. 2, where the chaotic regime prevails. Notice must be 
taken however that in the central region in the latter figure, for which tf = 
3, 500T, there lie several chaotic orbits; the light gray points and even some of 
the white points within it have values of the MEGNO larger than 2 (as indicated 
in the caption). Recall that for constructing Fig. 2 the values of the MEGNO 
are binned in intervals chosen so as to highlight the dynamical structure of phase 
space, rather than discriminate stable quasiperiodic motion from chaotic motion. 
Thus, those chaotic orbits depicted in white in the contour plot having MEGNO 
values smaller than 2.1 are likely to behave in a regular fashion for rather short 
timescales, such as 3, 500T. Furthermore, Fig. 3 reveals that for e = 0.04,
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the system shows up as globally chaotic, with just a small fraction of phase 
space occupied by stable motion. This explains why, for the larger total motion 
time now considered, 3 x 106 characteristic periods T of the system, diffusion 
manages to trespass the central zone, the points being mainly concentrated along 
a fairly well-defined strip corresponding to the curve associated to the (—2,1,1) 
resonance (see below). Note that the upper part of the central zone remains 
unvisited at this timescale, except for a rather strong but confined concentration 
of points near the corner.

On considering an even larger timescale, 3 x 108 characteristic periods T 
of the system, for e = 0.02 (Fig. 4[c]) the fast diffusion occurring at the overlap 
of the resonances (2, —1, 0) and (2, 0, —1) after 3 x 106 periods now spreads and 
continues upwards along the resonances near the borders /13 = 0 and h2 = 0. 
For the initial condition (vi^ chosen at a resonance crossing near ^2 = 0, the 
variation of the unperturbed integrals that was restrained to a small domain in 
Fig. 4[a] for the lower timescale, now moves upwards, then proceeds to the right 
and finally goes downwards, the path being drawn by three different resonances. 
Notice, however, that on this timescale the wandering does not reach the banana­
shaped domain on the right corresponding to the initial condition (ii/f), probably 
due to the complexity of the dynamics at resonance intersections (recall how 
intricate such crossings may be). Summing up, on this timescale and for e = 0.02 
the unperturbed integrals still roam over unconnected restraint zones of the 
energy surface. There remain very localized diffusion domains and the chaotic 
component seems far from being fully connected.

Instead, for e = 0.04, after 3 x 108 characteristic periods T of the system 
the chaotic component is seen to be almost fully connected through the relics of 
the resonance structure (Fig. 4[d]). The upper right part of the energy surface, 
formerly empty, now appears densely populated by concentrations mainly along 
some still distinguishable remaining resonances.

Figure 5. [a] Enlargement of Fig. 4[d] around (ex,e2) = (0,0). [b] Diffusion 
of a single orbit over the energy surface for s = 0.04 and tf = 6 x 108 T (see 
text for details).

Lb]

Fig. 5[a] displays an enlargement of the central region in Fig. 4|d], to see 
whether any unvisited domain still remains in that part of the energy surface for 
such a large timescale. A strong concentration of points persists along the strip
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already present in Fig. 4[b] for 3 x 106 periods, namely, the curve associated to 
the (—2,1,1) resonance.

In view of the results obtained for e = 0.04 on the larger timescale, we 
integrate a single orbit, the initial condition (z) taken in the chaotic strip near 
the border hi = 0, for an even larger tj, 6 x 108 characteristic periods T, and 
trace the path of its unperturbed integrals over the energy surface, with the aim 
of verifying whether this path covers the whole chaotic component. The results 
are displayed in Fig. 5[b], and should be compared with the plot in Fig. 4[d] 
for seven different initial conditions in Table 1 corresponding to chaotic orbits. 
As seen in the picture, for this single orbit the unperturbed integrals trail over 
the chaotic component, the relics of resonances serving as routes. It should be 
mentioned that, for half the total motion time considered, the upper part of the 
energy surface remained yet unreached, and it took a much longer time to visit 
the whole chaotic component.

5. Diffusion in multidimensional maps

In this section we present the results concerning the investigation of chaotic 
diffusion in discrete dynamical systems, most of which were already published 
in Cincotta & Giordano (2012).

5.1. The Mean Exponential Growth Factor of Nearby Orbits (MEGNO) 
for maps

For our exploring the action space of a multidimensional map, we wield the 
generalized MEGNO, for discrete dynamical systems.

The generalized version of the MEGNO, along with its implementation to 
discrete dynamical systems, which is in order for the current applications, are 
given also in CGS03. Though, just for the sake of completeness permit us to 
provide a brief description of how this tool should be applied in the latter case.

For a given map P, the initial point Qo is iterated to yield the points 
Qk = Pk(Qo'), while the differential map DP transports an initial “random” 
tangent vector, vq, ||vq|| = 1, providing vectors v^ = DPk(Qo)vg. Then, after N 
iterates, the generalized MEGNO is computed by means of

Ym,n (N) = (m + 1) Nn V In (km, (10)

and

_ 1 n
Ym,n (N) = Nm+n+1 ^ Y™-^ ^ • (U)

k=l

Further, a slight additional modification results profitable for the choice 
(2, 0) of the exponents (m, n), which leads as to the quantity

T2,o (N) = [4y2,o (N) - 2] /N, (12)
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which tends to 0 in the regular case and to op which is the LCN of the orbit, in 
the case of an irregular trajectory. Negative values of 1'2,0 (-^) appear for regular 
orbits -provided N is taken not too small-, while small positive values identify 
mild chaos.

5.2. The Coupled Rational Shifted Standard Map (CRSSM)

Let us introduce a 4D conservative map, namely, the Coupled Rational Shifted 
Standard Map (CRSSM) which provides a fairly good representation of the in­
teraction of two perturbed resonances. Therefore, its dynamics would well serve 
to model many dynamical scenarios in astronomy and astrophysics.

The CRSSM is defined by:

yi = yi + £i/i(^i) + 7+/s(^i+ ^2) + 7-/s(^i-^2),
^2 = ^2 + £2/2^2) + 7+/s(^i+ ^2) - 7-/s(^i-^2),
$i = $i+Eiyi,

$2 = $2+62^2, (13)

with Xi G [0, 2tt), yi G [0, 2tt/e7;), i = 1,2, and

„ , x sin (x + A A Pi sin pi , , x
ft^ = ------~ -A¿, A¿ = , ¿ = 1,2,3, 14)

where pi G [0,1), and the quantities A¿ are fixed so that the fi functions have 
zero average.

Notice that (13) is a variation of two coupled standard maps so modified 
that symmetry is lost through the phase pp and the entire character of fi is 
broken due to the parameters pi G [0,1). The terms in (37 + £2) and (37 — £2) 
are coupled by the small terms including 7 and 7 respectively. Thus defined, 
the map is a 4D-torus.

Though the CRSSM has too many free parameters most of them are kept 
fixed through all our study, being £2 the only one to be varied. We refer to 
CGS03 for the results concerning different sets of parameters.

Herein we fix p± = 0.5, pi = 1, P2 = 0.4, p2 = 2, p^ = 0.6, p^ = 3, Ei = 0.1, 
7+ = 0.1, 7- = 0.05 and take two distinct values of £2 = 0.2, —0.2.

5.3. Results provided by the MEGNO

For constructing Fig. 6, the MEGNO was computed for an equi-spaced grid 
of 1000 x 1000 pixels in the domain (yiEi/27r, y2£2/27r) G [0,1) x [0,1), the 
initial values for the remaining variables being xy = 0, X2 = 0. Recall that 
this is a problem of higher dimension, so that the iterates under DP of two 
“random” initial vectors vio,V2o, satisfying ||v?;o|| = 1, had to be computed - 
plus orthogonalized and renormalized at each step-, and the maximum of the 
two resulting values of T2,o,rs -one associated to each direction- was taken to 
determine the character of each trajectory. The picture on the right corresponds 
to £2 = 0.2 and the one on the left to £2 = —0.2.

The contour-like plots exhibit the obtained values for log(12,o,rs) after N = 
104 iterations, so that the details in each figure be highlighted. It is interesting
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Figure 6. Tyo.rsN-evels f°r the CRSSM on the (yi, y2) plane taking values of 
e2 with opposite signs (0.2 at the left and —0.2 at the right) . Initial conditions 
of regular behavior are plotted in white, those of mild local instability in green 
while those exhibiting strong local instability in red.

E! = 0.1, e2 = -0.2, Y+ = 0.1, f = 005

0 0.2 0.4 OJE OB 1

to remark that in the coupling we face with an indefinite form rather than a 
positive definite one, which produces a pretty dramatic effect on the resonances. 
In fact, observe that in the case of positive E2 most of the resonances have an 
elliptical chain of tori at their center while for the negative value of such a 
parameter several resonances show up as totally hyperbolic. Note that we are 
dealing with an a priori unstable system (see for instance Lega et. al, 2010).

The resonances in the vertical and horizontal directions are present even 
if 7± = 0 and their amplitudes depend, essentially, on Ej, j = 1,2. These res­
onances appear as white or green channels, despite of the sign of E2 and are 
the same present in the uncoupled Standard Map. Indeed, the sign of e¿ does 
not modify the uncoupled map, but it certainly affects the coupled one, since 
rescaling the y-variables, the CRSSM can be recast as

2/1 = 2/1 + Ei fi(Ti) + £17+ fs^i + £2) + £17- Mxi - x2), 
y'2 = U2 + £2 /2C+2) + £27+ MX1 + ^2) - £27- MX1 - ^2), 
^l = .+1 + y(,
^2 = ^2 + y^ (15)

where ($i,y¿) G [0,2tt) x [0,2tt).
Coupling the degrees of freedom, several new resonances arise, namely, those 

of the form ay^ + 3y2 = const., with a and 3 non-vanishing constants. In fact, 
the map (15) can be derived from the 2.5 degrees of freedom Hamiltonian

H(pi,p2,Xi,X2,t;El,E2^ = H0(pi,p2,Xi,X2,t;El,E2^ + 7+ Vp(xi, x2, t; El, E2) 
+ 7-E„(xi,X2,í;ei,£2), (16)

where
Íp2 +p2\

Ho3p1,p2,x1,X2,t-,e1,E21 = —^—" + (E^[/i(a;i) + £2^2(312)) ^2tt(Í);
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yt
2tt ’

1 dU{ 
2tt dxi'

¿ = 1,2, (17)

being ¿2?r(i) the 27r-periodic delta defined through its Fourier expansion so that 
tmod27r, and the coupling terms can be written as

I4(x1,x2,t;£i,£2) = (£1 +£2)^3(371 + £2)<Wt), 

F„(a?i,a?2,t;£i,£2) = (£3 -^MC^i - x^ô^Y (18)
The relationship between Jg and U3 is similar to that defined above involving 
ft and Ui for ¿ = 1,2. Since every function of t^x-^Xi id periodic, its Fourier 
expansion generates all kinds of resonances that, in action space, appear as 
straight lines as already mentioned. Indeed, the unperturbed frequencies, -that 
is when £¿ = 7» = 0-, are (wi,w2) = (yi,y2).

Figure 7. Fraction of chaotic motion in the maps corresponding to s2 = 0.2 
and e2 = —0.2 against different threshold values of log(É2io,rs)-

Let us now refer to Fig. 7 which displays the fraction of chaotic motion for 
the maps corresponding to the two opposite values of £2, for different thresholds 
of log(y2jo,rs) below which global motion is regarded as regular. From this 
figure it could be deduced that log(í2jo,rs) ~ —6.5 is a fairly adequate value to 
be adopted as a threshold in order to separate regular from chaotic dynamics. 
Notice that, for both values of £2, action space is almost completely chaotic - 
only about its 10% corresponding to regular motion- so it can be claimed that 
global chaos has set up in the system.

5.4. Diffusion on action space
With the aim of gaining some insight on the way diffusion operates, several 
orbits with initial conditions embedded in different chaotic domains were traced 
onto action space for both values of £2.

The wandering of the unperturbed integrals on the (yi, y2)-plane was pur­
sued during 107 iterations for the initial conditions listed in Table 2, which, not 
only are located near the crossing of resonances, but have high values of the 
MEGNO, except for the initial conditions (iv) for £2 = 0.2 and (i) for £2 = —0.2, 
which correspond to stable motion.

As shown in Fig. 8 (corresponding to £2 = 0.2), the unperturbed integrals 
remain confined to rather small domains, so that diffusion turns out to be in­
efficient for a rather large number of iterates, as we observed in the case of the
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Table 2. Initial conditions on action space in units of 2ir/£j,j = 1,2 
(the same as in Fig.6) for five different orbits and its concomitant value of 
log(y2,o,rs) for £2 = 0.2 (fourth column) and £2 = —0.2 (last column) after 
104 iterations.

i.c. tit 1/2 l°g(^2,o,rs) log^Ars)

£2 = 0.2 £2 = -0.2
(i) 0.000 0.110 -2.435 -10.000
(ii) 0.000 0.500 -1.584 -1.436
(iii) 0.331 0.353 -1.712 -1.486
(iv) 0.500 0.500 -10.000 -1.449
(v) 0.074 0.336 -1.824 -1.794

Figure 8. Diffusion on action space after 10' iterations of the map for the 
initial conditions listed in Table 2.

Hamiltonian system for the smaller perturbation parameter. This behaviour is 
usually referred to as stable chaos. Several papers due to Milani and co-workers 
(Milani & Nobili, 1992); (Milani, 1993); (Milani & Farinella, 1994); (Milani 
et al., 1997) also address this topic. Moreover, further studies deal with the 
same phenomena of stable chaos (Morbidelli & Froeschlé 1995), which arises, for 
instance, in Solar System dynamics.

On the other hand, the plot in the panel corresponding to E2 = —0.2 exhibits 
the significant efficacy of the diffusive process (except for the initial condition (i) 
defining a stable orbit), and evinces that the relics of the unperturbed resonances 
serve as paths for diffusion. This mechanism is termed Arnol’d diffusion-like 
process and should not be confused with Arnol’d diffusion. In fact, this is what 
we have already observed in the case of the perturbed quartic oscillator for the 
largest value of the perturbation parameter. A detailed discussion about this 
issue and its departure from actual Arnol’d diffusion could be found in Giordano 
& Cincotta (2004); Cachucho et al. (2010) as well as in CGS03. Nonetheless, let 
us stress that the observed diffusion presents a geometrical resemblance with the 
Arnol’d theoretical conjecture according to which diffusion proceeds on phase 
space through the chaotic layers of the resonance web.
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Moreover, Fig. 9 illustrates that the orbits with initial conditions (ii) and 
(iv) for the case e2 = —0.2 sweep a rather large fraction of action space after 
2 x 108 iterations. However, notice must be taken that the chaotic component of 
phase space is not fully connected for this timescale, since some chaotic domains 
remain unreached.

Fig. 10 depicts the time evolution of the initial condition (iv) after different 
iterations of the map in the case e = —0.2. For 5 x 106 iterates the orbit 
remains confined to the central region while it spreads along some resonances 
for 108 iterates of the map. During the last 109 iterations the orbit explores 
several additional resonance remnants, though it is still far from visiting the 
entire chaotic component (compare with Fig. 6). Furthermore, for N = 2 x 109, 
the trajectory seems to remain trapped in the horizontal resonance at y2 = 
0.5 (which has an elliptic structure) and no significant difference between the 
domains swept in the two last intervals of time is observed. These plots in fact 
could be considered as time-contour diagrams, since the more crowded regions 
should be associated to those domains of action space where the orbit spends 
more time.

5.5. A measure of diffusion

The classical approach for studying diffusive processes associated with the vari­
ation of any observable involves the analysis of the evolution of its mean square 
displacement. Certainly, the type of diffusion most studied is the normal one, 
mainly characterized by the linear scaling of the mean square displacement with 
time. Though, deviations from normal diffusion are frequently observed in many 
dynamical systems (see for instance Zhou et al. 2002; Cordeiro & Mendes de 
Souza 2005; Cordeiro 2006. This phenomena, termed anomalous diffusion in 
Metzler & Klafter (2000), affords also a characterization through the scaling of 
the variance (or the mean square displacement) with time but of a more general 
form.

Herein, we undergo the computation of a diffusion coefficient under the 
framework of normal diffusion in a rather simple fashion -following Chirikov 
(1979)-. ~

Figure 9. Diffusion on action space after 2 x 108 iterations of the map 
corresponding to e2 = 0-2 for i.c. (ii) in [a] and (iv) in [b].
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Figure 10. Diffusion after 5 x 106, 108, 109, 2 x 109 for a single orbit starting
at the center for e = —0.2.

Instead of tracing the evolution of a single orbit of the map, a diffusion 
coefficient for an ensemble of nearby orbits could be computed. To this end, 
and following the standard procedure in the case of random walk processes, let 
us define the finite time diffusion coefficient as the mean-square spread in y¿ as 
(see Meiss, 1992)

¿ = VarN
1 N

where Var[y¿] stands for the variance of the action and N for the entire time or 
number of iterates, so that the mean square span in each unperturbed action is 
given by

Finally, we introduce the quantity

D = ¿i + D2
2

as a measure of the normal diffusion on the unperturbed actions-plane.
Recall that the map (13) is defined on a torus so, in order to avoid 

der effects that would artificially enlarge the value of the y^-variance, the 
variables

Zi = cos(27ry¿), i = 1,2.

(20)

(21)

bor-
new

(22)
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are introduced, and the diffusion measure D is computed on the (^i, ^2)-space 
instead of on the actual action space (yi, y2) •

The roam of the unperturbed integrals onto the (yi, .72) plane for five bun­
dles around the initial conditions in Table 3 is depicted in Fig. 11, but, as 
already stated, it is the wandering onto the (zi, 22) plane. shown in Fig. 12, the 
one to be used to compute the coefficient D defined by (21). For each one of 
these figures, an ensemble of 100 initial conditions chosen at random in a neigh­
borhood of size 10 7 of conditions (i) to (v) were followed during 107 iterations 
of the map for both values of £2.

Furthermore, the averaged value of the diffusion for each ensemble was 
computed after 107 iterations. The concomitant out-coming values of D are 
displayed in Table 3.

Table 3. Initial conditions on action space in units of 2tt/£j, j = 1,2 (the 
same as in Fig.6) for five different bundles of orbits and its concomitant value 
of log(D) for e2 = 0.2 (fourth column) and e2 = 0-2 (last column).

i.c. yi Ui log(D) log(D)
£2 = 0.2 £2 = -0.2

(i) 0.000 0.110 -8.666 -10.145
(ii) 0.000 0.500 -11.093 -7.438
(iii) 0.331 0.353 -9.027 -7.050
(iv) 0.500 0.500 -13.033 -7.993
(v) 0.074 0.336 -9.512 -8.034

Let us notice that the averaged values obtained for D fairly succeed in 
yielding a measure of the domain covered by the wandering of each bundle of 
initial conditions, displayed in Figs. 12.

Figure 11. Diffusion on action space after 10' iterations of the map for the 
bundles of 100 initial conditions chosen at random around initial conditions 
listed in Table 3. Initial condition (z) in red, (zz) in green, (zzz) in blue, (zu) 
in purple and (u) in light-blue.

6,= 0.1, ^=-0.2.T+=S 1. Y_=0D5

In fact, for e = 0.2 the lowest value of D corresponds to regular orbits at 
(iv), whose roam is practically restrained to a point being the motion essentially 
stable. For the remaining initial conditions, the out-coming value of D has the
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Figure 12. Diffusion on (zy, ;j2) space after 10' iterations of the map for the 
bundles of 100 initial conditions chosen at random around initial conditions 
listed in Table 3, using the same color scheme.

same order of magnitude, the unperturbed integrals remaining confined to rather 
small domains of comparable extent for the number of iterates considered.

This fact can be confirmed when plotting the values of D for every orbit in 
each bundle as in Fig. 13, in which the last point in each curve corresponds to 
the averaged value for the ensemble.

Figure 13. Diffusion measure on action space after 10' iterations of the map 
for e2 = 0.2 for a random selection of 100 initial conditions around (i) in red, 
(ii) in green, (iii) in blue, (iv) in purple, and (v) in light-blue.

The same procedure leads to Fig. 14 corresponding to e2 = —0.2. In 
particular this plot reveals the large dispersion in the values of D for each bundle, 
which gives account of the rather extended area swept by every bundle onto the 
(zi, c2) plane.

Certainly, we could not invoke normal diffusion when dealing with systems 
of divided phase space. In fact, in such cases we ignore how the variance of 
the actions scale with time. Furthermore, though theories on abnormal diffusion 
and on sub-diffusion or super-diffusion have been developed, they seem to apply 
only for low dimensional systems.
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Figure 14. Diffusion measure on action space after 10' iterations of the map 
for £2 = —0.2 for a random selection of 100 initial conditions around (i) in 
red, (ii) in green, (iii) in blue, (iv) in purple, and (v) in light-blue.

Thus, the computation of a diffusion coefficient reveals itself as a cumber­
some task. For instance, in Fig. 14 we observe fluctuations of three orders of 
magnitude in the 100 values of D within a domain of 10 7 around some of the 
chosen initial conditions.

Therefrom, in the forthcoming section we go beyond in the search of an 
alternative tool to measure diffusion bringing into play the finite time Shannon 
or Arnol’d Entropy.

5.6. The Shannon Entropy

Let us consider the time evolution of both normalized unperturbed actions 
(yiEi/27T,y2E2/27r) upon the 2-torus T, or the unit square with opposite sides 
identified, as time goes by.

The evolution of the unperturbed integrals onto T is expected to be con­
strained to a small domain whenever a low diffusion takes place, while a large 
roam should be in order in case of fast diffusion.

An adequate tool to measure diffusion is the finite time Shannon Entropy. 
A theoretical background on Shannon Entropy can be found in e.g Shannon & 
Weaver (1949); Katz (1967); Arnol’d & A vez (1989); Wehrl (1978).

Thus, the main idea of the present approach is to make use of the Shannon 
Entropy -SE hereafter- in order to measure the wandering of the unperturbed 
action variables when viewed on the unit square.

Following Arnol’d & A vez (1989), let us recall the definition of the function 
Z over [0,1]:

Z(x^ = — xlnx, x E (0,1]
Z(0) = 0,

which is continuous, nonnegative and strictly concave (Z" < 0) and Z(x^ = 0 
corresponds to either x = 0 or x = 1.

Further, let a = {a#; i = 1, • • • .q\ be a partition of T, that is to say, a 
collection of q boxes that cover the whole unit square. The boxes are assumed
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to be both measurable and disjoint, that is to say

/^ (T U^cp) — 0, p (cp n ctj ) — 0, i ^ y.

where p stands for a given measure.
We can define a probability density on T by

1 NQ^ = ^52á(x-x¿)’ (23)
where x¿ denotes the result of a given iterate on T, and 5 is the delta function. 
It can be verified at once that

( y(x) dx = 1, (24)

and the probability of the element cp of the partition turns out to be

p(cp) = / s(x) ^x- (25)

Finally, the entropy of the partition a is defined as

9 q

s^ = 52-^(^(«i)) = -52 ^(a^ln^(ai^- (26)
i=l i=l

Let us notice that for a given partition a, the entropy is a bounded quantity. 
In fact, it is 0 < S^a^ < Ing. The minimum value is reached when all points 
fall in the very same element of the partition, say the fc-th element, which 
would correspond to the case of almost full stability (for instance when all the 
iterates lead to the same action value). Indeed, in such a case, we have a unique 
nonzero value p(a^ = 1, yielding S = 0. On the other hand, the maximum 
value, S/cv) = Ing, will be reached whenever the g elements of the partition 
have equal measure p^cp) = \Jcp that corresponds to the situation in which the 
unperturbed actions wander all over the unit square in a uniform fashion, i.e. in 
case of ergodicity.

Hereafter, S will denote the normalized value of the entropy (i.e. the entropy 
divided by Ing) for a given partition a.

Note that if we assume all the non-empty elements of the partition, say go, 
having the same measure, then S ~ In go/Ing.

Let us now accomplish the computation of the finite time SE for a given set 
of initial conditions for the CRSSM (13) with the same set of parameters.

To this end, we take a partition of g = m. xm. bidimensional boxes that cover 
the whole unit square, for an equi-spaced grid of 1000 x 1000 initial conditions 
in the domain (yiEi/27r, y2E2/27r) G [0,1) x [0,1). The initial values for the 
remaining variables are aq = 0, $2 = 0, and we consider N = 107.

Let us say that we have defined the partition in regards to the total number 
of iterates such that in case of a uniform distribution the same number of points
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Figure 15. S-levels for the CRSSM on the (yi, y2) phme after N = 10' iter­
ates of the map for a grid of 1000 x 1000 initial conditions of the unperturbed 
actions for £2 with opposite signs. Values of S < 0.38 are depicted in white, 
0.38 < S < 0.45 in purple, 0.45 < S < 0.5 in blue, 0.5 < S < 0.66 in green and 
0.66 < S in red. In terms of the number of visited elements of the partition, 
ço, the intervals correspond to q0 < 2 x 102 in white, 2 x 102 < q^ < 5 x 102 
in purple, 5 x 102 < qo < 103 in blue, 103 < qo < 104 in green and 104 < qo 
in red.

would lie in each individual cell. The results are given in Fig. 15, the plot on 
the left corresponding to e = 0.2 and that on the right to e = —0.2.

Let us remark that the results obtained by means of the SE are also in 
quite good agreement with those obtained by recourse to the MEGNO, except 
in those regions of slow or fast diffusion.

Let us note that the resonance structure arising in the contour-plots ob­
tained with the SE resembles the one revealed by the MEGNO. Moreover, the 
effect on the resonances due to the change of sign of E2 remains noticeable. In­
deed, as already pointed out, in the case of positive E2 most of the resonances 
display an elliptical chain of tori at their center while for negative E2 several 
resonances show up as totally hyperbolic. However, while the MEGNO just 
measures the local hyperbolicity of a certain point in phase space, the SE pro­
vides information about chaotic diffusion in such a point. This can be clearly 
seen, for instance in the case for E2 = —0.2, by the small values adopted by the 
SE along the resonance at y2 = 0.5, whose structure seems to act as a barrier to 
diffusion as we have already shown.

Although the SE depends on the partition, in our experiments no significant 
differences have been observed when using different o-’s.

While for N —> 00 the SE (in phase space) should become the metric entropy 
-which is related to the sum of the positive Lyapunov’s exponents- this seems 
not to be the case for any finite, though very large, number of iterates N.
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6. Theoretical considerations, observational constraints and open 
problems

In this section we summarize some theoretical considerations, observational data 
and results from N-body simulations and finally some open questions.

6.1. Theoretical considerations
• The overlap of resonances (heteroclinic intersections) and Arnol’d diffusion­

like processes are well-known mechanisms that lead to the transition from 
regularity to gross chaos (or gross instabilities).

• We claim that ’’classical” Arnol’d diffusion does not play any role in galactic 
dynamics (even in asteroidal dynamics), since in general ’’the perturbation” 
is not small enough, and even if it might work, its timescale is quite large 
for any real system, as shown in our simple experiments. We do not believe 
that Arnol’d diffusion could describe global instabilities.

• Though one could get accurate values of any indicator of the stability of 
the motion, they only provide the local rate of exponential divergence and 
this is not related to any global instability.

• Chaos or global instabilities should be understood as large variations of the 
unperturbed integrals (diffusion). Unfortunately, as far as we know, it does 
not yet exist any theory that could describe global diffusion (instability) 
in phase space.

• However what it is actually relevant is the extent of the domain upon which 
the unperturbed integrals change and, physically, the timescale in which 
this diffusion occur.

• Those timescales for galaxies which are less or similar than the Hubble time 
Th ~ 103Tc,, being Tc the characteristic timescale for a given galaxy, seem 
to be too short in order to any kind of global diffusion be efficient. Perhaps 
in some cases, the overlap of resonances, whose rate is ~ some power of 
the perturbation parameter could lead to some diffusion, connecting nearby 
regions of phase space.

• Arnol’d diffusion, or to be more precise, Arnol’d mechanism, only states 
that two points of phase space separated by a distance of 0(1) could be 
connected. This result does not imply any global instability and, in fact, 
just for this case it requires exponentially large times. Thus, we believe 
that Arnol’d diffusion does not play any role in galactic dynamics.

• Arnol’d diffusion-like processes perhaps also could not operate in galactic 
dynamics, as we have already shown. It might be a plausible mechanism 
in asteroidal dynamics though.

6.2. Observational data and N body simulations

• Observations with the HST revealed the presence of very high stellar den­
sities at the center of early-type galaxies, which suggest that rhey could
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be fitted by a power law of the form (r ' )■ The evidence of large cen­
tral masses was also reinforced from high-resolution kinematical studies 
of nuclear stars and gas, which disclosed the presence of compact dark 
objects with masses in the range of 106’5 — 109'5M©, presumably super- 
massive black holes. These observational results have produced a substan­
tial change in the classic ideas on dynamics in triaxial galaxies.

• Numerical simulations show that the addition of a central mass to an 
integrable triaxial potential has deep effects on its dynamics, at least for 
the boxlike orbits which mainly cover the central region of triaxial galaxies.

• Black holes and central density cusps scatter these particular orbits during 
each close passage giving rise to chaos in the system. The sensitivity of 
boxlike orbits to deflexions also drives a rounder central distribution of 
mass. This slow evolution towards axisymmetry suggests that stationary 
triaxial configurations could not exist for a strong central density cusp.

• For such large values of M^, the box orbit phase space is almost completely 
stochastic since overlap of resonances and diffusive processes could take 
place in rather short timescales.

• This result turned out to be substantially attractive because this critical 
black hole mass was close to the one observed and also close to the mass 
which induced a sudden evolution towards the axisymmetry in N-body 
simulations.

• Merritt & Fridman (1996) arrived to similar conclusions analyzing two tri­
axial power law models r-^: the steep (7 = 2) and the weak (7 = 1) cusp. 
They found, in agreement with Gerhard & Binney (1985), that triaxial 
galaxies with such a huge concentration of mass would evolve towards a 
central axisymmetry, as box orbits loose their distinguishability.

• For these models, in which a large fraction of phase space is dominated by 
a chaotic dynamics, the construction of self-consistent solutions requires 
the inclusion of stochastic orbits besides the regular ones. A system thus 
built evolves, mainly close to its center, as stochastic orbits mix through 
phase space.

• Though it is possible to build this kind of solutions for a weak cusp model, 
this is not the case for a strongly concentrated model. This would imply 
that triaxility is not consistent with a high central density.

• How could the correlation between the velocity dispersion and the black 
holes masses be explained?

6.3. Open problems

• Nature’s ability to build stationary non-axisymetric stellar systems is still 
en open matter.
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Stellar Velocity Dispersion a [km s ]

Figure 16. Correlation between the velocity dispersion and the mass of 
the (assumed) black hole in different galaxies. (This figure was generously 
provided by D. Merritt).

• Merritt’s generalization of Jeans Theorem rests on a very strong assump­
tion: a completely connected chaotic component must exist in a 3D system 
with divided phase space. It seems that this could happen only whether 
the chaotic component has a large measure and ”t —> co”, which, from a 
physical point of view, it would not be possible in galactic systems, where 
the chaotic component has a small measure and t < Th­

e An important fact to be stated is that when chaos sets up, the unperturbed 
global integrals (or actions) have a discontinuous dependence on phase 
space variables. Indeed, close to resonant tori, despite the existence of 
three local integrals, the unperturbed orbital structure is not preserved 
and the topology of phase space changes. Moreover, at least one integral 
does not exist on the stochastic layer.

• Close to strong non-resonant tori, those satisfying the Diophantine con­
dition, local integrals are just corrections of order e of the unperturbed 
global integrals. On the other hand, when the system is close to an ellip­
tic resonant torus, new local integrals appear: the pendulum Hamiltonian 
H, and linear combinations, K2,K%, of the unperturbed actions at the 
resonant point.

• It is not possible to assume that the DF has the form f(H, 12,1%) in the 
whole regular component. This could be true only for strong non-resonant 
tori, but since resonances are dense in phase space, the DF should be locally 
defined as: fn(H, I^, I^+eg^H, l2,Is) in a neighborhood of a non-resonant 
torus and fr(Hr, K^, K^) in a vicinity of an elliptical resonant torus.

• Is the distribution function of the galaxy best fitted by a two-(local)integral 
or three-(local)integral model?

• Nothing could be said about / in the chaotic domain since there is no the­
oretical support to argue that the whole chaotic region is fully connected. 
Clearly, a notorious discontinuous dependence of / on the integrals is ex­
pected.
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e Does the introduction of a black hole (’’singularity”) at the origin change 
the approach to the problem? Indeed, if we perforin a multipolar expan­
sion of the potential for an elliptical galaxy, the introduction of a mass 
point perturbation would drastically modify the unperturbed part of the 
Hamiltonian: that corresponding to the monopole term.

• How should diffusion be measured? It seems natural to think that it is 
related with the variance of the integrals. But in which way?

• How should the existence of barriers and ’’accelerators” of diffusion be 
included in the computation of the coefficient?

• And finally, how could diffusion routes be predicted?

Figure 17. The length of the arrows would measure the rate of diffusion at 
that point in phase space and their direction points out its route after some 
time interval.
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