The Galaxy structure across the Vela Gum

E.E. Giorgi^{1,2}, M.S. Pera^{2,3}, G. Perren^{2,3}, R.A. Vázquez^{1,2}, G.R. Solivella^{1,2} & A. Cruzado^{1,2}

¹ Facultad de Ciencias Astronómicas y Geofísicas, UNLP, Argentina

² Instituto de Astrofísica de La Plata, CONICET-UNLP, Argentina

³ Facultad de Ciencias Exactas, Ingeniería y Agrimensura, UNR, Argentina

Contact / egiorgi@fcaglp.unlp.edu.ar

Resumen / Presentamos los primeros resultados preliminares de un estudio sobre la población de cúmulos abiertos vista en dirección a la Nebulosa Gum. Se trata de una estructura de gas de emisión muy grande y cercana que abarca desde $l=240^{\circ}$ hasta $l=270^{\circ}$ y desde $b=+8^{\circ}$ hasta $b=-15^{\circ}$, aproximadamente. Aprovechando la impresionante precisión y profundidad (G \approx 20) de los datos proporcionados por la misión *Gaia* (EDR3) y que ahora tenemos dos poderosas herramientas para un análisis automatizado de datos de cúmulos abiertos, ASteCA y pyUPMASK, iniciamos un proyecto destinado a reanalizar los parámetros fundamentales de varias docenas de cúmulos abiertos ubicados en el área de la Nebulosa Gum.

Abstract / We present first and preliminary results of a study on the open cluster population seen against the Gum Nebula. This is a very large and nearby emission gas structure covering from $l=240^{\circ}$ to $l=270^{\circ}$ and from $b=+8^{\circ}$ to $b=-15^{\circ}$, approximately. Taking advantage of the impressive precision and depth (G \approx 20) of data provided by the Gaia mission (EDR3) and that we have now two powerful tools for an automated analysis of open clusters data, ASteCA and pyUPMASK, we started a project aimed at reanalizing the fundamental parameters of several dozens of open clusters located in the Gum Nebula area.

Keywords / Galaxy: structure — open clusters and associations: general

1. Introduction

The Gaia mission (Gaia Collaboration et al., 2016) offers us a large amount of stellar data in our galaxy. The latest EDR3 data release (Riello et al., 2021) provides G magnitude and colors for more than 1.8 billion stars including sky positions, parallaxes, and proper motions for sources down to $G \approx 20$. It is then possible to perform all kind of studies, from modest -in size- structures (individual stars, star associations, star clusters, etc.) to those ones concerning large structures such as galaxy arms. As for the region of our interest -the whole Vela Gum area- it contains prominent astronomical structures projected against its areal surface such as the Vela OB2 and OB1 associations, the Vela Supernovae Remnant, the Vela Pulsar and the Vela Molecular Ridge. The emission region overlaps too with the IRAS Vela Shell located close to the south. The stellar population connected with some of these features has been examined recently (Cantat-Gaudin et al., 2019). However, a reanalysis of the fundamental parameters of open clusters is urgently needed if we want to have an improved picture of the galaxy substructures beyond the Gum Nebula (e.g. confirming the Perseus arm existence). To handle Gaia data in Gum Nebula, we have specific computational tools to analyze them without requiring personal supervision and thus obtain homogeneous results (Perren et al., 2015); (Pera et al., 2021).

2. The data

Parallaxes, proper motions, G magnitudes, and colors (Bp-Rp) for cluster stars in the Vela Gum were down-

loaded for 52 out of about two hundred clusters under investigation. A script was used to query all data in the EDR3 catalog within a circle centered on the published coordinates of each cluster.

3. Description of the method

Cluster by cluster, an analysis of membership was made with pyUpmask ((Pera et al., 2021)), a python code that has been designed to distinguish between member and non-member stars of a cluster. This is, the process yields the individual probability that the star is a cluster member. Previously, stellar parallaxes were corrected using the procedures described in (Lindegren et al., 2021).

Those stars with the highest probabilities were then analyzed using the ASteCA code ((Perren et al., 2015)) to get the fundamental cluster parameters (age, distance, mean proper motions and color excess, total mass and metal content). ASteCA does this, by comparing the color-magnitude diagrams of likely members with synthetic clusters from Parsec ((Bressan et al., 2012)). The procedure implies thousand iterations.

As an example, we show in Fig. 1 the estimation of mean cluster parallax and the best fitting with synthetic clusters for NGC 2818 (upper panels) and Melotte 66 (lower panels). The red isochrone curve is for visual guidance only and means that there is no fit. In Table 1 we inform the results for 52 open clusters, where the second column shows the cluster distance from our mean parallax, the fifth column is for the ASteCA analysis, the sixth for distances from (Dias et al., 2021) and

The Galaxy structure across the Vela Gum

Figure 1: Parallax and photometric analysis for NGC 2818 (upper panels) and Melotte 66 (lower pannels). Plx_{Bay} indicates the Bayes parallax, Plx_{wa} is the parallax weighted average and Plx_{med} the median.

the seventh is the log(age) of the cluster calculated by ASteCA.

4. Conclusions

In this article we present the first and very preliminary results of a study based on the re-analysis of many open clusters projected against the Gum Nebula. Our project will continue with the study of all the clusters detected in this region, currently around 200, which will allow us to complete an improved image of the substructures of the galaxy beyond the Gum Nebula.

Acknowledgements: This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.

cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/ web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

References

Bressan A., et al., 2012, MNRAS, 427, 127
Cantat-Gaudin T., et al., 2019, A&A, 626, A17
Dias W.S., et al., 2021, MNRAS, 504, 356
Gaia Collaboration, et al., 2016, A&A, 595, A1
Lindegren L., et al., 2021, A&A, 649, A4
Pera M.S., et al., 2021, A&A, 650, A109
Perren G.I., Vázquez R.A., Piatti A.E., 2015, A&A, 576, A6
Riello M., et al., 2021, A&A, 649, A3

Giorgi et al.

Table 1: Distances in pc calculated with parallax (dPlx) and with photometry (dPhot). Proper motions in right ascention (pmra) and declination (pmd). D represents the distances in pc from (Dias et al., 2021). Age calculated for the open clusters under investigation (log t) is indicated.

CLUSTER	dPlx	pmra	pmd	dPhot	D	$\log t$
TRUMPLER 9	2500	-3.4	3.1	2517	2907	8.0
HAFFNER 19	4160	-2.6	2.7	3197	6289	7.1
NGC 2453	4011	-2.4	3.4	3661	4545	8.2
HAFFNER 14	3603	-1.8	1.8	3075	4329	8.4
NGC 2483	3955	-2.3	3.3	3936	_	8.4
HAFFNER 21	3044	-1.4	1.6	3093	3534	8.7
RUPRECHT 35	3443	-2.3	3.2	2824	4098	8.4
NGC 2489	1882	-2.5	2.2	1767	2128	8.7
HAFFNER 22	2567	-1.6	3.0	2893	3021	9.3
HAFFNER 17	3267	-1.2	1.9	1964	4115	8.6
HAFFNER 15	3416	-2.2	3.3	2758	4237	8.1
RUPRECHT 50	2245	-1.8	2.4	3129	2421	8.3
RUPRECHT 47	3337	-2.5	2.7	3062	4149	8.5
NGC 2571	1279	-4.9	4.3	1099	1383	8.0
RUPRECHT 48	3471	-2.5	2.9	3597	4132	8.3
RUPBECHT 52	3603	-2.5	2.8	5686		8.4
NGC 2587	2911	-4.2	3.6	2703	3300	8.7
HAFFNER 26	2770	-1.6	2.4	3276	3279	87
NGC 2567	1648	-2.9	2.1 2.7	1809	1855	87
NGC 2580	3950	_2.9	1.9	4607	5102	8.8
RUPRECHT 31	4146	_1.6	$\frac{1.9}{2.0}$	9020	0102	9.6
RUPRECHT 58	2062	-2.6	1.0	3568	3745	8.6
NCC 2627	1705	-2.0	3.0	2360	1016	8.6
NGC 2588	4228	-2.5	2.6	2300 4432	5181	8.8
RUPRECHT 59	4581	-1.9	2.0	5508		8.0
RUPRECHT 61	3357	-2.0 2.5	0.2 3.8	3003	3584	0.0
RUPRECHT 152	4549	-2.0	2.0	10725		9.0 8.6
NGC 2477	1388	-1.5	0.8	1208	1/100	0.0 0.1
ASCC 45	3600	-2.4	2.0	4615	1499	9.1 8 3
NGC 2658	3831	-2.3 -2.4	0.2 2.3	4010	5076	8.8
NGC 2579	4118	-2.4 -2.5	2.0	400 <i>9</i> 5174		83
NGC 2635	4505	-2.0 9.5	0.2 0.0	/821	6044	85
RUPRECHT 68	4090 9778	-2.5	5.6	9661	2200	0.3
DISMIS 2	2110	-2.0	5.0 6.7	1407	9469	9.5
TISMIS 5 RUPRECHT 66	2120	-4.7	2.1	1407	2403 4484	9.0
DISMIS 2	3613	-3.1	5.1	4090 9912	4404	9.1
DISMIS 7	4578	22	0.4	$\frac{2210}{2797}$	6667	9.0
DISMIS 7	4070	-5.5 5.4	4.5	9121 917	0007	9.0 7.4
TISMIS 5 DUDDECHT 79	909 4959	-0.4	4.0	017 7499	905	1.4 8.0
DUDDECUT 159	4202	-0.0	0.0 2 E	0202		0.9
MELOTTE 66	4111 4202	-0.1 1 4	0.0 0.0	9290	5901	0.0
DUDDECUT 64	4392	-1.4 E C	2.0	4050	5291	9.0
NCC 2010	902 2047	-3.0	0.7 यह	092 9190	- 9610	1.2
NGC 2018 NGC 2671	2947 1959	-4.4 1 5	4.0	000 9139	3010 1451	9.0
NGU 2071 DH 97	1393 2602	-1.0 9 E	1.0	008 9141	1401	9.3
	3002 9175	-3.3	4.0	3141 4975	3922	ð. í 0. 1
RUPREUHI 74 DUDDECUT 60	3170 4090	0.0	చ.చ క్ర	4370 5965	- 5976	9.1
NCC ACCA	4020	-3.8	0.0	0∠00 1555	0370 0000	ð.ð
NGU 2009 Duddeoute 71	1879	-4.3	3.0	1000	2299	8.7
NUPREUHT 71	1077	-0.2	4.0	1802	2049	(.0
NGU 2070 COLLINDED 205	1433	-0.3	3.7	1920	1030	1.8
OOLLINDER 200	1111	-4.8	4.0	1209	2198	1.0