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Abstract

Based on asymptotic properties of sample Quantile Distribution derived by Hall & 
Martin (1988) and Ferguson (1999), we propose a novel method which explodes Quan­
tile Variance, and Quantile-Mean Covariance to estimate distributional density from 
samples. The process consists in firstly estimate sample Quantile Variance and sample 
Quantile-Mean Covariance using bootstrap techniques and after use them to compute 
distributional density. We conducted Montecarlo Simulations for different Data Gen­
erating Process, sample size and parameters and we discovered that for many cases 
Quantile Density Estimators perform better in terms of Mean Integrated Squared Er­
ror than standard Kernel Density Estimator. Finally, we propose some smoothing 
techniques in order to reduce estimators variance and increase their accuracy.
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1 Introduction

If the continuous random variable X has density /(a?) and median Q(0.5) = 0, then the 

sample variance of Qra(0.5)x is known to be approximately qgpi* 2- As n —> oc we also 

know that the asymptotic variance of the median converges to It can be shown that

i.<'. the sample median of n observations
2According to Stigler (1973) this result, jointly with asymptotic properties of Median estimation, was 

firstly stated by Laplace in 1818
3Where lv(t) = argmino E[pT(X — a)] is the expected quantile loss function

this result is true for any quantile r being the asymptotic variance of Q(r) = xT equal to

. Ferguson (1999) extended this results and proved that sample Quantile-Mean joint 

distribution has asymptotic covariance equal to jyy-y3- This results had been widely used 

to estimate order statistics variance and construct confidence intervals for robust inference. 

This usually requires to make assumptions about /(a?) functional form or instead firstly 

estimate this density function using non-parametric techniques. Based on properties of 

sample quantile variance bootstrap estimation derived by Hall & Martin (1988) we explore 

the revert problem of firstly estimate sample quantile variance (QF), and sample quantile­

mean covariance (Qc), and then use them to non-parametrically estimate density function 

/(¿r). We call them Qv and Qc density estimators.

2 Quantile Variance Density Estimator

Let (XI, ...,X??.) be i.i.d. with distribution function F(¿r), density /(¿r), mean p. and finite 

variance a2. Let 0 < t < 1 and let qT denote the t quantile of F, so that F(gT) = r. Assume 

that the density /(¿r) is continuous and positive at qT. Let Q(r) be the quantile function so 

that Q(t) = F_1(t) = qT and YT.n = Xn:nT denote the sample r quantile. Then:

- «r)-t» w (o, hi—(i)
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Definition 1 The quantile variance function, V(r), is the asymptotic variance of the sample

quantiles, i.e. YT.n, with index r E (0,1)

V(r) = lim y/ñv(K,n) • (2)

From Equations 1 and 2 we know that at the limit V(r) = p so density at quantile 

t is:

(3)

The Quantile Variance estimator of /(Q(r)) requires only a consistent estimator of V(r). 

Following subsections sketch the steps we need to achieve that.

2.1 Consistent estimator of V(r)

We propose a naive non parametric Bootstrap estimator which tooks B random sub-samples 

of size n out of n observations, sort them into a order rank j = 1,..., n so X± < ... < and:

1. Compute sub-sample quantile r for sub-sample b as:

b= 1,2,.. .,B-j = 1,,.,/r

2. Compute bootstraped quantile mean as: Qn(r) = J? ^2b=i Qntjf b = 1,2,..., B

3. Finally Compute bootstraped quantile variance as: V(r) =

1,2, ...,B

Lemma 1 V^B(r) = V(r) + op(l) as n —> oc, B —> oc.
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2.2 QV Density Estimator

Then our proposed density estimator is

/(QH) =
nV(r)

(4)

Lemma 2 fn(Q(ry) = + 0p(n 4) as n —> oc, B —> oc.

Hall & Martin(1988) derives convergence properties for Quantile variance bootstrap es­

timation and shows that relative error of the bootstrap quantile variance estimator and 

bootstrap sparsity function estimator is of precise order ??-1/44. Given that:

= 1 + O(/?-1/4)

Then, the rate of convergence of is also of precise order ??-1/45:

(5)

Then:
Á(Q(t)
/(QH)

= 1 +

3 Quantile-Mean Covariance Density Estimator

Suppose {Xi, is an i.i.d. (independent and identically distributed) sample with dis­

tribution function F(.), density /(.), quantile function Q(t),t G (0,1), and mean p..

4Where n is Sample Size
5This rate is inferior to regular Kernel rate of converge // 2/2. However, this rate can be improved by 

smoothing techniques discussed above or using a different technique to estimate variance such as m out n 
bootstrap as showed by Cheung & Lee (2005)

6Where T2 = z =. For a formal proof please refer to Hall $ Martin (1988)
y 2-7T 2 t(1— t)
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Definition 2 The quantile-mean covariance function, C(r), is the asymptotic covariance 

between the sample quantiles, i.e. Qn(r'), with index r E (0,1) and the sample mean, i.e.,

C(t) = yfñCOV^QnirfXn). (6)
n—>oo

Definition 3 Define the expected quantile loss function (EQLF)

w(r) = argmin£'[pT(X —a)] = r(p — E[X\X < Q(r)]) = r
a

(7)

where pT(u) = {r— 1[m < 0]}m is the quantile check function in Koenker and Bassett (1978).

By Ferguson (1999),

/(CM) = (8)
G(r)

The estimator of /(Q(r)) requires consistent estimators of w(r) and C'(r). The following 

subsections sketch the steps we need for each element.

3.1 Consistent estimator of tu(r)

Consider the following estimator:

Lemma 3 07ra(r) = w(r) + op(l) as n —> oc.

3.2 Consistent estimator of C(r)

The key point is how to estimate C'(r). Basically we just want to estimate a “covariance” 

between two random variables. Think about how we would estimate the covariance between 

Xn and Ó-2 or any other two “moments”.
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Proposal: The bootstrap

1. Consider B bootstrap samples of size n, {xb}f=1,b = 1,2, ...,B;

2. Compute = 1,2,...,B;

3. Compute Cf(r) = | Ef=i (xb x QbJr)^ - E?=i (i-e- sam­

ple covariance)

Lemma 4 C&(r) = C'(r) + op(l) as n —> oc, B —> oc.

3.3 QC Density Estimator

Then our proposed density estimator is

/n(Q(r)) = (9)

Lemma 5 /n(Q(r)) = /(Q(t)) + oP(l) as n —>■ oo, B —> oc.

4 Smoothing Methods

In practice, the density estimator may have several kinks in small samples because of the 

non continuous nature of quantile estimators. Then we can propose smoothing strategies to 

obtain smoother estimators.

4.1 Moving Average

Suppose a given grid of r values T = ti, T2,tt such that t¿ < t¿ + 1, z = 1,2,..., T — 1.

The consider a moving average of 2m + 1 (i.e. we would consider m quantiles to the left 

and m quantiles to the right to take an average), for n¿, i = m + 1,..., m — 1,
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fn(Q^MA = x (/n(Q(^-m)) + /n(Q(^-m+l)) + ■■■

+ /n(Q(Ti-l)) + fn(Q (TiX) + /n(Q(Ti+i)) + ... + /ra(Q(Ti+m)))

4.2 Weighted Moving Average

Alternatively, consider a smoothing Moving Average weighted by kernel function T,

fn(Q(ri))WMA = —- Tí)/ra(Q(Tí_m)) + - Tí)/ra(Q(Tí_m+i)) + ...
2m + 1 \

+^(tí_i - Tí)/ra(Q(Tí_i)) + ^(0)/ra(Q(rí)) + T(ri+i - Ti)/ra(Q(ri+i)) + ... 

+T(ri+m - Ti)/ra(Q(ri+m))^

m is here a smoothing parameter and we can thus analyze the asymptotic properties with 

respect to n and m to get optimality properties.

4.3 HP Filter

Hodrick and Prescott (1997) proposed a very popular method for decomposing time-series 

into trend and cycle. Paige & Trindade (2010) proved that HP-Filter is a special case of 

Penalized Spline Smoother. Then, our HP smoothed estimator results from:

T

. min { J2(/(Q(t)) -/™(Q(tí))HP)2 + ...

T

+ ^^2[(.fn(.Q(.Tí))HP ~ ~ ífPQÍTi-S')111, - fn(.Q(.Ti_2))HP)]2}
i=l

Where A is a free smoothing parameter.
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5 Montecarlo Simulations

This section shows alternative scenarios where we firstly simulate known Data Generating 

Process (DGP), secondly we try to recover those DGP using techniques presented before 

(Quantile Variance Density Estimator, Quantile-Mean Covariance Density Estimator) and 

thirdly we evaluate the performance of estimators through their Mean Integrated Square 

Error (MISE). For a given simulation i, Integrated Square Eerror ISEi is defined as:

ISE, = y (/(x) - fi(x))2dx (10)

Where f(x) is the known density function and fi(x) is the estimated density for simulation

i.

Then, Montecarlo estimated MISE will be:

1 -MISE = E[ISE] = -^ ¿2/5/'

Where M is the number of simulations.

As a benchmark for each DGP we also estimate its density with a kernel function:

v.au) = 4¿A-(:W£2) <i2)
nh n

i-=j

Where n is the sample size, h is the bandwidth, and /<(.) the kernel.' Quantil Variance 

(Qv), and Quantil-Mean Covariance (Qc) were estimated using nonparametric bootstrap as 

described in sections 3.2.

5.1 Standard Distributions

In order to test the accuracy of our estimators we generate M = 1000 random samples from:

1. Bell Shaped Gaussian Norm,al(0,1)

7We use the default !<(•) and h set by Stata which are Epanechnikov Kernel and Optimal Gaussian 
Bandwidth.
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2. Leptokurtic Laplace

3. Asymmetric —

4. Gamma(l, I)* 10.

sFor a Laplace (g, (3) Var = 2./32 and Mean = y
■’For a Gumbel (g, ¡3) Var = tt2/|- and Mean = y + gl3 (7 « 0.5772... is Euler-Marechoni Constant)

10For a Gamma (u,/3) Var = cQ2 and Mean = a(3
11Gamma distribution is the exception just to let it start from 0, then its mean and variance are both 

equal to 1

Parameters of Distributions described before have been selected in order to assure 0

mean11 and variance equal to 1. Figure 1 shows examples of one sample of each standard 

DGP describing Theoretical Distribution, Histogram, and Qv Density Estimation and Qc 

Density Estimation with their respective Smoothing.

IO

0 2
y

QC QC ¿/rocth Historian»
QV QV srnuoih ------------- ThworsWca

DGP inr.piM^Y.Nimr

4

QC-------------QC smooch
QV QV smooth

Histogram
------------ Tbeorethical

OGP Gumbil i-O 45 0 71) Taut 100 Bools 500 H1000

QC — ------QC smooth
QV QV smooth

Histogram
-----------Tbeorethical

DGP Gamma (I 1). Tam 100 Boot»500 N 1000

£ \
/

Figure 1: Normal, Laplace, Gumbcl and Gamma Distributions. Graph shows Theoretical 
DGP, Histogram, and Empirical Density plotted from estimators: QC, QV, Smoothed QC 
and Smoothed QV
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Given that quantile variance and quantile-mean covariance are very volatile at extremes 

of distributions, we also explore Qc and Qv performance after trimming distribution support 

for left and right at ±1%, ±2.5% and ±5%.

In order to avoid upper-extreme values of Qv and Qc coming from near — zero quan­

tile variance and quantile-mean covariance estimations, we also explore replacing extreme 

estimated values at the top 1%, 2.5% and 5% for an interpolation between nearest neighbors.

6 Results

6.1 Alternative DGPs

Tables 1 to 4 in Appendix A present Bias and MISE for each DGP and estimator. As a 

benchmark for performance we also show the Ratio between each estimator MISE and the 

traditional Kernel density MISE.12

12If the Ratio of estimator e takes value one (Re = 1) we can conclude that Estimator e has in average 
the same performance than Kernel. If Re > 1 we can say that e perform Re times worse than Kernel. If 
Re < 1 we can conclude that e perform % times better than Kernel.

Before smoothing and trimming or interpolating, and relative to Kernel Density Estima­

tion, the best performance for Qv estimator was obtained for Gamma distribution. With a 

Rqv = 0.40 Qv estimator best performs indicates that it is 2.5 times more accurate than Ker­

nel. This is true only for Gamma distribution while the traditional Kernel has smaller MISE 

for Normal, Laplace and Gumbel distributions. Best performance for Qc was obtained for 

Laplace distribution. Even so, that is not enough to reach Kernel overall performance which 

is 3.2 times more accurate than Qc estimation.

As was described in section 4, is inherent to discrete nature of quantiles to produce dis­
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perse estimations. In order to reduce variability and improve estimators performance13 we 

also computed two smoothed versions (MA, WMA, and HP) of each estimator and eval­

uate their MISE. Smoothed Qv and Qc best performance was obtained both for Gamma 

distribution but respectively using HP and MA smoothing. This time we reach a relative 

accuracy of RhpQv = 0.08 and RmaQc = 0.94 reflecting that for this DGP MAqc performs 

slightly better than Kernel and HPqv performs more than 10 times better. We also find that 

HPqv overrides Kernel for Laplace distribution, but smoothed Qv and Qc perform worse for 

remaining distributions.

13Remembering that MISE is a combination of Bias a Variance in the form MISE = B2 — V. Given 
that estimation Bias in absolute value of Qv and k are quite similar, we can attribute most of the lack of 
performance to relative Variance rather than Bias.

14For Density estimation we proceed as before using the whole sample to compute density. After doing 
that, we trimmed support before computing MISE

Due to bootstrap sub-sampling nature, Qv and Qc estimators are very unstable at the 

extremes of distribution support. A mayor treat for stability arises from sporadic sub-sample 

quantile covariace or quantile — mean covariance near to 0 ( V(r) ~ 0 or C'(r) ~ 0). 

Remembering from Equations 8 and 2 that C(r) and V(r) enters into the denominator of 

density estimation, having for example only one simulation with estimated variance or co­

variance ~ 0 will lead to a /(Q(r)) near to infinite and consequently to a huge MISE1.That 

is why we also computed density estimators after trimming DGP support. We find that 

Trimming first and last percentiles (±1%)14 of density estimation improves performance 

notoriously. For Normal Distribution, HPqc performs 2 times better than Kernel, while 

HPqv performs 4 times better. Given that after ±1% trimming smoothed estimators perform 

better than Kernel for the four distributions we can conclude that this is a general result. 

Even before smoothing we find that after trimming Qc and Qv estimators override Kernel 

for most of Distributions.

For last, given that near 0 variance mostly produces density estimations going to oc we 
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explore estimators performance after replacing upper-extreme values. Firstly, we estimate 

density as before using all the information available. Secondly, we detected upper-extreme 

values of point estimation, and finally we replace this extreme values for a lineal interpolation 

between nearest point estimation. This process has the advantage that does not affect 

support extent and produce a complete density estimation. We find that replacing 1% of 

upper-extreme values for a lineal interpolation has slightly better results in terms of MISE 

than cutting extremes of support in ±1%. A notable exception is Qc estimation of Gamma 

distribution that performs much better after support trimming.

6.2 Alternative Parameters

Figures 2 to 4 in Appendix B show graphics of Montecarlo Simulation results for a Normal 

DGP. In section B.l we show how MISE of Qv and Qc estimation decreases as Sample Size 

grows. We can also see that estimators are dominated by Kernel estimation confirming Hall 

& Martin(1988) theoretical results which states that kernel has greater rate of convergence. 

However, we can also see that HPqv after a n-size around 1200 performs almost identical 

than Kernel.

Section B.2 evaluate Qc and Qv performance when increasing Number of Bootstraps leav­

ing Sample Size and remaining parameters fixed. From this graphic we can conclude that 

Qv estimator requires less bootstraps than Qc to become stable, and that increasing the 

number of bootstraps leads to convergence. However, after reaching sample size there are 

few gains in terms of MISE.

Finally, we evaluate how the Number of Quantiles we chose to perform point estimation 

affects MISE and we find that there is not trade-off between the number of quantiles and 
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MISE. Although, there is a trade-off between quantiles and MISE for Smoothing estimators. 

Figure 4 show that for Normal DGP, after some point, increasing the number of quantiles 

only increases the MISE. The reason for this finding is that smoothing techniques improves 

density estimation performance due to variance reduction. However, as the number of point 

estimation converges to sample size, variance of smoothed estimators also converges to raw 

estimator variance. That is why, estimator smoothed MISE converges to raw estimator MISE 

as the number of quantiles converges to sample size.
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7 Summary

• Before trimming and Smoothing, in terms of MISE quantile estimators Qv and Qc 

usually perform worse than kernel for standard distributions.

• Given the discrete nature of quantile estimations, differences in MISE comes mostly 

from highest relative variance rather than higher Bias.

• Variance can be reduced using smoothing methods like MA, WMA and HP.

• Given that great part of MISE comes from instability of estimators at the extreme of 

the support, Trimming support by ±1% leads to a general over-performance of Quantile 

Density Estimators Qv and Qc relative to the traditional Kernel Density Estimation.

• Given that near-zero estimated variance leads to huge density point estimators, replac­

ing 1% of the extreme values at the top for a lineal interpolation leads to a general 

over-performance of Quantile Density Estimators relative to Kernel.

• Qv estimator performed better in average than Qc estimator, but as Sample Size and 

Number of Bootstraps increase they converge to the same results.

• As the Number of Quantiles used for point estimation converges to Sample Size, the 

gains from smoothing disappears whereas the performance of Qv and Qc density esti­

mators remains the same.
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Appendix
A Simulation Tables

Normal

Normal Support Trim Range Upper-Trim
Table 1: Normal Distribution - Bias and Mean Integrated Square Error

(a2 = 1) ±0.01 ±0.025 ±0.05 -0.01 -0.025 -0.05
Bias

Qc -0.0080 -0.0081 -0.0082 -0.0084 -0.0077 -0.0067 -0.0055
MAqc -0.0075 -0.0076 -0.0077 -0.0080 -0.0072 -0.0061 -0.0048
WMAqc -0.0064 -0.0066 -0.0070 -0.0075 -0.0061 -0.0051 -0.0039
HPqc -0.0080 -0.0081 -0.0082 -0.0084 -0.0077 -0.0067 -0.0055
Qv -0.0039 -0.0039 -0.0040 -0.0041 -0.0036 -0.0027 -0.0015
MAqv -0.0032 -0.0033 -0.0034 -0.0035 -0.0030 -0.0019 -0.0007
WMAqv -0.0023 -0.0025 -0.0028 -0.0034 -0.0020 -0.0011 0.0001
HPqv -0.0039 -0.0039 -0.0040 -0.0041 -0.0036 -0.0027 -0.0015
Kernel 0.0024 0.0079 0.0087 0.0098 0.0075 0.0074 0.0073

MISE
Qc 0.0026 0.0026 0.0027 0.0028 0.0025 0.0023 0.0021
MAqc 0.0017 0.0017 0.0017 0.0018 0.0016 0.0015 0.0014
WMAqc 0.0012 0.0013 0.0013 0.0018 0.0012 0.0011 0.0010
HPqc 0.0008 0.0008 0.0009 0.0009 0.0008 0.0008 0.0007
Qv 0.0020 0.0020 0.0021 0.0022 0.0019 0.0018 0.0016
MAqv 0.0008 0.0012 0.0012 0.0012 0.0011 0.0010 0.0009
WMAqv 0.0011 0.0008 0.0009 0.0013 0.0008 0.0007 0.0007
HPqv 0.0004 0.0004 0.0004 0.0005 0.0004 0.0004 0.0004
Kernel 0.0003 0.0017 0.0017 0.0019 0.0016 0.0016 0.0016
Ratio MISE (Kemel=l)

Qc 9.1981 1.5768 1.5579 1.5000 1.5568 1.4225 1.2984
MAqc 5.9198 1.0149 1.0032 0.9669 1.0065 0.9258 0.8462
WMAqc 4.4111 0.7491 0.7582 0.9794 0.7515 0.6960 0.6405
HPqc 2.8892 0.4956 0.4922 0.4807 0.4938 0.4633 0.4324
Qv 7.0496 1.2088 1.1946 1.1506 1.1925 1.0864 0.9919
MAqv 2.7991 0.6940 0.6865 0.6626 0.6875 0.6299 0.5758
WMAqv 4.0469 0.4760 0.4905 0.7041 0.4765 0.4401 0.4061
HPqv 1.5128 0.2584 0.2561 0.2502 0.2584 0.2424 0.2284
Simulations: 1000 Boots:500 ; Taus:100 ; N:1000 Qc:Quantil-Mean Covariance Density, Qv:Quantil Variance Density. Ker- 
nel:Kernel density estimation MAqc and MAqv are Qc and Qv smoothed by Moving Average (3). WMAqc and WMAqv are 
Qc and Qv smoothed by a Kernel-Weighted Moving Average (bw = 3). HPqc and HPqv are Qc and Qv smoothed by HP filter 
(A = 1600). Ratio MISE is each density estimation MISE in terms of Kernel MISE (MISE.f/MISE.k
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Table 2: Laplace Distribution - Bias and Mean Integrated Square Error

Laplace

Ratio MISE (Kernel=l)

Laplace
C=C2)

Support Trim Range Upper-Trim
±0.01 ±0.025 ±0.05 -0.01 -0.025 -0.05

Bias
Qc -0.0089 -0.0091 -0.0093 -0.0097 -0.0085 -0.0069 -0.0048
MAqc -0.0088 -0.0089 -0.0091 -0.0094 -0.0083 -0.0066 -0.0044
WMAqc -0.0076 -0.0076 -0.0076 -0.0075 -0.0072 -0.0055 -0.0035
HPqc -0.0089 -0.0091 -0.0093 -0.0097 -0.0085 -0.0069 -0.0048
Qv -0.0040 -0.0041 -0.0042 -0.0043 -0.0037 -0.0022 -0.0004
MAqv -0.0036 -0.0037 -0.0037 -0.0039 -0.0033 -0.0017 0.0003
WMAqv -0.0027 -0.0027 -0.0027 -0.0026 -0.0024 -0.0009 0.0010
HPqv -0.0040 -0.0041 -0.0042 -0.0043 -0.0037 -0.0022 -0.0004
Kernel 0.0060 0.0151 0.0164 0.0173 0.0141 0.0121 0.0100

MISE
Qc 0.0045 0.0046 0.0048 0.0050 0.0044 0.0040 0.0037
MAqc 0.0030 0.0031 0.0032 0.0034 0.0030 0.0028 0.0027
WMAqc 0.0023 0.0023 0.0023 0.0026 0.0022 0.0021 0.0021
HPqc 0.0016 0.0016 0.0017 0.0018 0.0016 0.0016 0.0016
Qv 0.0034 0.0035 0.0036 0.0038 0.0033 0.0030 0.0028
MAqv 0.0014 0.0021 0.0021 0.0023 0.0020 0.0019 0.0018
WMAqv 0.0020 0.0014 0.0015 0.0017 0.0014 0.0014 0.0014
HPqv 0.0009 0.0009 0.0009 0.0010 0.0009 0.0009 0.0010
Kernel 0.0014 0.0057 0.0061 0.0065 0.0055 0.0053 0.0050

Simulations: 1000 Boots:500 ; Taus:100 ; N:1000 Qc:Quantil-Mean Covariance Density, Qv:Quantil Variance Density. Ker- 
nel:Kernel density estimation MAqc and MAqv are Qc and Qv smoothed by Moving Average (3). WMAqc and WMAqv are 
Qc and Qv smoothed by a Kernel-Weighted Moving Average (bw = 3). HPqc and HPqv are Qc and Qv smoothed by HP filter 
(A = 1600). Ratio MISE is each density estimation MISE in terms of Kernel MISE (MISE.f/MISE.k

Qc 3.1905 0.8024 0.7820 0.7655 0.8002 0.7656 0.7468
MAqc 2.1379 0.5381 0.5252 0.5152 0.5412 0.5312 0.5298
WMAqc 1.6086 0.3971 0.3801 0.3958 0.4090 0.4085 0.4156
HPqc 1.1286 0.2844 0.2784 0.2750 0.2890 0.2981 0.3133
Qv 2.3960 0.6025 0.5872 0.5747 0.6018 0.5765 0.5678
MAqv 1.0043 0.3607 0.3521 0.3455 0.3634 0.3585 0.3643
WMAqv 1.4330 0.2481 0.2387 0.2604 0.2560 0.2589 0.2711
HPqv 0.6284 0.1583 0.1550 0.1532 0.1619 0.1723 0.1901
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Table 3: Gumbel Distribution - Bias and Mean Integrated Square Error

Gumbel

Gumbel Support Trim Range Upper-Trim
(/3=± ±0.01 ±0.025 ±0.05 -0.01 -0.025 -0.05

Bias
Qv -0.0043 -0.0044 -0.0044 -0.0045 -0.0040 -0.0028 -0.0016
MAqv -0.0035 -0.0036 -0.0037 -0.0039 -0.0032 -0.0020 -0.0006
WMAqv -0.0024 -0.0028 -0.0031 -0.0039 -0.0021 -0.0010 0.0003
HPqv -0.0043 -0.0044 -0.0044 -0.0045 -0.0040 -0.0028 -0.0016
Qc -0.0092 -0.0093 -0.0094 -0.0096 -0.0089 -0.0076 -0.0062
MAqc -0.0085 -0.0086 -0.0088 -0.0090 -0.0081 -0.0068 -0.0053
WMAqc -0.0073 -0.0076 -0.0080 -0.0088 -0.0070 -0.0057 -0.0043
HPqc -0.0092 -0.0093 -0.0094 -0.0096 -0.0089 -0.0076 -0.0062
Kernel 0.0042 0.0119 0.0131 0.0145 0.0113 0.0110 0.0107

MISE
Qv 0.0027 0.0027 0.0028 0.0029 0.0026 0.0023 0.0022
MAqv 0.0011 0.0015 0.0016 0.0016 0.0015 0.0013 0.0012
WMAqv 0.0015 0.0011 0.0011 0.0020 0.0010 0.0009 0.0009
HPqv 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005
Qc 0.0036 0.0037 0.0038 0.0039 0.0035 0.0032 0.0030
MAqc 0.0024 0.0024 0.0025 0.0025 0.0023 0.0021 0.0019
WMAqc 0.0018 0.0018 0.0019 0.0030 0.0018 0.0016 0.0015
HPqc 0.0012 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011
Kernel 0.0004 0.0024 0.0024 0.0026 0.0023 0.0023 0.0023
Ratio MISE (k=l)

Qv 6.7457 1.1506 1.1447 1.0959 1.1360 1.0252 0.9383
MAqv 2.6628 0.6535 0.6508 0.6236 0.6486 0.5891 0.5407
WMAqv 3.8317 0.4533 0.4627 0.7634 0.4518 0.4142 0.3842
HPqv 1.5397 0.2573 0.2537 0.2442 0.2628 0.2474 0.2357
Qc 9.2464 1.5737 1.5641 1.4913 1.5560 1.4073 1.2871
MAqc 5.9742 1.0173 1.0112 0.9626 1.0110 0.9221 0.8461
WMAqc 4.5464 0.7726 0.7796 1.1312 0.7713 0.7097 0.6567
HPqc 3.1642 0.5349 0.5313 0.5110 0.5395 0.5066 0.4777
Simulations: 1000 Boots:500 ; Taus:100 ; N:1000 Qc:Quantil-Mean Covariance Density, Qv:Quantil Variance Density. Ker- 
neLKernel density estimation MAqc and MAqv are Qc and Qv smoothed by Moving Average (3). WMAqc and WMAqv 
are Qc and Qv smoothed by a Kernel-Weighted Moving Average (bw = 3). HPqc and HPqv are Qc and Qv smoothed by 
HP filter (A = 1600). Ratio MISE is each density estimation MISE in terms of Kernel MISE (MISE.f/MISE.k
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Table 4: Gamma Distribution - Bias and Mean Integrated Square Error____________

Gamma

Gamma Support Trim Range Upper-Trim
(a = (3 = 1) ±0.01 ±0.025 ±0.05 -0.01 -0.025 -0.05

Bias
Qv -0.0076 -0.0071 -0.0068 -0.0066 -0.0054 -0.0018 0.0014
MAqv -0.0068 -0.0067 -0.0067 -0.0065 -0.0059 -0.0034 -0.0009
WMAqv -0.0079 -0.0075 -0.0072 -0.0056 -0.0053 -0.0010 0.0026
HPqv -0.0076 -0.0071 -0.0068 -0.0066 -0.0054 -0.0018 0.0014
Qc -0.0209 -0.0205 -0.0186 -0.0163 -0.0088 0.0010 0.0070
MAqc -0.0181 -0.0173 -0.0167 -0.0154 -0.0146 -0.0092 -0.0050
WMAqc -0.0216 -0.0236 -0.0214 -0.0184 -0.0061 0.0052 0.0116
HPqc -0.0209 -0.0205 -0.0186 -0.0163 -0.0088 0.0010 0.0070
Kernel 0.0658 0.0938 0.0923 0.0792 0.0944 0.0870 0.0805

MISE
Qv 0.0103 0.0093 0.0088 0.0078 0.0089 0.0076 0.0070
MAqv 0.0039 0.0039 0.0039 0.0037 0.0039 0.0036 0.0034
WMAqv 0.0040 0.0044 0.0054 0.0175 0.0037 0.0037 0.0040
HPqv 0.0020 0.0019 0.0019 0.0018 0.0018 0.0018 0.0019
Qc 0.6270 0.0382 0.0198 0.0135 0.5456 0.7360 0.7576
MAqc 0.0242 0.0103 0.0090 0.0075 0.0304 0.0737 0.0777
WMAqc 0.3119 0.0404 0.0231 0.0329 0.4029 0.7122 0.7529
HPqc 0.1034 0.0137 0.0085 0.0060 0.1381 0.2940 0.3123
Kernel 0.0258 0.0412 0.0397 0.0324 0.0418 0.0381 0.0351
Ratio MISE (Kemel=l)

Qv 0.4014 0.2261 0.2216 0.2403 0.2136 0.2006 0.1990
MAqv 0.1526 0.0957 0.0989 0.1145 0.0924 0.0941 0.0976
WMAqv 0.1556 0.1074 0.1358 0.5407 0.0886 0.0961 0.1131
HPqv 0.0768 0.0461 0.0473 0.0565 0.0434 0.0464 0.0530
Qc 24.3396 0.9267 0.4981 0.4174 13.0656 19.3351 21.5978
MAqc 0.9394 0.2501 0.2273 0.2333 0.7279 1.9367 2.2148
WMAqc 12.1093 0.9813 0.5811 1.0152 9.6493 18.7112 21.4627
HPqc 4.0142 0.3329 0.2151 0.1839 3.3071 7.7230 8.9031
Simulations: 1000 Boots:500 ; Taus:100 ; N:1000 Qc:Quantil-Mean Covariance Density, Qv:Quantil Variance Density. KernekKernel 
density estimation MAqc and MAqv are Qc and Qv smoothed by Moving Average (3). WMAqc and WMAqv are Qc and Qv smoothed 
by a Kernel-Weighted Moving Average (bw = 3). HPqc and HPqv are Qc and Qv smoothed by HP filter (A = 1600). Ratio MISE is 
each density estimation MISE in terms of Kernel MISE (MISE.f/MISE.k
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B Simulation Graphics (Normal Distribution)
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Figure 2: MSE and Sample Size
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B.2 Number of Bootstraps
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Figure 3: MSE and Number of Bootstraps
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B.3 Number of Quantiles
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Figure 4: MSE and Number of Quantiles
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