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FINITE ELEMENT VIBRATION ANALYSIS
OF FLUID-SOLID SYSTEMS WITHOUT SPURIOUS MODES

A. Bermudez de Castro(1), R. Duran(2),
M. A. Muschietti(3), R. Rodriguez(4) and J. Solomin(3)

Abstract. This paper deals with the finite element approximation of the vibration 
modes of a problem with fluid-structure interaction. Displacements variables are 
used for both the fluid and the solid. To avoid the typical spurious modes of this 
formulation we introduce a non conforming discretization. Error estimates for the 
approximation of eigenvalues and eigenvectors are given.

1. Introduction

Increasing attention has recently been paid to problems involving fluid-structure 
interactions. (For a survey of current results see [10] and references therein). In this 
paper, we will be concerned with a typical problem of this type: the elastoacoustic 
one; i.e.: the interaction between a compressible fluid and an elastic structure.

In this case, under the usual assumptions leading to linear problems, the evo­
lution of the structure is governed by a second order in time linear equation. Its 
solution can be written in terms of the vibrations modes of the coupled system 
which are solutions of a linear eigenvalue problem; (see for instance [2]).

Different approaches have been proposed to analyze this problem. Displace­
ment variables are generally chosen for the structure while the fluid is described 
by different variables (displacements, pressure, velocity potential). Some of these 
formulations have been analyzed from a theoretical point of view [2]. Others have 
been used for numerical experimentations [9,15,12].

We will consider the elastoacoustic problem consisting of a bounded domain 
completely filled by the fluid and limited by the solid. Displacement variables will 
be used for both the fluid and the solid. We will introduce and analize a finite 
element method to treat this problem in 2D.

Piecewise linear and bilinear finite elements, for both the fluid and the solid, 
have been numerically experimented for this formulation of the problem [9]. Spu­
rious modes with almost zero frequencies arise in these discretizations. Several 
approaches have been tried to avoid this drawback. In [8] a penalty method is
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deviced to distinguish these modes. In [3] reduced integration in the stiffness ma­
trix of the fluid combined with a projection on the element mass matrix is used. 
Numerical experiments seem to show that this last procedure is useful to avoid the 
spurious modes.

We are going to introduce an alternative approach. Our method consists of 
piecewise linear elements for the solid and Raviart-Thomas elements of lowest order 
[13] for the fluid. The coupling of both discretizations is of non-conforming type. 
We will prove the convergence of this scheme and an error estimate will be given. 
We will also prove that spurious modes do not arise when sufficiently refined meshes 
are used. Numerical experiments showing the efficiency of this method are reported 
in [1],

2. Modeling of the problem

2.1 The model problem.
We study the problem of determining the vibration modes of an ideal inviscid 

barotropic fluid contained in a linear elastic structure. We consider as a model 
problem the case of a vessel completely filled by the fluid. We restrict ourselves to 
the 2D case and assume polygonal boundaries and interfaces.

Let Ωρ and Ω8 be the domains occupied by the fluid and the solid respectively as 
in Fig. 1. We assume Ωρ to be simply connected. Γ\ denotes the interface between 
the solid and the fluid and u its unit normal vector pointing outwards ΩΓ. The 
exterior boundary of the solid is the union of Γη and ΓΝ: the structure is fixed along 
Γη and free of stress along ΓΝ; let η denote the unit outward normal vector along ΓΝ.

Throughout this paper we use the standard notation for Sobolev spaces, norms 
and seminorms. We also denote

H“^(div,fiJ:={ue[tf°(S\)]2 ■ divue ^(Ωρ)},

II ull//“·«< div ,íjf) := llull (nF) + II d>v ullw<!(np) ari^ div, Ωρ)h ’ (div, Ωρ).
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The classical acoustic approximation for the small amplitude motions yields the 
following eigenvalue problem for the vibration modes of the coupled system (see, 
for instance, [2,8]).

SP. Find A > 0 and (u, v) € R0,1(div, Ωρ) x [/ί1(Ω5)]2, (u, v) ψ (0, 0) such that: 

(2-1)
(2.2)

(2.3)
(2-4)

(2·5)

(2·6)

where ω = Vx is the frequency of the eigenmode, u and v are the displacements in 
the fluid and the solid respectively. pF and ps are the respective densities; c is the 
acoustic speed in the fluid, σ is the 2x2 stress tensor; i.e.:

As and ps being the Lamé coefficients of the structure and £¿j(v) := | + fzQ

being the components of the strain tensor. Finally £(v) := (As + //s)V(divv) + 
μ3Δν is the linear elasticity operator.

Remark 2.1. The second derivatives in (2.1) and (2.2) must be understood in 
the sense of distributions. Equations (2.3) and (2.4) are equalities in /ί-1/2(ΓΙ), 
but, since divu (Ξ ΗΑ(ΩΡ) (and hence divu|r 6 /Γ1/2(ΓΙ)) and v · i/ G Ή’1/2(ΓΙ), 
both can be considered as equalities in £2(ΓΙ).

Problem SP is equivalent to a variational problem. To describe it we intro­
duce the following notation. Let Η := [Τ2(ΩΓ)]2 x [Τ2(Ωδ)]2 and |(u,v)| be 

r 12 r ί2
the standard L2-norm. Let X := /¿(div, Ωρ) x Hp (Ω5) , Hp (Ω5) be­

ing the subspace of functions in [#’(M vanishing in TD, and ||(u, v)|| be the 
Tf(div,fiF) x [//'(M norm. Let V be the closed subspace of X defined by 
V := {(u, v) E X : u · i/ = v · u on Γ,}; (as in Remark 2.1, the equality of the 
normal traces u · v and v · u can be understood in the sense of £2(Γ,)).

Let a be the bilinear, symmetric, continuous, positive form defined on Xby

where <τ(ν) : ε(ψ) := S¿,j=i,2 <Jo(v)£b(V’)· Let b be the bilinear, symmetric, 
continuous, coercive form defined on H by
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Integrating by parts, it is straightforward to see that, if the eigenpair (Λ, (u, v)) 
is a solution of problem SP then it is also a solution of the following variational 
problem

VP. Find A G R and (u,v) € V, (u,v) ψ (0,0) such that

(2.7)

Theorem 2.1. Problems SP and VP are equivalent.

Proof. We have already observed that every solution of SP is a solution of VP.
Conversely, let (A, (u, v)) be an eigenpair of VP. Since (u, v) 6 V then (2.4) and 

(2.6) are automatically satisfied. Equalities (2.1) and (2.2) can be easily proved by 
respectively taking (0,-0), with -0 G [P(ils )]2, and (0,0), with φ G [Ρ(Ωρ)]2, as 
test functions in (2.7).

Now, V(0, 0) G V, integration by parts in (2.7), together with (2,1), (2.2), (2.4) 
and (2.6), gives

(2.8)

proving (2.3) and (2.5) in the sense of tf-V^r,). In fact, we may take any 0 G 
Γ Ί2Hp (Ω5) as a test function in (2.8) since there always exists φ G 7701ΐν,Ωρ) 
such that (0, 0) G V; (for instance, 0 = Vq, with q a harmonic function satisfying 
|1=^-Ι/οηΓ1). □

2.2 The eigenspace for A = 0.
There exist eigenmodes of problem (2.7) which do not induce vibrations into 

the solid. They are pure rotational motions of the fluid and correspond to the 
eigenvalue A = 0. The following theorem shows that the eigenspace associated to 
this eigenvalue contains exclusively such rotational motions.

Theorem 2.2. Let K be the eigenspace corresponding to A = 0 in problem (2.7). 
Then K = {( curlξ,0) : ξ€ίΓ'(Ωρ)}.

Proof. V£ G 77θ(Ωρ), curl£ · v = — 0, (t being the tangential unit vector to
Γτ). Hence ( curl ξ, 0) G V and a(( curl ξ, 0), (0,0)) = 0, V(0,0) G V.

Conversely, let (u, v) G K, then

Since L <r(v) : e(v) = 0 and v| = 0, then v = 0. On the other hand, 

div u = 0, then u = curl£ for some ξ G Ή’1(ΩΚ). Furthermore, since (u, v) G V, 
the tangential derivative of ξ along Tj is curl£ · v = v · 1/ = 0. Therefore, ξ can be 
chosen in 77θ(Ωρ). □

The following lemma gives simple characterizations of the orthogonal comple­
ments of K in H and V which will be used below.
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Lemma 2.3. Let G := {(Vg,v) : q E //^(Ωρ), v € L2(QS)} and Gv := Gil V. 
Then

i) Η = K φ G is an orthogonal decomposition in | · |.
ii) V = KG) Gv is an orthogonal decomposition in both | · | and || · ||.

Proof. It is well known that any function in £2(ΩΡ) can be orthogonally decomposed 
into a gradient plus the curl of a function vanishing on dQ,F (see [6]). So, (i) follows 
immediately.

On the other hand, for every (u, v) 6 V, the Neumann problem

(2-9)

is compatible and, for any solution q € Ητ(Ωρ), (Vq,v) E V. Since div (u — V<?) = 
0, then, proceeding as in Theorem 2.2, we have that (u,v) — (Vg,v) = (οιιΗξ, 0) 
with ξ E -£7(}(Ωρ). This decomposition is orthogonal in | · | as well as in || · ||, so we 
conclude the theorem. □

2.3 Description of the spectrum and an a—priori estimate.
Let us recall that our goal is to determine those eigenmodes inducing vibrations 

into the solid. It can be easily seen from the previous lemma that these eigenmodes 
correspond to irrotational motions of the fluid and are associated to strictly positive 
eigenvalues.

The bilinear form a is not coercive on V. However, a* := a + b, can be used in 
our problem and it turns out to be coercive. In fact,

(2.10)

(Throughout this paper C denotes a constant, not necessarily the same at each 
occurrence).

The eigenvalue problem associated to a* is

VP*. Find A E R and (u,v) E V, (u,v) ψ (0,0) such that

It is clear that (Λ, (u, v)) is an eigenpair of VP* if and only if (Λ — 1, (u, v)) is an 
eigenpair of VP. Since n* is V-elliptic, we can define the bounded linear operator 
A : H----> V as given by A(f, g) = (u, v) E V such that

For different A-invariant subspaces E C H, we denote AE the restriction A|E : 
E —> E. In particular, let Av ■= A|v : V —> V; Av is selfadjoint and, clearly, 
(A,(u,v)) is an eigenpair of Av if and only if (|,(u,v)) is a solution of VP*and
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then — l,(u, v)) is a solution of VP. Since the eigenvalues of VP are positive, 
then those of Av satisfy 0 < A < 1.

Av is not compact; in fact, Ak is the identity on the infinite dimensional sub­
space K C V. Nevertheless, the following results show that Gv is A-invariant and 
Aqv is compact. This will be used below to show that the spectrum of Ay consists 
of Λ = 1 and a sequence of eigenvalues An —> 0.

n

Lemma 2.4. A(G) C Gv·

Proof. Decompositions in lemma 2.3 are also orthogonal for the inner products 
δ(·, ·) and α*(·, ·). Therefore, for (f,g) 6 G = ΚΑ, (u, v) = A(f, g) G V satisfies

Hence, according to Theorem 2.2, (u, v) is orthogonal to K in «*(·,·), so (u,v) 6 
Gv· □

The following theorem gives an a-priori estimate for the eigenvectors of VP* not 
corresponding to A = 1. This result is basic for the error estimates of the numerical 
method that we introduce in Section 3. As a by-product it yields the compactness 
of AGv ·
Theorem 2.5. There exist a E (|, 1], β € (0,1] and C > 0 such that if(f, g) € G, 
then (u,v) := A(f, g) € if"’1 (div, ΩΡ) x [7J1+/?(Qs)j2 and

Proof. Let (f, g) € G. Because of Lemma 2.4, (u, v) G Gv· Hence, there exists 
q 6 Η^ζΩρ) such that u = Vg. q is a solution of problem (2.9), (i.e.: = div u
in Ωρ and = ν·νοηΓ,). Since A : H —> V is continuous, then

and

From the usual a-priori estimate for the Neumann problem, (see [7]), we have 
q e Η1+α(Ωρ) and 

where a = 1 if Ωρ is convex and a = j, with Θ the biggest reentrant corner, 
otherwise.

Proceeding as in Theorem 2.1, it can be shown that —c2V( div u) + u = f in ΩΓ 
and then divu|r 6 Ή'1/2(ΓΙ) with || div u||//i/2(pi) < C || div u||//i(nF) <^'Ι(Χβ)Ι·
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Arguing again as in Theorem 2.1, v is shown to be the solution of the following 
linear elasticity problem:

From the a-priori estimate for this problem ([7]), it turns out that v G [#1+^(Ω5)]2 

with llvll[/p+/3(Qs)]2 C [llsll[L2(Qs)]2 + II divu||//1/2(pi)] < C|(f,g)|, where β G 

(0,1] depends on the reentrant corners of <9Ω5, on the angles between ΓΝ and TD 
and on the Lamé coefficients As and μ5. □

This result yields the regularity of the irrotational eigenmodes.

Theorem 2.6. The eigenfunctions (u, v) of VP* corresponding to eigenvalues A ψ 
1 belong to {/ftt,1(div, ΩΓ) x [771+^(Ω5)]21 A Gv·

Proof. Since Av is selfadjoint and K is the eigenspace associated to the eigenvalue 
1, for A ψ 1, (u,v) G Kx = Gv because of Lemma 2.3. So, this theorem is an 
immediate consequence of applying Theorem 2.5 to (f, g) = -^(u, v). □

Now, we can give a characterization of the spectrum of Av·

Theorem 2.7. The spectrum of Av consists of the eigenvalue A = 1 and a sequence 
of finite multiplicity eigenvalues {An : n G N} C (0,1) converging to 0. K is the 
eigenspace of A = 1 and each eigenvector (un, vn) associated to An satisfies curlun = 
0.

Proof. It only remains to prove that Aqv is compact. Now, because of Theorem 
2.5, Agv · Gv —> {.Η"’1 (div,Ωρ) x [·Η1+^(Ωδ)]2} A Gv is continuous. Then, 

our claim is a simple consequence of the compactness of the inclusion

□

We conclude this section giving an analogous of Theorem 2.5 for (f, g) G. 
This result will be used for the proof of Lemma 5.7 below.

Theorem 2.8. The image of A is contained in 770,1(div, Ωρ) x [Ή’1(Ωδ)]2 and 
A : H —> If0,1 (div, Ωρ) x [/¿1(Ωδ)]2 is continuous.

Proof. It is similar to that of Theorem 2.5 since the assumption (f, g) G G in that 
theorem was only used to ensure further smoothness of the solution. □
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3. Finite element discretization

In spite of the fact that Agv is compact, it would not be convenient to reduce our 
analysis to Gv because of the difficulty of finding finite element spaces consisting of 
irrotational functions. So, we will deal with the non compact operator Av through 
the variational problem VP* .

In this problem, the infinite dimensional eigenspace K, associated to A = 1, con­
sists of pure rotational motions which are not physically relevant since they do not 
induce vibrations into the structure. However, a suitable numerical approximation 
should take care of them. Otherwise, spurious modes may appear. This is the case, 
for instance, when continuous piecewise linear finite elements are used for both, the 
fluid and the solid (see [8]).

Such spurious modes are eigenvalues of the discrete problem which do not ap­
proximate any eigenvalue of the continuous one. They arise as a consequence of the 
fact that, in this discretization, the eigenspace associated to Λ = 1 is very small. 
Because of it, in the discretized problem, this eigenvalue splits into several spurious 
eigenvalues which are placed among the physical ones. A procedure to distinguish 
them was deviced in [8].

To avoid this drawback, we use the well known lowest order Raviart-Thomas 
elements for the fluid. In our approach, the eigenspaces associated to A = 1 in the 
discretizations of VP* have increasing dimension and yield good approximations of 
K as the meshsize becomes smaller. This fact will turn out to be highly relevant 
in the proofs of Section 5.

Let {Th} be a family of regular triangulations of ΩΡ U Ω5 such that every tri­
angle is completely contained cither in ΩΡ or in Ω5. For each component of the 
displacements in the solid we use the standard linear finite element space

and, for the fluid, the Raviart-Thomas space [13]

where

The degrees of freedom in Η/ι(Ωρ) are the (constant) values of the normal compo­
nent of u along each edge of the triangulation. Therefore, the discrete analogous of 
X is

As we shall see in Theorem 4.3, A = 1 is an eigenvalue of our discrete problem with 
eigenspace K Π X/». This space contains good approximants for any function of K 
since, as it is straightforward to prove,

(3.1)
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The naive choice of finite element spaces to approximate V would be to choose 
the conforming ones V (Ί X^. However, this is not a suitable choice. In fact, any 
function of these spaces has constant normal components along each segment of 
Tj and, hence, only functions with this same property could be well approximated. 
Nevertheless, the vibration modes of the physical problem are far from having 
constant normal components along these segments. So, we are led to impose a 
weaker condition than (2.4) to define our discrete spaces. In fact, we use the 
following finite element spaces:

Let us remark that for (u, v) £ V\, u · v and v · 1/ coincide at the middle point 
of each edge £ C Γ, but, in general, they do not coincide on the whole edge. Hence, 
Vft 0 V; that is, our method turns out to be non conforming.

As it was shown in (2.10), a* is X-elliptic and hence V^-elliptic. Then, we can 
define a linear operator Ah : Vh —> Vh such that, for (u,v) G V\,

α*(ΑΛ(ιι,ν),(</>,ψ)) = 6((ιι,ν),(φ,ψ)), V(</>,-0) G Vfe.

The spectrum of Ah furnishes the approximation of the spectrum of Ay that we 
are going to analize.

4. Spectral approximation

We are going to make use of the theory developed in [4] for non compact opera­
tors. This theory does not cover our case since it assumes a conforming discretiza­
tion. However, a simple trick allows us to set our problem within this framework.

Since V\ C X, Ah can be considered as a conforming discretization of the 
operator Αχ : X —> X. On the other hand, the knowledge of the spectrum of Αχ 
gives complete information about the spectrum of Ay. More precisely, we have the 
following lemma.

Lemma 4.1. The spectra of Αχ and Ay satisfy

Proof. Let z σ(Αγ), z ψ 0. As we show now, (z — Αχ) : X —> X is one to one 
and onto. It is onto since, given y G X, taking x := | [y + (z — Ay)-1 Axy] we 
have (z — Αχ)χ = y. On the other hand, if (z — Αχ)χ = 0, then x = |Αχχ G V 
and so (z — Ay)x = (z — Αχ)χ = 0. Since z $ a(Ay), then x = 0. Hence (z — Αχ) 
is one to one. Therefore, because of the open mapping theorem, z σ(Αχ).

Conversely, let z σ(Αχ). Firstly, z ψ 0 since Αχ(Χ) C V and so Αχ is not 
onto. Secondly, given y G V, there exists a unique x G X such that y = (z — Αχ)χ. 
Moreover, x = |(y + Αχχ) G V. Hence, this is the unique x 6 V such that 
(z — Ay)x = (z — Αχ)χ = y. Therefore, (z — Ay) : V —> V is invertible and, as 
before, z a(Ay). □

From Theorem 2.7 and this lemma we know that the spectrum of Αχ consists of 
a sequence of eigenvalues Xn C (0,1), Λ = 1 and A = 0 (the latter being no relevant 
in our problem). As we claimed above, the eigenspace associated to A = 1 is well 
represented in our discretization. In fact, we have the following theorem.
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Theorem 4.2. A = 1 is an eigenvalue of Ah and its eigenspace is KAX/, = KnV¿. 

Proof. From (3.1) it is immediate to see that K A X/t is contained in Vh. Now, let 
(u,v) E Vh such that A/j(u, v) = (u,v). It satisfies a((u, v), (</>, i/>)) = 0 for all 
(</>, € Vfc. In particular a((u, v), (u, v)) = 0 and hence div u = 0 and v = 0. So,
u = curl¿ with ξ 6 /Γ1(ΩΡ). Since u E R/z, then curl£ · u\£ is constant for every 
€ C Tj and, since (u, v) E V\ and v = 0, then = curl ξ · v\£ = 0 and so ξ can 

be chosen in Hq (Ωρ). On the other hand, div u = 0 implies that, for each T C Ωρ, 
u|T 6 [Po(T)]2 and then ξ € Τλ(Ωρ). Therefore (u,v) = (curl£,0) E K A 
according to (3.1).

Conversely, because of (3.1) again, every (u, v) E KAXfc is clearly an eigenvector 
of Ah associated to A = 1. □

Let us denote || Αχ - Ah\\h '■= suP{xevh: ||x||=i} IK^x _ ^λ)χΙΙ ancl, for x € X 
and E a subspace of X, dist (x, E) := inf(y€E} ||x—y||· Let a E (|, 1] and β E (0,1] 
be the constants arising in Theorem 2.5 and let 7 := min{o,/?}. In the remainder 
of this section, we assume the two following properties which will be proved below: 

Pl. For each eigenfunction x of Αχ associated to A E (0,1) with ||x|| = 1, there 
exist strictly positive constants C and ho such that, if h < ho, then

P2. There exist strictly positive constants C and ho such that, if h < ho, then

Theorems 4.3 and 4.4 below are specializations of the theory in [4] to our case, 
where the spectrum σ(Αχ) is discrete, real and positive, with A = 0 as the only 
accumulation point. Let us remark that, since Ah is selfadjoint, σ(Α^) also consists 
of real positive eigenvalues.

The next theorem shows that there are not spurious eigenvalues for h small 
enough.

Theorem 4.3. Let J be a closed interval such that J A σ(Αχ) = 0. There exists 
hj > 0 such that, if h < hj, then J A σ(Α^) = 0.

Proof. See [4]. □

Now, we are going to prove that the eigenvalues in (0,1) and their eigenvectors are 
well approximated in our discretization. For any open interval I := («, δ) C (0,1) 
with a,b £ σ(Αχ), we denote E/ the direct sum of the eigenspaces of Αχ associated 
to its eigenvalues A E I- Let Ej denote the analogous for Ah- The theorem below 
gives bounds for the distance between E/ and Ej.

Theorem 4.4. There exist strictly positive constants C and hj such that, if h < 
h¡, then:

i) for each x E E1} with ||x|| = 1,

(4.1)
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ii) for each x E Ej with ||x|| = 1,

(4-2)

Proof. It follows by combining the proofs in [4] with Pl and P2. □

As a consequence of Theorem 4.4, we may assert that if Z ίΊ σ(Αχ) = {A}, 
then dimEj = dimE/(=: n) for h small enough. This last property implies the 
convergence to A of the (not necessarily different) eigenvalues of the discrete problem 
Aj,...,A¡¡. We cannot use directly the theory in [4] to obtain error estimates 
because Αχ is not selfadjoint. However, we are going to show that a slight variation 
of this theory works in our case. Let us remark that the theory for non conforming 
methods in [11] does not either apply to our case since it assumes the operator to 
be compact.

Theorem 4.5. There exist strictly positive constants C and hi such that, if h < 
h¡, then 

i)

ii)

Hi)

Proof. Let Π/j : X —> Ej be the «*(·,·) orthogonal projection and let A/¿ be its 
restriction to E/. Since a* defines a norm equivalent to || · ||, by using (4.2) we have

(4.3)

for x E E/ and h small enough. Furthermore, for h such that ChA < |, ||χ-Λλχ|| < 
41|x|| and hence

So, since diniE/ =dimEj, A/¿ is a bijection and its inverse satisfies ||Aft 11| < 2.
Let Ae7 := Αχ|Ε/ : E/ —> E; and Bn := A^AhAh : E; —> E/. For x E E/ 

we have

Now, for h small enough, by using (4.3) we have
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by using P2,

and, from (4.3) again and since ||ΑΛ 11| <2,

Then

Finally, taking into account that Ae7 = XI and that Af,..., are the eigenval­
ues of B/t, (i) follows from the continuity of the traces:

(ii) follows from the fact that for f an analytic function on I,

and (iii) can be deduced as in [14]. □

Claim (ii) in Theorem 4.4 shows that any eigenvector of the continuous problem, 
corresponding to the relevant eigenvalues A 6 (0,1), can be approximated with an 
error of order h~*. Claim (i) shows that all the eigenvectors of the discrete problem 
are approximants of those of the continuous one if h is small enough. Theorems 
4.5 and 4.3 give analogous results for the eigenvalues. These theorems are valid for 
any discretization satisfying Pl and P2. In the following section we prove these 
properties for our method.

5. Properties of the approximation

5.1 Property Pl. To prove this property we introduce a V/j-interpolant. Let 
Ih : {iP’1 (div, ΩΓ) x [Β1+/3(Ω5)]2 } AV —> V be defined in the following way:

where Lv is the Lagrange interpolant of v in [£/ι(Ωδ)]2, Ru is the standard Raviart- 
Thomas interpolant of u in R/ΤΩρ) and (fiu) is the function in 1Ζ·0(Τ) with 

T
degrees of freedom (normal components) given by

with T( the triangle contained in Ωδ such that dT Π dTf = With this definition 
we ensure /^(u, v) E V¿.

In the following lemma we give a bound for || Ru —Ru||//(d¡v,T) for those triangles 
where R is defined. For the sake of simplicity we assume that T has only one edge 

contained in Γ,, but a similar result is true in general with obvious modifications.
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Lemma 5.1. There exists C > 0 (only depending on the regularity ofT and T¿) 
such that, for each (u,v) € {Hef’1 (div, ΩΓ) x [ΖΖ’1+/?(Ω5)]2 } nV,

Proof. Let (f>£ be the standard basis function of 7Zq(T) associated to £.

Hence,

Now,

and, by changing coordinates to a reference element, it can be seen that
Therefore, ||9?ζ||π(άίν T) — & f°r a constant C only depending on the regularity of 
T. On the other hand, by using a suitable trace theorem and standard interpolation 
results for Sobolev spaces of fractional order ([5]), we have

for C a constant only depending on the regularity of Tf. All together, we conclude 
the lemma. □

The following theorem gives an error estimate for the interpolant Ih-

Theorem 5.2. There exists a strictly positive constant C such that, for all (u, v) € 
x [#Ι+"ΪΩ3)]2,

(5-1)

Proof. By using the interpolation results in [5] we obtain

(5.2)
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ancl

(5-3)

From (5.3) and Lemma 5.1 we have, for T C Ωρ such that dT A Γ\ 0,

(5-4)

So, by using (5.2), (5.3) and (5.4), we conclude the theorem. □

Now, Pl is a simple corollary of Theorem 5.2.

Theorem 5.3. (Pl) For each eigenfunction (u,v) of Αχ associated to Λ E (0,1) 
with ||(u,v)|| = 1, there exist strictly positive constants C and h0 such that, if 
h < ho, then

Proof. Since Αχ(ιι,ν) = A(u, v), by applying Theorems 2.6 and 2.5, we obtain

Hence, the theorem follows from (5.1). □

5.2 Property P2. It only remains to prove the following theorem.

Theorem 5.4. (P2) There exist strictly positive constants C and ho such that, if 
h < ho, then

Proof. Let Sh be the orthogonal complement in of K A = K A V^. Because 
of (3.1), we know that

Since Αχ|ΚηΧ/ι — A/JKnXfc (in fact, both are the identity on K Π X/,), we have

Now, let (u,v) E S/t with ||(u,v)|| = 1. We can write the orthogonal decompo­
sition

(5.5)
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with ζ G Ηλ (Ωκ) and q 6 771+α(Ωρ). In fact, we can take q as a solution of the 
Neumann problem

This problem is compatible since for (u, v) 6 V\, u ■ 1/ = f£v ■ is for any edge I C 
Tj. The a-priori estimate for this Neumann problem ([7]) shows that q G ίί1+α(ΩΓ) 
and

(5.6)

Now, let ΠΛ : X----> V\ be the orthogonal projection in α*(·, ■). We have

In the following lemmas we prove that each one of the three terms in the r.h.s. is 
bounded by ΟΚΊ, concluding therefore the Theorem. □

Lemma 5.5. Under the assumptions and with the notation of Theorem 5.4,

Proof. Since Πλ. is the projection in the norm α*(·, -)1/2, which is equivalent to || · ||, 
we have

(5.7)

Now, from (5.5) we can write

(5-8)

where R is the Raviart-Thomas interpolant as above. Therefore, (R(V<?) — u) 6 
R*(RP) and so, for every T C Ωρ,

15



and, for every edge ¿ C Γυ

So, ((R(V<?) — u),0) 6 KnXft and hence, from (3.1), there exists ξ 6 ^(Ωρ) with 
ξ|Γ = 0 such that (R(Vq) — u) = ϋΐΐΓίξ. Therefore, since (u,v) E S¿,

Now, by using this equality in (5.8), the error estimate for the R/^-interpolation,
(5,5) and the a-priori estimate (5.6), we obtain

Finally, from this inequality and (5.7) we conclude the lemma. □

Lemma 5.6. Under the assumptions and with the notation of Theorem 5.4,

Proof. Let (Ü, v) := Ax(Vg,v). Since (Vg, v) € G, then, applying Theorem 2.5, it 
turns out that (ύ,ν) E V (Ί (div, Ωκ) x [ΤΤ1+/?(Ω8)]2 J and ||ü||Ha,1(djvíÍF) +

ΙΙ^ΙΙ[//1+/’(Ω )]2 - C|(V?,v)| < C7||(u, v)|| = C, the last inequality being true be­

cause of (5.6). Hence, by using Theorem 5.2 and the equivalence between α*(·, -)1/2 
and || · ||, we obtain

□
Lemma 5.7. Under the assumptions and with the notation of Theorem 5.4,

Proof. Since (ΠΜχ — >U)(u, v) G Vh and α*(·, -)1/2 is equivalent to || · ||, we have

(5.9)
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Let (ü,v) = Αχ(ιι, ν) as in the previous lemma. From Theorem 2.8 we know that 
(ü,v) e ff0,1(div, ΩΓ) x [/f1(Qs)]2 and

(5.10)

Arguing as in Theorem 2.1, it can be shown that (Ü, v) is the solution of the strong 
problem

Hence, integrating by parts, we obtain, for (</>, VO € Vh>

(5.11)

For ί G Tj let T C Ωρ and Tf C be the triangles such that dT A dT¿ = £. Let 
Pt denote the L2(^)-projection of 7L]/2(£) onto the constants. Since φ-v = Ριίψ-υ), 
we have

Now, if Ργ denotes the L2(T)-projection of Hl(T) onto the constants, by using a 
trace theorem and the standard error estimate for the L2-projection, we have

Analogously, ||Pe(ψ ■ is ) - ψ ■ i/||L2(£) < Ch'!2 \ψ|H,(T/). Hence

(5.12)

So, from (5.9), (5.11), (5.12) and (5.10) we conclude the lemma. □
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