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Abstract. We present measurements of diffusion phenomenae in the 
phase space of a three degree of freedom guasz-integrable Hamiltonian 
flow. By tracking the evolution of the variance of ensembles of test parti­
cles, we characterize the diffusion as basically anomalous. We find a time 
range in which it can be considered as a subdiffusion process and other in 
which it can be considered as a normal diffusion process. In the former 
case we fit Hurst exponents and in the latter case we compute diffusion 
coefficients based on the rate of growth of the variances.

1. Introduction

In this contribution we will study numerically a diffusion process that takes place 
in the stochastic layer of a non-linear resonance of a particular guasz-integrable 
three degree of freedom (3DoF) Hamiltonian flow. We will focus in a resonant 
region of multiplicity one; i.e. isolated resonance region.

The experiments are based on evolving ensembles of test particles and mea­
suring some statistical quantities. For the values of total energy and resonant 
action that will be considered here, we will have examples of subdiffusion in 
both overlapping and non-overlapping local regimes, depending on the value of 
the perturbation parameter. We will also identify time ranges in which there 
is a diffusion behaviour approximately normal that will allow us to compute 
standard diffusion coefficients.

The structure of the article is as follows.
In subsection 1.1. we present a one degree of freedom (IDoF) quartic oscil­

lator and give its solution and its action-angle variables. In subsection 1.2. we 
present the 3DoF çuasz-integrable Hamiltonian flow whose diffusion properties 
we will study throughout this work. The integrable part of this Hamiltonian 
consists in three independent IDoF quartic oscillators. In subsection 1.3. we 
specify a linear canonical transformation that allows to measure diffusion in a 
new set of çuasz-integrals which are geometrically easier to analyse. In subsec­
tion 1.4. we define some statistical quantities based on ensemble averages. In 
subsection 1.5. we explain briefly the numerical integrators used herein.

In section 2. we present the geometric situation of the chosen resonant 
action, the guiding resonance and its neighbourhood. In section 3. we describe 
some numerical experiments done with ensembles of test particles, analysing the
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functional form of the time evolution of some statistical quantities. We compute 
Hurst exponents and diffusion coefficients for different values of the perturbation 
parameter. Finally, in section 4. we give a summary of the obtained results.

1.1. The quartic oscillator
The quartic oscillator is given by the Hamiltonian

H(u,x) = - + -, (1)

where v and x are real variables. The associated system of differential equations 
is given by: 

dv o clx 
— = —x, — = V.
dt dt

Let h be the total energy and let a be the oscillation amplitude. Then, 

~ a4
h = H(0,af =

and Eqs. (2) can be rewritten as

whose solution can be expressed in terms of the Jacobi elliptic cosine (cn) of 
modulus k = 1/V2 :

xft3 = a cn(at, k^ = a cn(at, 1/V2).

Using the Fourier series development of the Jacobi elliptic cosine given by 
Gradshtyn & Ryzhik (1980), we have that (Chirikov 1979):

/ x V^TT 1 (m T \ ^M \xm = a—— ) ------- - ---------——^ cos (2n — 1 —— ,
' ' Ao "^ cosh ((n — 1/2)tt) \ 2Aq/

where Aq = A'(l/V2) denotes the complete elliptic integral of the first kind.
Introducing the following constants:

7T 1
3 = ——- ~ 0.847213084793979, an =------- -,----------------? and w = 3ch

2A0 ’ cosh ((n — 1/2)tt) ’
' (3)

we have that
oo

xftf = 23^U) ^2 an COS((2n-lM).
n=l

This equation implies that the quantity co is the fundamental frequency of the 
motion.
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The an coefficients satisfy:

211+1 ~ — for n > 2 and ou « 0.4. 
an 23 -

Taking into account the previous relation between a and h and Eq. (3), we 
obtain the dependence between the latter and w:

w = V2/3/i1/4. (4)

Due to the fact that the Hamiltonian equations in action-angle variables 
(Z, 0) imply that u)(I^ = ^W , ^ is possible to integrate Eq. (4), obtaining the 
relation between the action and the energy of the system.

h = HZ4/3, or equivalently

where A = (3)3/2 y/2)4/3 « 0.867145326484821.
Let us mention that the dependence of the frequency on the action is given 

by:
^n = ^aW= (5)

The cartesian coordinate can be expressed in terms of the action-angle 
variables of the system, in the fashion:

t(Z,0) =(3/3Z)1/3cn (I

u(Z,0) =yJ2 (aI4A - |[a;(Z,0)]4\
(6)

where q stands for the sign of v and its dependence on the angle is given by:

] 1 if 0 < 9 < 7T,e = i
1—1 if 7T < 9 < 2tt.

(7)

Besides, the inverse transformation1 of Eqs. (6) (7) is given by:

3 cn 1 Í. ,x ,1/3,4=) if v > 0, 

2tt - 3 Cll 1 Í. 4 ,1/3,4=) if V < 0. \ [3/3 /(ti.zjj1/» ’ ^2/

(8)

(9)

1The angle is not well defined when the action is zero.



322 M. F. Mestre et al.

1.2. The 3DoF Hamiltonian system
Now we will introduce the 3DoF Hamiltonian flow whose diffusion properties we 
would like to investigate. The system consists of three quartic oscillators coupled 
by a non-integrable perturbation. In cartesian variables, x = (aq, X2, £3) and 
u = (vi, tq, tq), the Hamiltonian is given by:

H(v, x) = Hq(v, x) + eV($), (10)

with

H0(v, $) = |(vi + «2 + "3) + j(4 + 4 + 4):

V(x) = X1(X2 +$3); (11)

where e is a perturbation parameter that controls the strength of the coupling. 
For a null value of e one obtains the integrable Hamiltonian of three indepen­
dent quartic oscillators. By means of Eqs. (6)(7) the cartesian variables can be 
expressed in terms of their action-angle counterparts:

j(Jv 9j) = ^pij^^cn Q, -^ , for j = 1, 2,

Moreover, according to Eq. (5) the frequency vector is given by:

^) = Hz!),^),^)) = ^(z^3, z¿/3, z31/3).

On the other hand, for e ^ 0, only one globally conserved quantity ex­
ists, the total energy Hpu,x^ = ZZ(v(0), $(0)) = h. In terms of the action­
angle variables (of the unperturbed Hamiltonian) the full Hamiltonian, given by 
Eqs. (10)(ll), can be rewritten as:

H(I,O) = ZZo(Z) + eF(Z,0),

with

W = A(Z!4/3 +i^ + i^p

(12)

(13)

1 A ijl/S (62 1 \ H/3 (03 1\V (1, U — ópF cn —, —t= 12 cn —, —— +cn —, —=V P V2 / L \ P V2 / \ P V2 /
This Hamiltonian system has been previously studied by Cincotta et al. 

(2003), Giordano and Cincotta (2004) and Mestre et al. (2009). Herein we 
adopt a fixed value of the total energy:

h = 0.485254297422903 « 1/4/34, (14)

which corresponds to a characteristic period? of the system very close to 2tt.

2It refers to the period of the .'t'a, .'t'3-axial periodic orbits, which remain stable for every e.
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1.3. A natural base for the action space

Chirikov (1979) introduces a linear change of variables that exploits the reso­
nant geometry in the neighbourhood of the initial conditions that belong to the 
stochastic layer of an isolated resonance. In this part, we present a 3DoF version 
of Chirikov’s change of variables.

Let mg be a harmonic vector whose contribution in the Fourier series of V 
is not zero. Then, Eqs. (12)(13) can be recast as:

H(J, 0) = Ho (I) + eV^ (J) cos(mg • 0) + eV^J, 0)
V(Z,0) = ^ Fm(Z)cos(m.0).

m^mg

Now we assume that the term associated to mg turns on a non-linear res­
onance of Hq, along which we want to measure the diffusion. This resonance 
is usually called the guiding resonance. Let P be the resonant action in whose 
neighbourhood we want to perform these measurements. Besides, let a;' = cPP) 
be the concomitant frequency and let ng be a vector normal to the resonant sur­
face, called Sg. This last vector can be computed by

(15) 
\i=i^

n9 = g^m-^iy)

Moreover, we define the vectors:

Mi = mg,

p,2=u>r/\u>r\ (16)

M3 = fng ^cor)/\ng ^cvr\,

and the matrix T G R3x3, whose ¿—th row is the vector p7. These vectors are 
linearly independent iff mg is not perpendicular to ng. A way to ensure this 
geometrical condition is to assume that the unperturbed Hamitonian satisfies 
a convexity condition which can be stated as follows in terms of the Hessian 
matrix, C, of Hq: [C(Z)u] • u + 0 Vu G R3 \ 0.
Then, our Hamiltonian is convex because it satisfies:

PUH ’« = + 2D + > o Vu G R3 \ 0.
H

Let F be a generatrix function given by:

3 / 3 \

F^e)^^ rJ + E^K
j=i \ &=! /
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Then, the canonical transformation

^ = ^ = EkTikek,
^ = Wi = ^ + ^LfcPk^kií 

can be rewritten explicitly as:

^ = 1 = MA
P4 = EkT;¿Xik-rk),

where Tv = (Tv) 1 denotes the inverse matrix of T’s transpose. This trans­
formation consists of a translation of the origin to the resonant action, followed 
by a change of base in the phase space. The restriction of the new base to the 
action space, that will be called Chirikov's base, is made up of the p, vectors. 
As pi is equal to the resonant harmonic, its conjugate angle, (/q = mg • 0, is 
the resonant phase of the simple pendulum that models (approximately) the dy­
namics in this single resonance region, p2 is a versor normal to the unperturbed 
energy surface, 2g, and po is a versor that is orthogonal to both ng and p^. In 
other words, it is tangent to the curve formed by the intersection between the 
surfaces Sg and 2q, at the point P.

Eq. (17) can be rewritten in matrix shape as follows:

V> = TO,

p = t-t(i -r\

Although the variables p and ^ are not necessarily action-angle variables 
of Hq, it does happen that the components of p are conserved quantities under 
the unperturbed flow. According to the definition of T, the columns of TT 
correspond to Chirikov’s base and, therefore, TT is the matrix that transforms 
from this new base towards the canonical one. For this reason, pk (k = 1,2,3) 
are the components of the vector I — P in Chirikov’s base, whose geometrical 
importance is as follows (see Cincotta 2002):

• pi measures the displacement of I respect to P, in the direction of the 
resonant vector.

• p2 measures the displacement in the direction perpendicular to Iq.

• pó measures the displacement along the resonance; i.e. in the direction in 
which Arnold diffusion (see below) occurs.

1.4. Statistical quantities and diffusion

We will measure some statistical quantities of the integrals of the unperturbed 
flow, p, defined in the previous subsection. The statistical quantities will be 
ensemble averages computed numerically over a finite number, Np, of test parti­
cles. This averaging operation will be symbolized by (•). The initial conditions 
of these test particles will be çuasz-identically chosen in the action space, all of 
them having the same total energy.
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Let Pj(t, i) be the value of the j-th component of the vector p, at the time 
t, associated to the ¿—th particle. Thus, the (instantaneous) mean value of this 
component is given by:

1 Np 
mW = <Pj(tf = — ^pjffif

i=i

and the corresponding variance is:

1 Np

^W = WbW - mW1) = ^(t,^ -mW- Us)

Other average quantity that will be used is the mean square displacement. (MSD):

1 Np
^jW = ((.Pj^ -Pj(0))2) = — YWW -p,(0,¿))2, (19)

i=l

There is not a universal definition of the term diffusion. The characteri­
zation of this concept depends on many factors: the research area, the system 
under study, the mathematical tools and the variables used, for example. When 
working with non-integrable deterministic systems, the term chaotic diffusion is 
usually adopted. In this article, we will say that an ensemble diffuses whenever 
the evolution of its variance performs a non-negligible secular growth in time, 
allowing this quantity to have oscillations.

In Nekhoroshev (1977), Chirikov (1979), Guzzo et al. (2005) and Efthy- 
miopoulos (2008) the concept of Arnold diffusion is understood as the one that 
takes place along the Arnold web3 of a system that satisfies simultaneously the 
hypothesis of both KAM (Arnold 1989) and Nekhoroshev (Nekhoroshev 1977, 
see Morbidelli 2006 for a relaxed version) theorems. In this sense, Lega et al. 
(2003), Guzzo et al. (2005) and Froeschlé et al. (2005) show evidence of Arnold 
diffusion.

3Arnold web is the intersection of all the perturbed resonant surfaces with the isoenergetic 
manifold given by 11(1. 0) = h.

4The definition of stochastic process can be found at Gardiner (2004) or Arnold (1973)

The standard deviation is the square root of the variance. This two quanti­
ties are sensitive to the degree of diffusion of the ensemble with respect to the 
geometrical centre (p) but are not influenced by it. On the other hand, the 
MSD depends both on the diffusion of the ensemble and on the dynamics of the 
geometrical centre.

We will consider that a dynamical variable performs a normal diffusion if 
its variance is a linear function of time. Other close definition, generally adopted 
in the literature, is that normal diffusion implies that the MSD behaves linearly 
with time. One of the paradigmatic systems which present normal diffusion 
belongs to the class of stochastic processes4, is called Wiener process or Brownian 
motion (BM) and was studied by Einstein (1956) among others.
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In the case of normal diffusion, it is possible to define a diffusion coefficient, 
denoted T>CT, which in this work will be strictly associated to cj, by the following 
formula: P s4^-4^

2(t-t0) ;
Due to inhomogeneities of phase space, DCT is significant as long as most of 
the ensemble particles are inside a region small enough so that the diffusion 
properties are similar all over it. Sometimes it is possible to obtain locally 
normal behaviours, by limiting the size of the time interval, |t — to|, in order 
that the majority of the ensemble stays close to its initial region of action space. 
This approach, of associating a diffusion coefficient to a neighbourhood of a 
given initial action, has been adopted in many works (Novakovic et al. 2010, 
Todorovic et al. 2008, Lega et al. 2003, Froeschlé et al. 2005, Bazzani & Mais 
1998, Bazzani et al. 1997, Siboni et al. 1994, Bountis & Kollmann (1994), for 
instance). In particular, Lega et al. 2003 compute numerically a kind of diffusion 
coefficient, P7, related with the MSD, for different values of e. They detect that 
the diffusion coefficient goes to zero faster than any power law: D^e^ oc e“, for 
any constant a. They also mention that this is compatible with an exponential 
law: P7(e) oc exp(—I/e^), for some constant b.

Normal diffusion has been widely applied to model dynamical problems in 
Astronomy, specially in Solar System dynamics.

Diffusion can also be anomalous. Mandelbrot & van Ness (1968) introduce, 
for the first time, the fractional Brownian motion (FBM), in terms of a particular 
stochastic integral5 of the BM.

5The definition of stochastic integral can be found at Gardiner (2004) or Arnold (1973)

Any FBM has a standard deviation whose time dependence is given by: 

cr^t) oc tn, (21)

where g is called the Hurst exponent.
This uniparametric family of stochastic processes can be classified in three 

groups, depending on the value of the exponent:

• subdiffusive if 0 < g < |,

• normal (BM) if g = |,

• superdiffusive if | < g < 1.

Cordeiro & Mendes de Souza (2005) and Cordeiro (2006) model diffusion 
properties, in Solar System resonance domains, with an approach based on FBM.

There are many other types of anomalous diffusion processes. Chechkin et 
al. (2008) presents an introduction to Levy flights. Metzler et al. (2007) analy­
ses this process together with Levy walks, subdiffusion processes and fractional 
Fokker-Planck equations. Zaslavsky (2002) revises many fractional stochastic 
models and their connection with dynamical models, phase space topology and 
other characteristics of chaos, as the Poincare recurrences and the sticky do­
mains.
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In this work we will present numerical evidence of subdiffusion, that occurs 
during a rather large time interval. Nevertheless, the full diffusion behaviour 
along a single resonance of this Hamiltonian system is much more complex than 
the one of a FBM.

1.5. The numerical integrators

The numerical integrator used in this article to compute the trayectories with 
which the statistical quantities where performed is a symplectic integrator elab­
orated by E. Teloy, Freiburg, as mentioned in Schlier & Seiter (2000).

This subroutine consists of five integrators, two of 6th order and three of 
8th order, called S6a, S6b, S8a, S8b and S8c, respectively.

The kernel of the source code, that performs the integration of a single 
time step, is called testsymp .̂ This code contains the coefficients for the five 
integration schemes with 35 decimal figures, which is enough for a quadruple 
precision integration.

After some comparison between the five schemes, the one which better pre­
served energy was the S8b. Regarding measurement of statistical (or average) 
quantities any of the integrators turned out to be appropriate. The same hap­
pened when doing chromatic maps with a chaos indicator called Smaller Align­
ment Index (SALI), introduced by Skokos (2001) , where all of the schemes dis­
played similar resonant structures. The results presented in this article where 
obtained with the S8b method.

We made a test experiment with two different integration time steps: ^ttnt = 
10 2 and ZYtmt = 10-1, obtaining agreement in the resonant structure of the 
SALI maps and in the general trend of statistical quantities. Then, for the sake 
of efficiency, we decided to use in all the experiments of this work, an integration 
time step of size Ntint = 10 1.

In this work, we also use the integrator DOPRI8 (Prince & Dormand 1981), 
in order to build maps of other chaos indicator called Mean Exponential Growth 
Factor of Nearby Orbits (MEGNO), introduced by Cincotta & Simó (2000). 
Strictly speaking, the indicator effectively used is a cumulative running time 
average of the MEGNO, denoted by Y. All the integrations where done in 
cartesian variables.

2. The guiding resonance and its neighbourhood

Now we will characterize geometrically the phase space of the 3DoF Hamiltonian 
system. In particular, we will specify the guiding resonance where we want to 
measure diffusion. Such information will be displayed for the case of e = 0.02.

According to Giordano & Cincotta (2004) the fraction of chaotic orbits' in 
Zo, for this parameter value, is of a 38%, while for e = 0.04 it is approximately 
of a 92%. Thus, the authors deduced that there is some threshold value of e 
close to 0.03, above which chaotic motion prevails in phase space.

6It can be found at CPC Program Library, Queen’s University of Belfast, N. Ireland.

'They computed T for initial conditions distributed all over To, considering as chaotic orbits to 
those with value Y > 2.
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Additionally, in Mestre et al. (2009), it was determined analytically, through 
the overlap criterion, that for some critical value of e (denoted as ec) also close 
to 0.03, the total area covered by resonant regions reaches 90% of the whole area 
of To- _

Fig. 1 was built using chromatic levels of Y for initial conditions that fill 
Iq. The Y values where binned in five intervals: [1.993,2.005] (red), [2.005,5] 
(green), [5,45] (blue), [45,150] (magenta) and [150,383] (cyan).

The integration of this orbits was done with DOPRI8 for a total time, tT, 
of 3500 characteristic periods (ty = 3500 x 2tt time units). In the mentioned 
figure we can see the resonant structure in the action space, for a section of 
initial angles given by 9^ = tt/2 (i = 1, 2, 3). Such an angle choice corresponds 
to null initial values of xt (i = 1, 2, 3), as it can be deduced from the canonical 
transformation given by Eq. (6) and from properties of the elliptic cosine. Due 
to this reason, it happens that V(®(0)) = Ê(0) = 0, implying that

HH0),x^ = Ho(r(O),O). (22)
Then, the initial value of I3 was solved from the equation Hq^I) = h, using the 
expression:

W = - M0)4/3 - /2(0)4/3) . (23)

In the given figure, we identify in cyan a large region of resonance overlap. 
Moreover, we can appreciate how the most regular initial conditions (red points) 
are placed in the complement of the Arnold web, being it filled by the rest of 
the colors associated to chaotic orbits.

Due to the fact that the SALI indicator tends exponentially to zero for 
chaotic orbits, we will use the decimal logarithm of this quantity and will use a 
cut-off criteria that consists of assigning the values log(SALI) = —10 to every 
orbit with SALI < 10 l0.

In Fig. 2 we display a bidimensional map of this indicator, for a part of 
To, projected onto the [A,^] plane. To make this figure we have integrated 
a grid of 1000 x 1000 initial conditions that belong to the square (Zi,^) G 
[0.2, 0.4] x [0.0, 0.2] and to the same section of initial angles than in the previous 
figure. For each initial condition, we have used It = 104 time units, which 
corresponds to more than 103 times the characteristic period of the system. The 
behaviour of the SALI and the color palette are such that the most chaotic orbits 
appear in black while the most regular ones appear in yellow.

In the given figure, we can see three wide resonances together with many 
other of smaller size. The nearly horizontal resonance that goes from (Li,^) ~ 
(0.2, 0.05) up to (Zi,Z2) ~ (0.4, 0.1) corresponds to the resonant vector mg = 
(2,—3,0), whose direction is indicated with a green arrow. Over the chaotic 
layer (perturbed separatrix) of this resonance we will study diffusion, i.e. it will 
be the guiding resonance.

The widest resonance in the figure corresponds to the resonant vector m = 
(2, —1, —1) and intersects the guiding resonance approximately at (0.22, 0.06). 
The third of the wide resonances correspondes to the resonant vector m = 
(2, 0, —2) and intersects the guiding resonance approximately at (0.37, 0.10).

We can appreciate that for this initial angle values, the chaotic layer of the 
guiding resonances is thicker than the other neighbouring layers. The thickness
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0.7

Figure 1. Cumulative running time average of the MEGNO, F(^t) with 
It = 3500 x 2tt, for the unperturbed energy surface in action space, using 
e = 0.02. The association between bins and colors si given by: [1.993,2.005]- 
red, [2.005, 5]-green, [5,45]-blue, [45,150]-magenta and [150, 383]-cyan.

of the stochastic layer is not constant along the resonance. For example, the 
neighbourhood of the point (Zi, Z2) = (0.22, 0.06), is a resonant region of mul­
tiplicity higher than one, so that there exists a type of (unavoidable) overlap 
phenomena. The rest of the resonances perturb the separatrix in much lower 
ways.

3. Numerical experiments

In the following experiments we will study the diffusion for values of e belonging 
to the following set:

6 = {0.016, 0.018, 0.020, 0.022, 0.024, 0.026, 0.028, 0.030}.

3.1. The ensembles

The selection mechanism of the initial conditions of the ensemble is based in 
the similarity between the phase space structure in the neighbourhood of a 
multiplicity-one resonance with respect to the concomitant structure of a per­
turbed pendulum (Chirikov 1979). This similarity will be checked graphically 
below.
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0.2 0.25 0.3 0.35 0.4

Figure 2. SALI chromatic scale in action space, for e = 0.02. The color 
palette is such that the most chaotic orbits appear in black while the most 
regular ones appear in yellow. The green arrow is parallel to the vector (2, —3).

With regards to the guiding resonance previously specified, and the natural 
change of variables given by Eq. (17), we define a particular resonant action:

/ 0.303515780714549 \
0.089930601693199 I

\ 0.420802747838120 /
(24)

and consider the set of initial conditions that belong to a bidimensional portion 
of phase space parametrized by the following expression in mixed variables8:

8The last condition of Eq. (26) is equivalent to initial values p2 = Ps = 0.

Í 0i G [0, 2tt]
( pi G f-10 2. 10 2]

01 
02
0.3J

tt/2 
(20i-0i)/3, 
tt/2
r +Pimg.

mod 2tt

(25)

(26)

Thus chosen, the energies of this initial conditions would differ in quanti­
ties of 0(e), i.e. they would certainly not belong to the same energy surface,
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W,0^ = h. Projecting the initial conditions given by Eqs. (25)(26) onto the 
energy surface can be done solving I\ as a function of I?, I3, 6, h and e. We 
proceed in the following way. Defining

e33 20 = ——cn 
A

eA
3 ’ V2/

and considering the Hamiltonian in action-angle variables given by Eqs. (12) (13), 
the energy preservation can be expressed in this way:

1^ + bf^ = c.

This equation has a real non-negative solution:
/ --------- \ 3/2/ Vb2 + 4c — b \

= H-XhJ3,6i,92,63;e,hY

provided that Vb2 + 4c — b > 0.
For the value of h and for the e range used in this work, such inversion is 

possible for all the initial conditions given by Eq. (25).
Figs. 3 and 4 display chromatic maps of K(3500 x 2tt), for e E ^, in terms 

of 3’1 and pi, which correspond, respectively, to the resonant phase and resonant 
moment9.

9As explained in subsection 1.3.

Taking into account the behaviour of the MEGNO and the color palette 
used in these pictures, it results that the most chaotic orbits are those in yellow, 
orange and red colors, while the most regular ones are in dark blue and black 
colors.

The most chaotic orbits are placed in the stochastic layer associated to the 
guiding resonance. We observe that, although we are working with a system 
with an infinite hierarchy o resonances that perturb the guiding one, the reso­
nant phase space structure resembles fairly well the phase space structure of a 
periodically perturbed pendulum, as is the case in the Standard Map.

The initial conditions of the ensemble were chosen using Eq. (26), with 3’1 G 
[0,0.7] and pi E [0, 10 5], In this rectangle we stablished a grid of 200 initial 
conditions. For all the values of S, these ensembles belong to the concomitant 
stochastic layers. In particular, they are placed close to (0i,pi) = (0,0), which 
corresponds to the unstable equilibrium point of the pendulum model. This 
initial ensembles are identified in the given figures with green points.

3.2. The measurements
For e E S, we integrated the orbits of the ensembles. The task of the program, 
before each “printing time”, is given by the following steps. First, it computes
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(a) e = 0.016 (b) e = 0.018

(c) s = 0.020

Figure 3. F(3500 x 2tt), for e G {0.016, 0.018, 0.020, 0.022}, in a neigh­
bourhood of Ir as given by Eq. (24), using pendulum variables (V’l, PiY The 
green points identify the initial conditions of the ensembles.

(d) s = 0.022

the action variables using formula (8). Second, it transforms the actions to 
Chirikov’s base (16), obtaining the values of the vector p. Third, it computes 
the ensemble variances, uj (18) and MSDs, ^ (19), for each one of the vari­
ables pj (j = 1,2,3). As the base vector pi has a norm ||mg|| = V13 yf 1, 
while the other two base vectors are normalized by definition, the statistical 
quantities associated to pi have been normalized. In other words, from now on, 
with the notation oy, u^, yx and 7^, we will be really denoting the quantities 
VlSoq, ISo^, V1371 and 13^, respectively. These are the quantities that we 
would have measured if we had taken a normalized version of pi.

Before analysing the results of the evolution of this statistical quantities for 
all the e values, we will qualitatively exemplify the dynamics of this ensembles 
only for e = 0.016 and e = 0.020.

We start with the smallest of these parameter values, using a double section 
technique applied by Lega et al. (2003) among others. While integrating the test 
particles we have taken the surface of section Xi = 0 (17 > 0) and asked whether 
the intersecting point also satisfies the condition $2 + ^i — ^2 (y2 > 0, 03 > 0),
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Figure 4. F(3500 x 2tt), for e E {0.024, 0.026, 0.028, 0.030}, in a neigh­
bourhood of IT as given by Eq. (24), using pendulum variables (V’l, Pi)- The 
green points identify the initial conditions of the ensembles.

with 8 = 0.003. In terms of angle variables the double section is equivalent to 
01 = tt/2 with both 02 and 03 belonging to a certain neighbourhood (whose 
length decays to zero with 5) of tt/2.

In Fig. 5 we plot all the intersections with the double section that have 
taken place since t = 0 up to five final times: t = 105, 5 x 105, IO6, 5 x 106,10'. 
There we can see how the ensemble expands along the stochastic layer of the 
guiding resonance. Besides, for i > 5 X 106, some of the particles are located on 
“stochastic filaments” that go across the oscillation domain of the resonance.

The location of the initial conditions is shown with a white cross. The fact 
that the ensemble at the initial time seems to be in the regular zone inside the 
resonance, is a purely projective effect because in this experiment the initial 
angle values used in the SALI map are different than the ones used in the initial 
conditions of the ensemble.

Now we shift towards the e = 0.020 case, making snapshots of the pro­
jections of the ensemble positions onto the [Lp,^] plane, without applying any 
surface of section method. For this reason, this snapshots will show particles 
projected onto regular regions.
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Figure 5. Intersection of the trajectories with the double section defined 
by xi = 0, (r) Fx^V'2 < 0.003 and v¿ > 0 (z = 1,2,3), projected onto the 
[Â,42] plane for times: t < 105 (top-left), t < 5 x 105 (top-right), t < 106 
(middle-left), t < 5 x 106 (middle-right) and t < 10' (bottom). The data
corresponds to e = 0.016.

In Fig. 6-left. we observe the situation of the ensembles for times t = n x 102, 
with n = 1,..., 5, in red, green, blue, magenta and yellow colors, respectively. 
Each point corresponds to a test particle (that appear overlapped due to their 
high density) and again, the location of the initial conditions is shown with a 
white cross. We observe mainly two phenomenae. One of them is an oscillatory 
behaviour of the centre of mass of an order of magnitude similar to the size of
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Figure 6. In the left hand side is displayed the location of the ensemble 
for times 0 (white cross), 102 (red), 2 x 102 (green), 3 x 102 (blue), 4 x 102 
(cyan) and 5 x 102 (yellow) for e = 0.020. In the right hand side is displayed 
cr2 = cr2 + cr2 + cr2 (red) and 7* = 7^+73+73 (black), for 0 < t < 5 x 103
and the same e value.

the resonance. The other one is a dispersion of the ensemble, related to the 
decorrelation of the resonant phases associated to the particles.

Both phenonrenae can be quantified by observing at Fig. 6-right, where the 
evolution of the quantities u2 = o? + 0^ + u2 (red) and 7* = 73+72+73 (black), 
for the first 5 x 103 time units are shown.

The MSD presents oscillations. In particular, there is a peack of height 
approximately equal to 3.5 x 10 4 at t = 100. This implies that the distance 
of the ensemble with respect to the initial condition is of the order of 7* ~ 
(3.5 x 10-4)1/2 ~ 0.019, a fact that is verified graphically by the location of the 
red points in the snapshot.

On the other hand, the variance grows slower and with a more secular 
character than the MSD. Only after times + 2000 the former quantity adquires 
values of the order of magnitude of the latter one. In the forthcoming diffusion 
measurements we will not consider this initial transient time.

The mentioned equivalence between these two quantities, for times outside 
the transient, can be appreciated in Fig. 7, where we give the positions of the 
particles for times of the form: t = 3 x 10”, with n = 3,..., 6.

There it can be seen how the ensemble gradually expands. For times of 
the order of 103 (Fig. 7-top-left) the extension of the ensemble in the direction 
parallel to ¡1. is a bit larger that the one in the direction parallel to /13. Nev­
ertheless, the situation is inverted when considering times of the order of 106 
(Figs. 7-bottom-right), where there is evidence of a net macroscopic transport 
along the guiding resonance. A qualitatively similar situation was previously 
obtained for the e = 0.016 case, in which the double section technique allowed 
a better visualization of the diffusion process in the action space. Fig. 8-left, 
shows the ensemble for 107 time units and gives evidence of the fact that there 
are particles that arrive close to the neighbouring resonances: (2, — 1, — 1) and 
(2, 0, —2). The <r*(t?) y y2(f) curves are displayed at Fig. 8-right for 0 < t < 10'. 
With the purpose of knowing the functional dependence of u2(i), we assumed
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Figure 7. Ensemble projection onto the [A,^] plane for times 3 x 103 (top­
left), 3 x 104 (top-right), 3 x 105 (bottom-left) and 3 x 106 (bottom-right). 
The data corresponds to s = 0.020.

Figure 8. The left image shows a snapshot of the ensemble for t = 10' and 
E = 0.020. The right image displays the curves of cr; = crj + <75 + cr~s (red) and 
7~ = 7^ + 7? + 75 (black), for 0 < t < 10' and the same parameter value.

as ansatz a power law:
a* = Ktw, (27)
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which is equivalent to the concomitant dependence of the FBM (21), associating 
w with the Hurst exponent according to w = 2r).

Applying the decimal logarithm to both sides of Eq. (27), we obtain

log(<7*) = log(K) + wlog(t).

This implies a linear relation between the logarithm of time and the logarithm 
of variance, being its slope the exponent of the power law. A numerical fit of 
the variables log(«) and w, for t E [105,106'5], gave that k ~ 2.23 x 10 5 and 
that w to 0.225.

The fact that w turned out to be considerably smaller than unity, is an 
experimental evidence that during this time interval the diffusion is anomalous, 
and in particular, it is a subdiffusion process.

The length of this interval, that includes around 3 x 106 time units, is not 
negligible. On the contrary, observing Fig. 7-bottom-right, it can be stated that 
this time interval is a significant part of the life of the ensemble in which it is 
strictly included inside the guiding resonance, before that the particles arrive to 
the resonance crossings.

Fig. 9-left shows c^t) in logarithmic scale, together with the linear fit, 
while Fig. 9-right shows that this fit diverges from the real measurement, for 
larger times.

Figure 9. The left image displays log(cr~) as a function of log(t) (red) to­
gether with the linear fit of the slope w to 0.225 (blue), for t E [105, IO65]. 
The right image shows that this power law behaviour (u~ ex tw) stops being 
valid when considering a wider time interval.

Now we will consider the evolution of the variances associated to each di­
rection individually. Fig. (10) displays the curves ^(t), ct^W and u^t) in colors 
red, green and blue, respectively, for t E [105,107]. We observe an approximate 
stabilization in constant values of u( an¿ y-2, w^e CT2 sjlows sustained growth. 
The stabilization of o^ is due to the conservation of the total energy. The stabi­
lization of o^ is due to the fact that the resonant moment (pi) is bounded due 
to the (aproxímate and local) conservation of the energy of the resonant normal 
form, i.e. conservation of energy of the pendulum.

This behaviour of the variances is the one that should take place in an 
Arnold diffusion process (subsection 1.4.), during the stage in which the ensemble
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Figure 10. c^f), cr^(t) and 03(f) respectively in red, green and blue colors,
for e = 0.020.

is mostly located inside the stochastic layer of the original guiding resonance. 
Once diffusion has proceeded considerably along other resonances, Chirikov’s 
base associated to the original guiding resonance stops having geometrical sense. 
When particles change their guiding resonance, there is a change in ¡1. and /13 
as they both depend on mg; and there is a change in /Z2 due to the convexity 
°f2o. J '

Fig. 11 displays the values of the three variances for each value of ¿A
There it can be seen the change in the behaviour of variances as the in­

tensity of the perturbation gradually increases. Figs. 11 (a,b,c) show that for 
E E {0.016, 0.018} the behaviour is qualitatively similar to the one previously 
described for e = 0.020.

Figs. 11 (d,e,f) show that for e E {0.022, 0.024, 0.026}, u{ does not stabilize, 
but it has a net growth. On the other hand, o^ still converges approximately to 
a constant value, while o^ is still the variance that grows largely in the analysed 
time interval.

Finally, in Figs. 11 (g,h) there is evidence of the fact that for e E {0.028, 
0.030}, o^ presents a net growth and, besides, the magnitude of the growth of 
CT^ is of the order of the one of Ug. This behaviour does not agree with an Arnold 
diffusion at all. Therefore, for e = 0.028, which is smaller than ec (section 2.), 
there is a diffusion situation geometrically more similar to an overlapping regime 
than to an Arnold diffusion.

Nevertheless, there is no contradiction in these facts because the quantity ec 
gives information of the global state of overlap of phase space, while in the local 
neighbourhood of our particular resonant action under study, the overlapping 
starts to manifest for smaller values of e.

This argument can be experimentally proved by considering the two bottom 
images of Fig. 4, that show that for values of e equal to 0.028 and 0.030, the 
resonant region is in an advanced state of overlap.

Once that we have analysed the way in which the variances (associated to 
the three independent directions of Chirikov’s base) change with respect to e, we 
will go ahead towards quantitative measurements of the evolution of only one of 
the variances: 03.
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Figure 11. cr~(t) (z = 1, 2, 3) respectively in red, green and blue colors, for

(h) s = 0.030
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Fig. 12-left shows o^t^ in logarithmic scale for e G S1 in colors red, green, 
blue, magenta, cyan, yellow, black and orange, respectively. We observe that, 
in general, for each fixed time t, the larger the value of e, the larger the value of 
o^t-Y For each curve, we have made a linear fit for t G [105,106’5], proceeding 
in a similar way to what had previously been done with u* and Eq. (27).

Table 1 displays the values of this numerical fits. In the fifth column the 
quantity w* has been added, which corresponds to a fitted value of the exponent 
for a wider time interval, t G [105,107], while the sixth column shows the con­
comitant percentage relative difference. It can be seen that for some values of e, 
such a difference reaches values higher than 15%. This is an example of the fact 
that the behaviour of statistical quantities in systems with divided phase space 
can be highly dependent on the size of the time interval.

Fig. 12-right shows the agreement between the linear fit done in 105 < 
t < IO6’5 and the concomitant evolutions of variances. Analogously, Fig. 13-left 
displays the same information for the range 105 < i < 107. Fig. 13-right shows 
the values of both exponents, w and w*, as a function of e in red and black 
colors, respectively.

Figure 12. ^(t) in logarithmic scale, for e G S, in colors red, green, blue, 
magenta, cyan, yellow, black and orange, respectively. In the left hand side 
image the time range is t G [103, 10']. In the right hand side image, the 
concomitant straight lines that fit approximately the data for t G [105, IO6 5] 
have been added.

Due to the fact that every measured value of w (and of w*) is less than 
unity, it can be concluded that for the two temporal ranges, and for the eight 
E values analysed, the variance evolution corresponds to an anomalous diffusion 
process of the subdiffusive type.

Therefore, having also in mind the information obtained from Figs. 11 (a,b,c) 
it could be said that for e G {0.016, 0.018, 0.020} and for the two time ranges 
used, an “Arnold subdiffusion” process might be taking place.

In spite of this, Fig. 14 indicates that when considering times sufficiently 
shorter than the ones recently used, the variances follow an approximately linear 
behaviour. In order to have an estimation of the average rate of change of the 
variance during the earliest 5 x 105 time units, we will compute the diffusion 
coefficient 7% (20), choosing as initial time to = 104 and as final time t = 5 x 105.
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Table 1. Results of the numerical fit of the power law, similar to the ansatz 
given by Eq. (27), with the substitution of cr* with cr3, for t E [105, IO6 5]. 
In the fifth column the quantity w* has been added, which corresponds to a 
fitted value of the exponent for a wider time interval, t E [105,10'], while the 
sixth column shows the concomitant percentage relative difference.

E w log(K) to* x 100
0.016 0.370366 -6.11277 7.713 x 10 7 0.365061 ~ 1
0.018 0.387073 -6.01603 9.638 x 10 7 0.395128 ~ 2
0.020 0.363961 -5.72554 1.881 x 10 6 0.444984 ~ 22
0.022 0.466993 -6.17054 6.752 x 10 7 0.564104 ~ 20
0.024 0.654695 -7.06677 8.575 x 10 * 0.755714 ~ 15
0.026 0.676915 -6.94744 1.129 x 10 7 0.562896 ~ 16
0.028 0.736347 -7.10383 7.874 x 10 0.655036 ~ 11
0.030 0.807722 -7.19636 6.363 x 10 ^ 0.756279 ~ 6

5 5.5 6 6.5 7
iog(t)

Figure 13. The left hand side image shows the curves <r3(t) in logarithmic 
scale, for e E S, in colors red, green, blue, magenta, cyan, yellow, black 
and orange, respectively, together with the concomitant straight lines that fit 
approximately the data, for t E [105,10']. The right hand side image shows 
the w(e) and w*(e) curves in red and black colors, respectively.

This information is provided by Table 2 and by Fig. 15, as a function of 
e. Looking at this figure it is not possible to determine the functional relation 
between the diffusion coefficient and the perturbative parameter. Due to the 
smallness of the E-range used, the data could be compatible with many func­
tional forms. Nevertheless, it is noticeable that TD increases when e increases, 
as expected.

4. Conclusion

In this work we have studied, through numerical experiments, a diffusion process 
that takes place along the stochastic layer of a guiding resonance of a particular 
guasz-integrable 3DoF Hamiltonian flow.
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Figure 14. crj(t) for e E S and t < 5 x 105. Each color corresponds to an e 
value, following the same criterion of Fig. 12.

Table 2. ^(e), using to = 104 and t = 5 x 105.

E ^o) 4^
0.016 0.571 x 10 ' 0.102 x 103 4.59 x 10 "
0.018 0.739 x 10 4 0.162 x 103 9.01 x 10 "
0.020 0.107 x 103 0.208 x 103 1.02 x 10 10
0.022 0.136 x 103 0.265 x 103 1.31 x 10 10
0.024 0.140 x 103 0.414 x 103 2.78 x 10 10
0.026 0.153 x 103 0.839 x 103 6.99 x 10 10
0.028 0.237 x 103 0.105 x 10 2 8.30 x 10 10
0.030 0.288 x 103 0.261 x 10 2 2.37 x 10 9

^(e), using to = 104 and t = 5 x 105.Figure 15.

We have considered eight values of the perturbation parameter (e). For 
each one of these values we have used an ensemble of test particles whose ini­
tial conditions were chosen inside the stochastic layer of the perturbed guiding 
resonance.

We have measured the evolution of the variances and mean square displace­
ments, in the three directions of Chirikov’s base, determining that for e < 0.02
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the results geometrically agree with an Arnold diffusion. Such a process is 
characterized by the fact that o^if) and cr^it') stabilize around constant val­
ues, while cr^it') performs a nearly secular growth in the time interval under 
analys: tE [0,10'].

For higher e values, we have found that c^t) has an average growth rate 
that increases with e, in agreement with the fact that the degree of influence of 
the overlap with neighbouring resonances increases with e.

For t < 107 we have observed an anomalous behaviour of o^if) for all the 
eight e values. Through numerical fits of cr^itff of the power law type, we have 
found that all the exponents are lower than one, In other words, all the Hurst 
exponents are lower than one half. This is experimental evidence of the existence 
of a subdiffusion process that effectively takes place in this given time interval.

On the other hand, for i < 5 x 105 we have observed that these variances 
behave approximately linearly (normal diffusion). This allowed us to compute 
diffusion coefficients, Da, associated to the rate of growth of the variances. We 
have found that D„ increases with e.
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