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Resumen. Este artículo presenta las principales características del comando GSREG 

(Global Search Regression), una nueva técnica modelos de selección automática de 
variables. Como otros algoritmos de búsqueda exhaustiva (por ejemplo VSELECT) GSREG 
evita las los problemas de la dependencia respecto del punto inicial (como PCGETS o 
RETINA). Sin embargo, GSREG es el primer código Stata que: 1) garantiza el óptimo con 
criterios de selección fuera de la muestra de estimación; 2) permite realizar test de residuos 
para cada alternativa; y 3) establece (dependiendo de las especificaciones del usuario) una 
base de datos con información completa sobre estadísticas para cada modelo alternativo. 

 
Abstract. This paper presents the main features of Global Search Regression (GSREG), 

a new automatic model selection technique (AMST) for time series, cross-section and panel 
data regressions. As other exhaustive search algorithms (e.g. VSELECT) GSREG avoids 
characteristic path-dependence traps of standard backward and forward looking approaches 
(like PCGETS or RETINA). However, GSREG is the first STATA code that: 1) guarantees 
optimality with out-of-sample selection criteria; 2) allows residual testing for each alternative; 
and 3) provides (depending on user specifications) a full-information dataset with outcome 
statistics for every alternative model. 
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1 GSREG was based on FUERZA_BRUTA, a former Stata .do file originally developed by Demian Panigo and 
subsequently enhanced by Diego Herrero (UBA, Argentina) and Pablo Gluzmann. This work was supported by 
the Argentine National Agency for Scientific and Technological Promotion [PICT 2010/2719]; and the Argentine 
National Council of Scientific and Technical Research. The authors wish to thank Amalia Torija-Zane, Diego 
Herrero, Fernando Toledo and Martín Guzmán, who gave valuable suggestion that has helped us to improve the 
quality of GSREG. Usual disclaimer applies. 
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1 Introduction. 
Econometric practitioners are commonly faced with global optimization issues. Identifying 

the real data generating process (DGP) from a myriad of alternative econometric models is 
analogous to looking for a global minimum in a highly non-linear optimization problem. In 
both cases, some broadly accepted procedures lead to wrong or improvable results.2 

While global optimization methods in mathematics evolved, for example, from Rawson-
Newton to genetic algorithms (and related search strategies), econometric model selection 
techniques have been changing from rudimentary (backward and/or forward STEPWISE) 
sequential regressions to more sophisticated approaches (PC-GETS, RETINA, LARS, 
LASSO; see Castle, 2006) 

Even though, sub-optimal path-dependent results still (and frequently) emerge. Like 
genetic algorithms in global optimization problems, most AMSTs cannot guarantee a “global 
optimum” (the best DGP from available alternatives) in model selection. Different final 
outcomes can be obtained depending on both search parameters (crucially test parameters) 
and search starting points (see Derksen and Keselman, 1992). 

Newer AMSTs like PC-GETS or RETINA intended to avoid this problem by means of 
alternative multi path – multi sample backward and forward looking approaches, respectively. 
While these strategies have significantly improve AMSTs outcomes (Marinucci, 2008), they 
still fail to guarantee “global optima” because of unexplored reduction paths, the size-power 
trade-off and cumulative type-I errors of sequential testing, especially in small sample 
problems.   

The combination of non-exhaustive search (like single or multiple path search strategies) 
and sequential testing (either forward or backward looking) will frequently afford some cost in 
term of statistical inference (depending of test size and selected paths, it will take the form of 
model under or over-fitting) and just by chance the “terminal model” will coincide with the 
best DGP. 

These weaknesses, altogether with increasing computational capabilities explain the 
widening use of alternative exhaustive search methods. Unlike global optimum search in 
mathematics,3 a model selection problem in econometrics is always self-constrained. The 
number of point (models) to be evaluated will never be infinite but a certain integer defined 
by   , where n is the number of initially admissible covariates. This quantity, while 
exponentially increasing in n, is by far much more manageable than any unconstrained non-
linear global optimization problem. 

                                                           
2 In econometrics, Leamer (1978) and Lovell (1983) documented the low success rates of many widely used 
model selection techniques, while, Forrest and Mitchell (1993) stress the limitations of new “standards” (e.g. 
genetic algorithms) in the numerical optimization. 
3 The meaning of exhaustive search in mathematics (e.g. in non-linear optimization problems) is not completely 
satisfactory. Algorithms like PATTERN SEARCH in Matlab provide a useful example to understand what 
exhaustive search actually means in a global optimization context. Indeed, the PATTERN SEARCH algorithm 
iterative looks for a global minimum in variable-size mesh until a threshold level is attained. However, without 
constraints the problem had to be evaluated at an infinite number of points. Using polling method options, the 
PATTERN SEARCH algorithm reduces the number of iterations to a convenient dimension. Nevertheless, the 
stronger the constraint, the higher the loss of the global minimum accuracy. 
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Figure 1. - Exhaustive search: Alternative models to be evaluated at different 
number of initially admissible covariates 

 
All in all, the choice between exhaustive and non-exhaustive search is determined by the 

trade-off between time and accuracy. Last generation AMSTs try to take into account both 
dimensions, standing somewhere between pure time saving techniques (e.g. first generation 
AMSTs like STEPWISE regressions) and pure accuracy improving methods (exhaustive 
search). This shows that AMST evolution goes from speed to goodness-of-fit, as long as 
processing power innovation increases computational capabilities. 

In a recent post (http://www.stata.com/why-use-stata/fast), Stata Corporation states that 
on an Intel® 2.4 GHz Core 2 Quad with Stata/SE for Windows 7, running a linear regression 
on 10 covariates and 10,000 observations takes 0.034 seconds. Exhaustive search of the 
best DGP in the same example (10,000 observation and 10 covariates) will involve 1,024 
linear regressions in about 34 seconds. Moreover, using one of the last Intel® Xeon® 
processors (Xeon® X5698, 2011, 4.4 GHz) the same procedure will take just 19.3 seconds. 

While 40 years ago, running one million regressions (e.g. the number of equations to be 
estimated for an exhaustive search on a general model of 19-20 initially accepted covariates 
and 10,000 observations) would take about 25 years (using the Intel® 4004 processor of 108 
KHz), today it takes only about 5 hours (using the Intel® Xeon® X5698 processor of 4.4 
GHz) or even less (e.g. about 4 hours, by overclocking the last AMD® FX-9650 processor to 
obtain up to 5.4 GHz). 
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Figure 2. - Evolution of computational capabilities: Time would required to run one 
million regressions over the last 40 years 

 
This exponential increase in (hardware) computational capabilities has been 

complemented by newer software codes to implement exhaustive search in econometric 
model selection problems (as VSELECT in Stata). However, none of them provide neither 
“exhaustive outcomes” for sensitivity analysis (e.g. coefficient and/or test probability 
distributions for any alternative model structure) nor high accuracy when out-of-sample 
selection criteria are used (or hypothesis testing is necessary: e.g. testing white noise 
residuals). 

In order to fill this gap, we develop GSREG, the first Stata code for exhaustive search in 
AMST that: 1) guarantees optimality with out-of-sample selection criteria; 2) allows residual 
behavior testing for each alternative; 3) provides (depending on user specifications) a full-
information dataset with outcome statistics for every alternative model.4 

In what follows, we structure the paper in 5 sections. First, we discuss strengths and 
weaknesses of main automatic model selection approaches. Next, we introduce the main 
characteristic GSREG (algorithm, stages and uses). In section 4 the syntax is reproduced, 
complemented with section 5 in which different options are explained. Then, some examples 
are presented to facilitate user first contact with GSREG. Section 7 is used to describe the 
features of saved results, while the last two sections are devoted to acknowledgments and 
bibliographical references. 

                                                           
4 GSREG will initially be used for small-size problems in standard personal computers (e.g. to find the best DGP 
over different combinations of 20 or less potential covariates, which can be solved in a couple of hours). However, 
larger calculations will soon be manageable, not only because Intel® and AMD® triples processor clock speed 
every ten years, but mainly because a “parallelization revolution” is coming soon. A few years from now, it will be 

unsurprising to solve a one-billion regression problem with GSREG in two hours using GPU (instead of CPU) 
computing and CUDA-like reengineering to improve GSREG parallelization capabilities –e.g. to fully exploit the n 
ncomb option potential-). 
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2 Distinctive features of main AMSTs 
By combining and extending Hendry’s (1980); Miller’s (1984); Gatu and Kontoghiorghes 

(2006) and Duarte-Silva’s (2009) categorizations, it is possible to generate the following 
“conceptual tree” of model selection techniques: 

 
Figure 3.- Alternative approaches for model selection  

 
The first level choice is related to data mining, one of the most important path-breaking 

controversies in applied economics, which starts in the 1930s and continues all over the 
twentieth century with seminal contributions of Frisch (1934), Haavelmo (1944), Leamer 
(1978), Lovell (1983), Gilbert (1986) and Hendry (1995), among many others.  

Recent econometric developments tend to advocate for data-based model selection 
techniques, especially the automated ones.5 Within this family, however, an internal 
consensus is far to be achieved. At the end of the 1960s, both exhaustive (also known as 
exact) and heuristic approaches were very popular.  

Heuristic subset selection was pioneered by the step-wise regression algorithm of 
Efroymson (1960), while exhaustive search was initially associated with the 
“optimal/complete regression” strategy of Coen, Gomme and Kendall (1969). 

                                                           
5 It is useful to examine the econometric “zeitgeist” evolution by an in-deep comparison of Miller’s (1984) 
discussions against more recent debates in Econometric Theory (vol.21, 2005, devoted to “Automated Inference 

and the future of Econometrics”). 
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Box and Newbold (1971) criticisms on exhaustive search techniques (e.g. they are 
unfeasible for large-size problems), and Berk (1978) objections on stepwise algorithms (e.g. 
they do not guarantee optimality) have brought a growing consensus on the need for better 
alternatives. 

The number of newer exhaustive and heuristic model selection techniques grew 
exponentially in the past forty years. Alternative algorithms arose, such as Non-negative 
Garrote (Breiman, 1995), LASSO (Tibshirani, 1996); LARS (Efron, Hastie, Johnstone and 
Tibshirani, 2004); VSELECT-Leaps and Bound (Furnival and Wilson, 1974; Lindsey and 
Sheter, 2010); PCGETS/AUTOMETRICS (Krolzig and Hendry, 2001, Doornik, 2008); and 
RETINA (Pérez-Amaral et al., 2003). 

To provide a proper context to introduce GSREG, the following sub-section briefly discuss 
the main properties of most commonly used AMSTs  

 
2.1 Main features of PC-GETS6 
Following Hoover’s (2006, pp. 76) definition, the GETS approach “involves starting with as 

broad a general specification as possible and then searching over the space of possible 
restrictions to find the most parsimonious specification. At each step in a sequential reduction 
(usually along multiple paths), the statistical properties of the errors are tested, the validity of 
the reduction is tested statistically both against the immediate predecessor and the general 
specification, and encompassing is tested against all otherwise satisfactory alternative 
specifications.” 

While some features of the GETS-LSE methodology have been used in commercial 
econometric packages since the 1980s, it was not until Krolzig and Hendry (2001) developed 
PC-GETS (written in OX language) that this methodology was fully automated with a 
multiple-sample/multiple-path/backward looking algorithm. 

Although it is flexible enough to be applied to many other alternatives (see Castle, 2006), 
PC-GETS is mainly employed in big model selection problems (e.g. many covariates and 
large databases) where the main objective is to maximize in-sample goodness-of-fit and 
residual robustness. To deal with this objective, PC-GETS algorithm includes four different 
stages: I) Pre-simplification of the General Unrestricted Model (GUM); II) First “testimation” 
step; III) Second “testimation” step, and; IV) Post-selection sub-sample evaluation. The main 
features of each stage are summarized in table 1. 

With PC-GETS, AMST’s achieved a major improvement on model selection standards. In 
earlier procedures (e.g STEPWISE results), the order of variable entry (or deletion) and the 
number of candidate covariates crucially determined the final outcome (see Derksen and 
Keselman, 1992). Indeed, most of the well-known Davidson and Hendy (1981)´s concerns 
about the GETS methodology (i.- GUM inadequacy; ii.- Small sample limitations; iii.- Path 
dependence; and, iv.- Cumulative type I errors) were partially surmounted by the newest 
code of PC-GETS. 

However, the approach still faces many criticisms. Path dependence (see Pagan, 1987) 
has not been completely eliminated, small-sample problems persist (see Marinucci, 2008) 
and GETS out-of-sample results are relatively poor (see Herwartz, 2007). Even their own 
designers (Krolzig and Hendry, 2001; pp. 839) came to the conclusion that: “the empirical 
success of PC-GETS must depend crucially on the creativity of the researcher…”. 
                                                           
6 In spite of the fact that OxMetrics™ has recently announced the replacement of PC-GETS by AUTOMETRICS, 
we discuss in this section the main features of the former because: 1) there is much more academic research on 
it, allowing pros and cons evaluation, and; 2) they share the “core algorithm” and the only difference is that 
AUTOMETRICS uses a tree search method, with improvements on pre-search simplification and on the objective 
function (see Doornik, 2008). 
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2.2 Main features of RETINA 
An alternative (to PC-GETS) automatic heuristic model selection techniques is the 

Relevant Transformation of the Inputs Network Approach (RETINA) algorithm, a GAUSS 
package developed by Pérez-Amaral et al. (2003) and extended by Marinucci (2008). 
Although both approaches share many features (e.g. non-exhaustive, data based, multiple 
sample/multiple path search, residual and significance testing, etc.), they differ in methods 
and objectives. Unlike PC-GETS, RETINA algorithm is forward looking (specific-to-general) 
and its main goal is forecasting (out-of-sample accuracy). RETINA is particularly useful in 
small-sample model selection problems (it often provides more parsimonious final outcomes) 
where the functional form of the conditional mean of the dependent variable is unknown 
(because of its automatic level 1 covariates transforms). 

In words of the authors (Pérez-Amaral et al., 2003; pp. 823), RETINA “aims at achieving a 
flexible and parsimonious representation of the mean of a variable, conditional on a 
(potentially large) set of variables deemed of interest in situations where one does not have 
strong priors as to the form of the suitable function linking available information, or the 
relevance of individual variables. It has the flexibility of neural network models in that it 
accommodates nonlinearities and interaction effects (through nonlinear transformations of 
the potentially useful variables in the conditioning set), the concavity of the likelihood in the 
weights of the usual linear models (which avoids numerical complexity in estimation), and the 
ability to identify a set of attributes that are likely to be truly valuable for predicting outcomes 
(which corresponds to a principle of parsimony). In performing model selection, our approach 
relies on an estimation/cross-validation scheme, which is aimed at limiting the possibilities 
that good performance is due to sheer luck.”  

RETINA deals with the issue of forecast accuracy by using the four stage/forward-
looking/multiple-sample/multiple-path algorithm described in table 2. 

Developed a couple of year after PC-GETS, RETINA rapidly attracted a large number of 
users because of its out-of-sample good properties, and its relatively better outcomes in 
small-sample problems (see Marinucci, 2008). 

However, many of the above mentioned PC-GETS weaknesses also apply to RETINA. 
The Pérez-Amaral et al. (2003) software is still unable to guarantee model selection 
optimality because neither path dependence nor cumulative type I errors were fully removed 
with its multiple-sample/multiple-path specific-to-general approach.  

Moreover, RETINA usual under-parameterization (which may be useful for forecasting 
purposes) could have some negative effects on in-sample fitting and explanation properties, 
and according to Castle (2006, pp.46): “The specific-to-general methodology tends to have 
an ad hoc termination point for the search, and alternative path searches are unbounded, 
implying that the approach could miss the LDGP. Moreover, the null rejection frequency will 
not be controlled as the number of tests conducted will depend on the termination point, and 
failure of misspecification tests is likely at the initial stages, invalidating conventional tests… 
This does mean that there is no guarantee that the final model selected by RETINA is 
congruent, which may or may not be relevant for forecasting models”. 
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Table 1: PC-GETS algorithm. Simplified description (from table 1 and table 2 of 
Krolzig and Hendry, 2001) 
Stage I.- Pre-simplification of the GUM: (I.a) If a diagnostic test fails for the GUM, the 
significance level of that test is adjusted, or the test is excluded from the test battery during 
simplifications of the GUM; (I.b) if all variables are significant, the GUM is the final model, 
and the algorithm stops; (I.c) otherwise, F-tests of sets of individually-insignificant variables 
are conducted: (I.c.i) if one or more diagnostic tests fails, that F-test reduction is cancelled, 
and the algorithm returns to the previous step; (I.c.ii) if all diagnostic tests are passed, the 
blocks of variables that are insignificant are removed and a simpler GUM specified; (I.c.iii) if 
all diagnostic tests are passed, and all blocks of variables are insignificant, the null model is 
the final model. 

Stage II.- First “testimation” step: (II.1) Estimation and testing of the GUM (II.1.a): If all 
variables are significant, the GUM is the final model, and the algorithm stops; (II.1.b) if a 
diagnostic test fails for the GUM, its significance level is adjusted or the test is excluded 
from the test battery during simplifications of the GUM; (II.1.c) otherwise, search paths start 
by removing an insignificant variable, or a set of insignificant variables. (II.2) Multiple 
reduction paths: sequential simplification and testing of the GUM (II.2.a) If any diagnostic 
tests fail, that path is terminated, and the algorithm returns to the last accepted model of the 
search path: (II.2.a.i) if the last accepted model cannot be further reduced, it becomes the 
terminal model of the particular search path; (II.2.a.ii) otherwise, the last removed variable is 
re-introduced, and the search path continues with a new reduction by removing the next 
least-insignificant variable of the last accepted model. (II.2.b) If all tests are passed, but one 
or more variables are insignificant, the least significant variable is removed: if that 
specification has already been tested on a previous path, the current search path is 
terminated; (II.2.c) if all diagnostic tests are passed, and all variables are significant, the 
model is the terminal model of that search path. (II.3) Encompassing (II.3.a) If none of the 
reductions is accepted, the GUM is the final model; (II.3.b) if only one model survives the 
testimation process, it is the final model; (II.3.c) otherwise, the terminal models are tested 
against their union: (II.3.c.i) if all terminal models are rejected, their union is the final model; 
(II.3.c.ii) if exactly one of the terminal models is not rejected, it is the final model; (II.3.c.iii) 
otherwise, rejected models are removed, and the remaining terminal models tested against 
their union: (II.3.c.iii.1) if all remaining terminal models are rejected, their union is the final 
model; (II.3.c.iii.2) if exactly one remaining terminal model is not rejected, it is the final 
model; (II.3.c.iii.3) otherwise, the union of the ‘surviving’ models becomes the GUM of Stage 
II. 

Stage III.- Second “testimation” step: (III.1) Estimation and testing of the new GUM (as in 
stage II but using the new GUM); (III.2) Multiple reduction paths (as in stage II but with the 
new GUM); (III.3) Encompassing and final model selection: (III.3.a) If only one model 
survives the second “testimation” step, it is the final model; (III.3.b) otherwise, the terminal 
models of stage III are tested against their union: (III.3.b.i) if all terminal models are 
rejected, their union is the final model. (III.3.b.ii) if exactly one terminal model is not rejected, 
it is the final model. (III.3.b.iii) otherwise, the set of non-dominated terminal models are 
reported or information criteria are applied to select a unique final model. 

Stage IV.- Post-selection sub-sample evaluation: (IV.a) Test the significance of every 
variable in the final model from Stage III in two overlapping sub-samples (e.g., the first and 
last r%): (IV.a.i) if a variable is significant overall and both sub-samples, accord it 100% 
reliable; (IV.a.ii) if a variable is significant overall and in one sub-sample, accord it 75% 
reliable; (IV.a.iii) if a variable is significant overall and in neither sub-sample, accord it 50% 
reliable; (IV.a.iv) if a variable is insignificant overall but in both sub-samples, accord it 50% 
reliable; (IV.a.v) if a variable is insignificant overall and in only one sub-sample, accord it 
25% reliable; (IV.a.vi) if a variable is insignificant overall and in neither sub-sample, accord it 
0% reliable. 
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Table 2: RETINA algorithm. Simplified description (from table 4.1 of Marinucci, 
2008) 

Stage I.- Database management: (I.1) Generate the set of transformed variables (     ); 
(I.2) Divide the sample into three sub-samples. 

Stage II.- Identify a candidate model: (II.1). Using data on the first sub-sample: (II.1.a) 
order the variables in       according to their (absolute) sample correlation with the 
dependent variable (Y) in the first sub-sample alone. Let W(1) be the variable with the 
largest absolute correlation with Y; W(2) be the second most correlated, and so on. (II.1.b) 
Consider various sets of regressors all of which include a constant and W(1): each set of 
regressors      is indexed by a collinearity threshold λ [0;1] and is built by including W(j) (j 
= 2,…,k) in       if the R2 of the regression of W(j) on the variables already included in the 
model is ≤ λ. (II.1.c) The number of sets of regressors is controlled by the number of values 
of λ¸ between 0 and 1 chosen, say, m. (II.2) Using Data both on the first and second Sub-
sample: (II.2.a) Forecast each model by regressing Y on each set of regressors      using 
the data on the first sub-sample only and compute an out-of-sample prediction criterion (the 
cross-validated mean square prediction error) using the data on the second sub-sample 
only. This involves the estimation of m models. (II.2.b) Select a “candidate" model as the 
one corresponding to the best out-of-sample performance       . 

Stage III.- Search Strategy: (III.1) Using data from both the second and third Sub-
sample: (III.1.a) Search for a more parsimonious model: forecast all models including a 
constant and all the regressors in       .one at a time in the order they were originally 
produced by procedure II.1.a, this time on the basis of the absolute correlations of the 
second sub-sample or of the correlations of the first and the second sub-sample together. 
(III.1.b) Perform an evaluation of the models out of sample (using the data on the third sub-
sample) calculating a performance measure (the cross-validated mean square prediction 
error, possibly augmented by a penalty term for the number of parameters in the model) 

Stage IV.- Model selection: (IV.1) Repeat Stage I and stage II changing the order of the 
sub-samples. Produce a candidate model for each sub-sample ordering. (IV.2) Select the 
model which has the best performance over the whole sample using Akaike Information 
Criteria or any other Asymptotic Loss efficient selection procedure. 

 
 
2.3 Main features of VSELECT 
VSELECT is a very useful composite Stata code for model selection developed by 

Lindsey and Sheter (2010). It includes a slightly different version of the Stata’s built-in 
stepwise algorithm (based on Draper and Smith, 1966; in which the standard significance 
Wald test has been replaced by a set of alternative information criteria –R2, AIC, BIC, etc.-), 
and the first Stata code to include an adapted version of the Furnival and Wilson (1974) 
“Leaps and Bound” code (to perform “efficient exhaustive” in-sample search for model 
selection in linear regression). 

The VSELECT-STEPWISE sub-algorithm includes both backward elimination and forward 
selection alternatives. In the first case, the method proceeds as follows: the initial model only 
contains the intercept term. Then an iterative procedure sequentially includes the covariates 
providing the highest improve in the user-selected information criterion. The algorithm 
terminates when there is no additional covariate to include that improves the information 
criterion. In the second case, stepwise backward elimination starts with a model with the full 
set of covariates and iteration works downwards, by sequentially (one by step) selecting the 
covariate to be deleted to obtain the largest improve in the user-selected information 
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criterion. As in the forward selection case, the backward elimination algorithm ends when 
there is no covariate removal available to improve information criterion. 

Additionally, VSELECT provides the “BEST” option to select models by using the “leaps 
and bound” Furnival and Wilson (1974) sub-algorithm. In words of the authors (Lindsey and 
Sheter, 2010, pp. 655) this efficient and exhaustive alternative “organizes all the possible 
models into tree structures and scans through them, skipping (or leaping) over those that are 
definitely not optimal…Each node in the tree corresponds to two sets of predictors. The 
predictor lists are created based on an automatic ordering of all the predictors by their t test 
statistic value in the original regression. When the algorithm examines a node, it compares 
the regressions of each pair of predictor lists with the optimal regressions of each predictor 
size that have already been conducted. Depending on the results, all or some of the 
descendants of that node can be skipped by the algorithm. The initial ordering of the 
predictors and their smart placement in sets within the nodes ensure that the algorithm 
completes after finding the optimal predictor lists and examining only a fraction of all possible 
regressions.” 

Formally, the VSELECT-BEST algorithm computes:  

               subject to | |    for all          
Where RSS is the in-sample root mean square error, S is a set a covariates, n is the 

maximum number of available covariates and operator | | denotes the size of each set S. 
Taking into account the following fundamental property:  

                 if        

Where S1 and S2 are two variable subsets of the complete set of covariates (denoted, for 
simplicity, by X). 

In order to minimize computational requirements, the covariates i and j are arranged in 
such a way that that RSS(X − {xi}) ≥ RSS(X − {xj}) for each i ≤ j, where X − {xi} denotes the 
matrix X from which the i-th column has been deleted.7 

A better understanding of the “leaps and bound” method can be achieved by means of the 
following example. The search method (top to down and left to right) across alternative sub-
sets of potential covariates in this algorithm is based on two trees: the regression tree and 
the bound tree, which can be combined in a pair tree as follows. 

                                                           
7 For this purpose, covariates are automatically ordered by their t test statistic value in the original regression. 
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Figure 4. - Five covariates’ Leaps and bound pair tree  

 
 
In the pair tree of figure 4, each node is composed by a bound set and a regression set of 

covariates (see Furnival and Willson, 1974). Because of the above mentioned fundamental 
property and the t-test covariate ordering, we know that RSS will generally increase going 
from the north-west to the south-east of the tree, and, of course, the minimum RSS will 
always be obtained by including all the 5 variables. However, model selection is based on 
information criteria (rather than RSS), which also includes some kind of over-
parameterization penalty function. For this reason, while it is possible to state that if        
                   (where IC is some information criterion, and k and j are two different 
sets of covariates with the same number of variables), it is inappropriate to assert that 
            when               if the k set includes less covariates than the j set. This is 
why VSLECT-BEST algorithm provides the optimal solution (in terms of any IC) for each 
covariate sub-set size between 1 and n-1, where n is the total number of initially admissible 
covariates.  

In figure 4 example, VSELECT-BEST starts by calculating RSS of the root and all the first 
level nodes. Whether or not to compute remaining nodes’ RSS in question at the core of the 
algorithm. In words of Ni and Huo (2006, pp.9), computing, for example, the RSS of covariate 
sets included in the node (124,125) “depends on the values of RSS({1245}) and RSS({123}). 
If RSS({123})≤RSS({1245}), because {124} and {125} are subsets of {1245}, we immediately 
have RSS({123})≤RSS({124}) and RSS({123}) ≤RSS({125}). Hence, there is no need to 
compute for RSS({124}) and RSS({125}). Otherwise, they should be computed. Similarly, 
whether or not to compute RSS({134}) and RSS({135}) (or RSS({13}) and RSS({145})) 
depends on three values: RSS({12}), RSS({1345}), and min(RSS({123}), RSS({124}), 
RSS({125})) (denoted as RSS(3)). Note that RSS(3)≤RSS({12}). There are three cases for 
those three values: a) If RSS({12})≤ RSS({1345}), then none of RSS({134}), RSS({135}), 
RSS({13}), or RSS({145}) needs to be calculated. b) If RSS(3)≤RSS({1345})<RSS({12}), then 
only RSS({13}) and RSS({145}) need to be calculated to update the minimum RSS with 2 
covariates. c) If RSS({1345})<RSS(3), then all of the four RSS’s need to be calculated.” 

(ϕ, 12345) 

(1234, 1235) (123, 1245) (12, 1345) (1, 2345) 

(124, 125) (134, 135) (13, 145) (23, 245) (2, 345) (234, 235) 

(24, 25) (34, 35) (3, 45) 

(4, 5) 

(14, 25) 
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Because of this search space reduction, the original “   order” model selection problem 
becomes a “     order” problem (where     is the reduction success rate), without losing 
the in-sample accuracy of (more time consuming) complete-exhaustive methods. As a result 
of this property (ensuring in-sample optimality with a reduced search universe), VSELECT-
BEST overcomes the most important weakness of heuristic methods and emerge as the best 
model selection alternative for moderate-size problems (between 20 and 40 variables), in 
which in-sample explanation and not out-of-sample forecasting is the main objective. 

However, Lindsey and Sheter (2010) package still faces three important limitations: 1) The 
algorithm’s main property does not apply for out-of-sample model selection problems (e.g. 
we cannot ensure that                         if      ); 2) While more efficient than 
complete-exhaustive methods, for large size problems the VSELECT-BEST approach 
becomes unfeasible and very time consuming (because the success reduction rate will not 
compensate the exponential increase of the problem size with the number of potential 
covariates); and 3) Since it has not been designed to deal with robustness analysis, it only 
keeps best model results of each subset size (leaving aside many crucial outcomes for 
comparison purposes). 

 
 
3 The Global Search Regression (GSREG) procedure 
Thirty years ago, Professor Alan J. Miller developed an interesting comparison of 

alternative (heuristic and exhaustive) model selection approaches to conclude that “an 
exhaustive search… is recommended when feasible… [and] that the best 10 or 20 subsets of 
each size, not just the  best one, should be saved. The closeness of fit of these competitors 
gives an indication of the likely bias in least-squares regression coefficients” (Miller, 1984; 
pp. 408). 

Previous proposition stylishly summarizes the underlying reasons to develop GSREG, a 
Stata code (inspired by Coen, Gomme and Kendall (1969)’ original insights) that: 1) 
guarantees optimality even with out-of-sample selection criteria; 2) allows residual testing for 
each alternative; 3) provides (depending on user specifications) a full-information dataset 
with outcome statistics for every alternative model. These features make GSERG a valuable 
tool for high-accuracy forecasting and parameter robustness comparisons. 

In spite of the above documented increase in computational capabilities, our complete-
exhaustive algorithm is particularly recommended for small-size (less than 30 variables) 
model selection problems, where: 1) out-of-sample selection criteria will be used to select the 
optimal choice; and/or 2) the main researcher objective is about parameter stability across 
different model specifications. 

However, its options are encompassing enough to transform GSREG in a flexible device 
for many other alternative uses. In what follows, all its features are presented in detail. 

The gsreg command has two major stages. In the first one, it creates a set of lists, 
wherein each list contains one of the possible sets of dependent variables, and therefore, the 
full set of lists contains all possible combinations of candidate covariates. In the second 
stage, the command performs a regression for each of the lists previously created. 

In the first stage the set of lists is determined according to the following steps:   

1) The algorithm determines an inventory containing the total set of candidate variables, 
Lvc, according to the list of user-specified original variables and the additional covariates to 
be included as candidates if some of the options dlags, ilags orlags are specified.    
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2) If the ncomb option is not specified, a first set of lists is created, SL, taking all possible 
combinations without repetition of candidate variables (which include all combinations taken 
from 1 up to the total number of variables in Lvc). Otherwise, SL is created by taking all 
combinations without repetition of candidate variables taken from integer1 to integer2 defined 
in ncomb option. So, SL={Lint!,.....,L int2} where each Li  is a particular subset of the set of 
candidate variables, Lvc.   

3) If the squares option is specified, from each Li of point 2 an additional list is created 
(SqLi), which includes every covariate in Li plus all their squares. Then, the whole set of SqLi 
lists (SqL) is added to the SL set. If the cubic option is additionally specified, another group of 
lists (CubL) is created from the SqL set by generating a CubLi list for each SqLi list, in which 
SqLi covariates are complemented by Li cubes. After that, the CubL set is added to SL.8 

4) If the interactions option is specified, an additional IntLi list is created from each Li, 
which includes all Li variables plus all possible combinations without repetition of the 
interactions of these variables. Then IntLi lists are added to SL.   

5) By using the fixinteractions option, users are able to create a FintLi new list from each 
Li, which not only includes all Li variables but also all possible combinations without 
repetition of the interactions between Li variables and fixvar variables (see below). 

6) If the schange option is specified, a new set of lists (SC) is created from SL (already 
modified, if specified, by ilags, dlags, ncomb, squares, cubic, interactions, and/or 
fixinteractions) to test the existence of structural change in every bivariate relationship, 
including all possible combinations without repetition of the interactions between SL variables 
and the user-defined variable of structural change (e.g a step or a point dummy variable). 
Then, SC is added to SL. 

In the second stage, GSERG exhaustively performs one regression per SL list, saving 
coefficients and different (default and user-defined) statistics in a Stata dta-file. More 
precisely, for each SL list GSREG outcomes include:  

a) Coefficients and t-statistics of each covariate.  
b) Regression number (regression id), number of covariates and number of observations.  
c) Default additional statistics (adjusted r-squared, rmse), optional additional statistics 

(such as residual test p-values, out-of-sample rmse, etc.), and other user-defined statistics 
that user specifies in the cmdstat option.   

The following scheme summarizes GSREG procedure: 

                                                           
8 Notice that this procedure dismisses all those lists (regressions) which include squares of a certain variable but 
do not include the original variable (e.g. in levels), thereby reducing the number of estimations to be performed. If 
users would like to estimate the cases where a given variable appears only in quadratic terms, they should simply 
include the square of that variable (or all variables he wants) as an independent variable in the original Lvc set. 
Also notice that for the case of the cubic option, the algorithm only generates lists with the cubes of the variables 
for which the square was included. Similar criteria were applied to the interaction, fixinteractions and schange 
options explained in the following sections.  
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Figure 5.-Main features of GSREG algorithm  
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4.  Syntax  
 
The syntax for the GSREG command is: 

gsreg depvar varlist_ocand [weight] [if] [in] [, ncomb(#1,#2) 

samesample vselect dlags(numlist) ilags(numlist) 

lags(numlist) fixvar(fixvarlist) schange(varschange) 

interactions squares cubic fixinteractions outsample(#) 

cmdest(commandname) cmdoptions(commandoptions) 

cmdstat(commandstats) cmdiveq(varlist_end=valist_inst) aicbic 

hettest hettest_o(hettestmoptions) archlm 

archlm_o(archlmoptions) bgodfrey bgodfrey_o(bgodfreyoptions) 

durbinalt durbinalt_o(durbinaltoptions) dwatson sktest 

sktest_o(sktestoptions) swilk swilk_o(swilkoptions) sfrancia 

testpass(#) resultsdta(newbasename) replace double 

nocount compact nindex(lcimplist) mindex(lcimplist) best(#) 

backup(#) part(#1, #2)]  

 
5 Options 
 
5.1 General options 
ncomb(#1,#2): specifies the minimum and maximum number of variable (instead of user-

specified fixed) covariates to be included in the procedure. gsreg will perform all possible 
combinations (regressions) between candidate variables taken from #1 to #2. #1 must be 
less or equal to #2, and additionally, the number of candidates must be greater or equal to 
#2. If this option is not specified, gsreg will run all possible combinations without repetition of 
size1 to n (the total number of candidates).9  

backup(#): creates # backup (medium-term) dta-files to provide users with some 
insurance against unexpected gsreg early termination. Each partial-results-database will 
contain outcome information of 1/# of the total number of regressions, and all backup files 
will be saved in the ongoing working directory. These medium-term files will be stored with a 
composite name, using the results-database name (gsreg by default, or user specified in the 
resultsdta option) as an initial fixed sub-string, plus the number of each partition and the total 
number of backups files specified in # (eg. gsreg_part_1_of_4.dta; gsreg_part_2_of_4.dta; 
gsreg_part_3_of_4.dta; and gsreg_part_4_of_4.dta). All these files will be deleted at the end 
of a successful gsreg execution (e.g. without any unexpected early termination), because 
they will be replaced by a unique total-results-database. If the number of total regressions to 
be performed is lower than #, the number backup partitions will be equal to the former.   

part(#1,#2): allows users to simplify external parallelization strategies by running in each 
(of potentially many parallel) Stata instance only a user-specified share of the total number of 
regressions to be estimated. Among the arguments of this option, the second integer 
identifies the number of partitions that will be used to divide the SL set (see section 3), and 
also defines the number of regressions of each partition, which is about 1/#2 of the total 

                                                           
9 ncomb allows to include 0 as minimum value, only if the option fixvar is specified. 
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number of regressions. In turn, the first integer is used to select which-one of these partitions 
must be used by gsreg in each Stata instance (e.g. part(1,3), part(2,3), and part(3,3) could 
be combined –using only one of these options per Stata instance- in three parallel Stata 
instances running gsreg on the same SL set). If the number of total regressions to be 
performed is lower than #2, the number part partitions will be equal to the former.   

samesample: makes all regressions to be performed over the same sample of 
observations, defined as the largest common sample. By default, gsreg performs each 
regression with the maximum number of observations available for the covariate subset used 
in each particular case.  

 
5.2 Lag structure options 
dlags(numlist>0 integer): allows to include dependent variable lags (depvar) among 

candidate covariates.   
dlags(#) adds among candidates the # dependent variable lag. tsset must be specified 

when using this option.  
dlags(#1/#2) adds among candidates all dependent variable lags from #1 to #2 

considering one-unit intervals.  
dlags (#1 #2 #3) adds among candidates the #1, the #2, and the #3 dependent variable 

lags. 
dlags (#1 (#d) #2) adds among candidates all dependent variable lags from #1 to #2 

considering #d unit intervals. 
dlags (#1 #2 #3 … #4 (#d) #5) adds among candidates dependent variable lags #1,#2, 

and #3, and additionally all dependent variable lags from #4 to #5 considering #d unit 
intervals. 

ilags(numlist>0 integer):10,11 allows including independent variable lags among original 
candidates. The syntax is flexible and identical to that used indlags.  

lags(numlist>0 integer): allows to jointly include dependent and independent variable lags 
among original candidates. It replaces dlags and ilags when the argument is identical. tsset 
must be specified when using this option. lags must not be specified together with dlags or 
ilags. 

 
5.3 Fixed variable options 
fixvar(varlist_fix): allows to specify a subset of covariates which must be included in all 

regressions. Variables defined in varlist_fix must not be included among the standard 
candidates (varlist_ocand).     

 
5.4 Options for transformations and interactions 
schange(varschange): tests structural change of slops (using dummy varschange as 

interaction with all candidates) or dependent variable levels (alternatively allowing 

                                                           
10 Using ilags and dlags options is equivalent to generate independent and dependent variables lags 
(respectively) before using GSREG and include them among original candidates.   
11 Users looking for different candidate lag structures for each covariate should not specify the option ilags but, 
instead, create desired candidate lag structures before using GSREG and include them in the whole set of 
original candidates. 
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varschange to interact with the intercept). Interactions of varschange with any candidate will 
only be included if this candidate is in the equation. varschange must not be included among 
original candidates (varlist_ocand) because it will only be used for structural change.  

interactions: includes additional covariate candidates to evaluate all possible interactions 
without repetition among candidates. Interactions between any two candidates will only be 
allowed if both of them are in the equation. When used together with schange, the structural 
change of interactions will only be used if these interactions are included in the estimated 
specification.        

squares: adds the squares of each variable in varlist_ocand as new candidates. Each 
square will only be accepted as a regression covariate if its level (original variable) is present 
in the equation. Similarly, when used together with schange, the structural change of the 
squares will only be allowed if these squares are in the equation.  

cubic: is similar to squares. It includes cubes of each variable in varlist_ocand as new 
candidates. These cubes will only be accepted as covariates if level and squares of the same 
variable are also included in the equation. As for squares, when used together with schange, 
the structural change of the cubes will only be allowed if these cubes are also in the 
equation. 

fixinteractions: is similar to interactions, but it only includes as additional candidates all 
possible interactions without repetition among each standard candidate and each fixed 
variable in varlist_fix. 

 
5.5 Options for time series and panel data forecasts 
outsample(#): is used in time series and panel models. It splits the sample into two. The 

first sub-sample is used for regression purposes and the second one is applied to evaluate 
forecast accuracy. outsample(#)leaves the last #periods to make forecasts (so that 
regressions are performed over the first T-# periods – where T is the total number of 
available time series observations). When this option is specified, GSREG calculates the 
rmse_in (in sample root mean square error) between period 1 and N-#, and rmse_out (out 
sample root mean square error) between period N-# and N. tsset must be specified when 
using this option. 

 
5.6 Regressions command options 
cmdest(commandname): 12 allows choosing the regression command to be used. If the 

option is not specified, commandname default is regress. This option allows using regress, 
xtreg, probit, logit, areg, qreg and plreg, but it additionally accept any regression command 
that respects the syntax of regress and saves results (matrices e(b) and e(V)) in the same 
way. ivregress is also accepted but complementarily using option cmdiveq(varlist_end = 
varlist_inst).  See Examples of using cmdest, cmdoptions, cmdstat and cmdiveq.    

cmdoptions(commandoptions): allows addingsu pported (by commandname) additional 
options for each regression 

cmdstat(commandstats): enables GSREG(which automatically saves the number of 
observations –obs., the number of covariates -nvar-, the adjusted R2 -r_sqr_a- and the root 
mean square error -rmse_in) to save additional regression statistics (included as scalars in 
e()) specified in commandstats. 

                                                           
12 Not all GSREG options can be used in any regression command; and for regression commands with 

required (compulsory) options, it will be necessary to specify them in cmdoptions. 
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cmdiveq(varlist_end = varlist_inst): is a special gsreg option for ivreg estimations, which 
can be used to specify varlists of endogenous variables (varlist_end) and instruments 
(varlist_inst). When using this option, cmdest(ivregress 2sls), cmdest(ivregress liml) or 
cmdest(ivregress gmm) must also be specified, and the endogenous variables must also be 
included in varlist_fix or in varlist_ocand.  See Examples of using cmdest, cmdoptions, 
cmdstat and cmdiveq. 

 
5.7 Post-estimation options 
5.7.1 Information criteria 
aicbic: calculates estat ic after each regression to obtain Akaike (aic) and Bayesian 

information criteria (bic) 
5.7.2 Heteroscedasticitytests 
hettest: calculates default estat hettest after each regression and saves p-values.   
hettest_o(hettestmoptions): allows adding options to hettest.  
archlm: runs default estat archlm after each regression and saves p-values. tsset must be 

specified when using this option. 
archlm_o(archlmoptions): allows adding options to archlm.  
5.7.3 Serial autocorrelation tests 
bgodfrey: computes default estat bgodfrey after each regression and saves p-values. 

tsset must be specified when using this option.   
bgodfrey_o(bgodfreyoptions): allows adding options to bgodfrey. 
durbinalt: calculates estat durbinalt after each regression and saves the p-values. tsset 

must be specified when using this option.   
durbinalt_o(durbinaltoptions): allows adding options to durbinalt. 
dwatson: runs estat dwatson after each regression and saves the Durbin-Watson 

statistic. tsset must be specified when using this option. 
5.7.4 Normality tests of residuals 
sktest: computes sktest after each regression and saves the p-value of the joint 

probability of skewness and kurtosis for normality. tsset must be specified when using this 
option.   

sktest_o(sktestoptions): allows adding options to sktest.  
swilk: calculates swilk after each regression and saves the p-value of the Shapiro-Wilk 

normality test. tsset must be specified when using this option.   
swilk_o(swilkoptions): allows adding options to swilk. 
sfrancia: runs sfrancia after each regression and saves the p-value of the Shapiro-

Francia normality test. tsset must be specified when using this option.    
testpass(#): allows a reduction of the outcome database size by saving only those 

regression results that fulfilled all user-specified residual tests (at a # significance level). 
5.5 Output options 
resultsdta(newbasename): allows results database name to be user defined in 

newbasename. By default, the name will be gsreg.dta.   
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replace: replaces the results database if it is already created (with the same name) in the 
ongoing working directory.   

double: forces results to be created and saved in double format, that is, with double 
precision.  

nocount: hides from the screen the number of regression which is being estimated. If this 
option is not specified, gsreg will show for each regression its number (used for identification 
purposes) and the total number of regressions to be estimated.   

Compact: reduces the results database size by deleting all coefficients and t statistics. In 
their place, gsreg creates a string variable called regressors that describes which candidate 
variables are included in each regression. This variable takes value “1” in position # if the 
candidate variable with position # is included in the equation, and it takes value “.” if it is not. 
Variable positions are kept in a small database called newbasename_labels.dta (where 
newbasename is the results database user defined name).    

nindex(lcimplist): allows specifying an index of normalized accuracy –nindex-. 
Regressions will be ordered from highest to lowest nindex in the results database, and the 
best regression according to nindex will be shown on screen at the end of the gsreg 
execution. If not specified, nindex will be based on the adjusted R-squared (r_sqr_a). User 
choices about goodness-of-fit or forecast accuracy criteria on nindex can flexibly be specified 
in lcimplist. By means of user-selected weights and ranking variables, lcimplist allows 
complex arguments to create multinomial ordering criteria. Any results-database variable can 
be used in the lcimplist argument as a ranking variable (e.gr_sqr_a, rmse-in, rmse-out, aic, 
bic, etc.), but it must be preceded by a user-defined real number weight as in the following 
example: nindex(0.3 r_sqr_a -0.3 aic -0.4 bic). It should be noticed that each variable 
included in lcimplist is normalized using the whole sample average (across of all regressions) 
of the same variable. 

mindex(lcimplist) and best(#) options must be specified together. mindex: generates a 
normalized ranking index like nindex, and has the same syntax (see nindex option), but the 
normalization of its arguments is developed using averages obtained from the best #+1 
regressions. Therefore, mindex is updated with each additional regression and only the best 
(in terms of lcimplist) # regressions results are saved. The joint use of mindex and best 
options can strongly reduce database size (and RAM requirements) making feasible larger 
model selection problems.  However, as mindex must be re-calculated with every regression, 
gsreg could run slower than using nindex (particularly for small model selection problems). 
 

6 Examples 
GSREG can be used for many purposes. In this chapter, we introduce three 

straightforward illustrations of different GSREG applications. For brevity matters, option 
specifications are not fully discussed here. Interested users will find a much in deep 
explanation (and option examples) in the GSREG help file.  

In the first example, we use artificial data to see how GSREG can be useful to obtain the 
best model in terms of in-sample goodness-of-fit, provided that regression residuals fulfill 
some desirable property.  

The second example shows that a complete search method (as GSERG) could be 
indispensable if out-of-sample accuracy is the main user concern for model selection. 

Our third example illustrates another valuable GSERG application: parameter stability 
analysis (across different control variable model structures). 
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6.1 Model selection and residual tests 
The Leaps and Bound efficient model selection methodology (introduced in Stata by the 

vselect command) has two salient characteristics: 1) by using an exhaustive search method 
(see section 2 and sub-section 2.3), it ensures optimality in terms of any in-sample model 
selection criterion; and 2) the embedded Furnival and Wilson (1974) efficient algorithm 
allows exhaustive search to be performed over a larger number of covariates than that 
feasible for complete search algorithms. 

However, the best model (or models) in terms of some in-sample information criterion do 
not necessarily fulfill required residual properties (something left aside by vselect and other 
model selection Stata commands like stepwise). The following very small and clear example 
shows why GSREG-like algorithms can be essential to deal with this problem.  

Suppose we wish to obtain the best model to explain , using some combination of two 
covariates,   and , and assuming the following data generating process (DGP):   

 

                  +   

            

     

                ,               

                                 

   [   ], 

   [   ]         ,                    

         
 

By construction,  covariate has a higher explanatory power than  , but tends to generate 
heteroscedasticity problems. 

We will use GSERG to estimate all possible combinations. With two candidate covariates 
there will only be 3 possible models. For each regression, we will generate and save 
information (in res1.dta file) about: 1) the Akaike Information Criterion (AIC) and the 
Bayesian Information Criterion (BIC) (using the aic bic GSREG option); and 2) the p-value of 
the standard heteroscedasticity test (by means of hettest GSREG option).Finally, we will ask 
GSREG to display on screen the best regression in terms of a multinomial normalized nindex 
based on the adjusted R2, the AIC, and the BIC, using the following command statement: 

 
gsreg y x z, resultsdta(res1) replace hettest aicbic nindex(0.3 r_sqr_a -

0.3 aic -0.4 bic) 
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Table 3: Screen results for example 1 

 
The best model in terms of nindex includes both x and z covariates. However, our 

res1.dta file (partially reproduced in table 4) shows some interesting results:13  
 
Table 4: Example 1 - main saved results 

order Model r_sqr_a aic bic hettest nindex 

1 X 0.0602569 3054.723 3064.538 0.000575 0.5621497 

2 Z 0.0046997 3112.161 3121.976 0.2120479 -1.153677 

3 x z 0.0637653 3051.980 3066.703 0.0005339 0.5915275 

 
In table 4 above, we can see that the first model, with only x as covariate, is the best one 

in terms of the BIC, while the best model in terms of both, AIC and adjusted R2, is that using 
x and z as covariates (as already shown in table 3). However, both models fail to fulfill the 
residual homoscedasticity requirement (with hettest p-values lower than 0.01).  

On the other hand, the z model (model 2), while suboptimal under any selection criterion, 
is the only one for which the null hypothesis of homoscedasticity cannot be rejected. 

A similar exercise can be simulated for related problems of serial correlation or non-
normal residuals, where best models in terms on some information criteria do not fulfill 
residuals requirements while sub-optimal models surprisingly do it. 

When user concern is focused on estimation robustness, residuals requirements become 
crucial and GSREG provides a better alternative than other Stata model selection commands 
                                                           
13 To reduce the table 4 size many res1.dta columns has been omitted: such as number of observations, number 
of variables, the root mean square error, regression coefficients and t statistics. 

---------------------------------------------------- 

Total Number of Estimations: 3 

---------------------------------------------------- 

Estimation number 1 of 3 

Estimation number 2 of 3 

Estimation number 3 of 3 

file res1.dta saved 

---------------------------------------------------- 

Best estimation in terms of 0.3 r_sqr_a -0.3 aic -0.4 bic 

Estimation number 3 

---------------------------------------------------- 

 

      Source |       SS       df       MS              Number of obs =    1000 

-------------+------------------------------           F(  2,   997) =   35.02 

       Model |  86.5026807     2  43.2513403           Prob> F      =  0.0000 

    Residual |  1231.34003   997  1.23504517           R-squared     =  0.0656 

-------------+------------------------------           Adj R-squared =  0.0638 

       Total |  1317.84271   999  1.31916187           Root MSE      =  1.1113 

 

------------------------------------------------------------------------------ 

           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

           x |   .4360614   .0545238     8.00   0.000     .3290669    .5430559 

           z |   .2705071   .1242505     2.18   0.030     .0266845    .5143296 

       _cons |   .9651791   .0912015    10.58   0.000     .7862103    1.144148 

------------------------------------------------------------------------------ 
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(like vselect or stepwise) to ensure optimality among admissible models (e.g. to find the 
optimal model among those with white noise residuals). 
 

6.2  Out of sample prediction 
M. Friedman (1953) contribution still generates a vigorous debate among epistemologists 

confronting “instrumentalism” and “realism” (see Mäki, 1986; or Cadwell, 1992). Some still 
blame Friedman for having generalized the misleading idea that forecast accuracy (even 
using models with “false” assumptions) is the only valid mechanism to choose among 
competing theories. 

In econometrics, there is some parallelism with the “measurement without theory” debate 
associated to Koopmans (1947) almost 70 year ago (and reviewed by Hendry and Morgan, 
1995) and more recent methodological discussions about in-sample vs out-of-sample model 
selection mechanisms, where renowned econometricians like Ashley, Granger and 
Schmalensee (1980) assert that “a sound and natural approach” to testing predictive ability 
“must rely primarily on the out-of-sample forecasting performance” (p. 1149). 

It is not surprising that many colleagues increasingly consider to overcome this last 
controversy by examining both in-sample and out-of-sample model outcomes. 

In this context, GSREG is able to ensure in-sample as well as out-of-sample model 
selection optimality, reducing user concerns about structural breaks in multivariate 
relationships. 

To illustrate this point, suppose that we wish to get the best model of   (in terms of some 
out-of-sample criterion) based on   and/or  , with 100 time series observations (using the 
last 20 to out-of-sample model evaluation), and assuming the following data generating 
process:  

 

                 +   

     

     

                

                

             
 

By construction, both covariates have a high in-sample explanatory power, but   becomes 
non significant for out-of-sample evaluation purposes. 

If the structural change is unknown (and therefore disregarded) and we don’t use GSREG 
to evaluate forecast accuracy, the best “y” representation will obviously include x and z as 
covariates. 

On the contrary, users concerned about the dangerous effects of potential structural 
breaks will exploit some database sub-sample to check parameter stability (e.g. the last 20 
observations) and use GSREG to examine both explanatory power and forecast accuracy of 
each alternative model. For this example, the simplest sentence could be: 

 
gsreg y x z, outsample(20) replace 
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Table 5: Screen results for example 2 

 
By default GSREG outcomes were saved as gsreg.dta and the “best” model shown on 

screen was selected based on the adjusted R2. The outsample (20) option keeps the last 20 
observations to forecast evaluations. It also calculates by default the in-sample and the out-
of-sample root mean square errors. 

 
Table 6: Example 2 – main saved results 
 

Order Model r_sqr_a rmse_in rmse_out 

1 x 0.3904075 1.514427 0.572002 

2 z 0.1605745 1.777132 0.759629 

3 x z 0.6283932 1.182416 0.767093 

 
Following table 6, the best model for in-sample criteria (adjusted R2 and/or root mean 

square error) is the worst in terms of the out-of-sample root mean square error criterion 
(model 3, with x and z as covariates). On the contrary, model 1 (which only includes x as 
covariate) has a relatively poor in-sample performance but ensures the highest forecast 
accuracy. By alternative selecting, for example, rmse_out or rmse_in as ranking variables, 
GSREG users are able to exhaustively cross-check model optimality. 

 
6.3 Parameter stability analysis 
By generating a database with exhaustive information about all regression alternatives, 

GSERG is a unique tool for parameter stability analysis. 

---------------------------------------------------- 

Total Number of Estimations: 3 

---------------------------------------------------- 

Estimation number 1 of 3 

Estimation number 2 of 3 

Estimation number 3 of 3 

file gsreg.dta saved 

---------------------------------------------------- 

Best estimation in terms of r_sqr_a 

Estimation number 3 

---------------------------------------------------- 

 

      Source |       SS       df       MS              Number of obs =      80 

-------------+------------------------------           F(  2,    77) =   67.80 

       Model |   189.57001     2  94.7850049Prob> F      =  0.0000 

    Residual |  107.654365    77  1.39810864           R-squared     =  0.6378 

-------------+------------------------------           Adj R-squared =  0.6284 

       Total |  297.224375    79  3.76233386           Root MSE      =  1.1824 

 

------------------------------------------------------------------------------ 

           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

           x |   1.158722   .1163415     9.96   0.000     .9270567    1.390388 

           z |   .9722231   .1362012     7.14   0.000     .7010119    1.243434 

       _cons |  -.1121836   .1341773    -0.84   0.406    -.3793648    .1549976 

------------------------------------------------------------------------------ 
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In this example, we will use the crisis_fr.dta database of Gluzmann and Guzman (2011) 
(containing information on financial crisis, financial reforms and a set of controls for 89 
countries along the period 1973-2005) to evaluate interest parameter stability under 
alternative control variable structures.  

As a first step, we run a pooled-data (for Latin American countries Emerging Asia and 
transition economies) linear regression of the probability of future financial crisis over the 
next 5 years (fc5), on a financial reform index (ifr) and its recent change (d_ifr). 

 
regress fc5 ifrd_ifr if EA_LA_TR==1 

 
Table 7: Example 3 – first step regression results 

 
  From table 7, we obtain a negative and significant relationship between fc5 and ifr and a 
positive (and even more significant) regression coefficient for d_ifr. 

In their article, Gluzmann and Guzman (2011) also identify 23 theoretically relevant 
control variables to consider (v1 to v23). Unlike previous examples, we will not use here 
GSREG to obtain the best model (e.g. best control variable structure) in terms of some in-
sample or out-of-sample information criterion (or some linear combination of many 
information criteria) but examine the whole set of results to evaluate ifr and d_ifr regressions 
coefficient and t-statistic distributions. 

With this purpose, we follow the Levine and Renelt (1992) and Sala-i-Martin (1997) 
approach running all possible regression using available information in the crisis_fr database, 
taking ifr and d_ifr as fixed variables and forcing GSREG to use three control variables for 
each alternative. 

gsreg fc5 v1-v23 if EA_LA_TR ==1, ncomb(3) fixvar(ifrd_ifr) replace nocount 

---------------------------------------------------- 

Total Number of Estimations: 1771 

---------------------------------------------------- 

file gsreg.dta saved 

 
GSERG execution time takes less than a minute using STATA/MP 12.1 for windows (64b) 

in a laptop with a Intel i7-3520m processor and 4Gb of DDR3 RAM memory. The fixvar(.) 
option ensures that ifr and d_ifr will be used as covariates in all regressions. The ncomb(3) 
option reduces the search space to all possible combinations (without repetition) of 23 
control variables taken 3 at time.  

      Source |       SS       df       MS              Number of obs =     928 

-------------+------------------------------           F(  2,   925) =   13.97 

       Model |  5.08852674     2  2.54426337           Prob> F      =  0.0000 

    Residual |  168.410396   925  .182065293           R-squared     =  0.0293 

-------------+------------------------------           Adj R-squared =  0.0272 

       Total |  173.498922   927  .187161729           Root MSE      =  .42669 

 

------------------------------------------------------------------------------ 

         fc5 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         ifr |    -.00711   .0025616    -2.78   0.006    -.0121372   -.0020829 

       d_ifr |   .0549173   .0110602     4.97   0.000     .0332113    .0766233 

       _cons |   .2793652   .0255525    10.93   0.000     .2292176    .3295128 

------------------------------------------------------------------------------  
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Main command outcomes can easily be described by means of the following kernel 
density plot. 

Figure 6.- Example 4 – ifr and d_ifr coefficient distribution  

 
 From figure 6, we can see that a large share of the ifr coefficient distribution is 

concentrated around 0, while d_ifr coefficients are almost exclusively distributed over positive 
(non-zero) values. 

To provide users with an enlarged example, we can replicate the analysis using 
alternative estimation methods, such as:  
 

gsreg fc5 v1-v23 if EA_LA_TR ==1, ncomb(3) fixvar(ifrd_ifr) replace nocount 

cmdest(probit) cmdstat(r2_p ll) 

or 
gsreg fc5 v1-v23 if EA_LA_TR ==1, ncomb(3) fixvar(ifrd_ifr) replace nocount 

cmdest(xtreg) cmdoptions(fe vce(robust)) 

 

For the probit (pooled) case, GSREG additionally computes (and saves) the pseudo-R2 
and the Log Likelihood of each regression, determining that the execution time (on the same 
software and hardware) rose to 13 minutes. 

Finally, the xtreg GSERG version was used to estimate the same relationship using fixed 
effects and robust standard errors. The execution time of the same exercise was about 11 
minutes. 

 
 
7 Saved results 
The GSREG command creates a dta-file with outcome information for all estimated 

alternatives. By default it includes the following columns for each regression:  
1) regression id (variable order), 
2) covariate regression coefficients (named v_1_b, v_2_b… , etc., and labeled with the full 

covariate name plus the word “coeff.”), 
3) coefficient t-statistics (namedv_1_t, v_2_t…, etc., and labeled with the full covariate 

name plus the word “tstat.”), 
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4) number of observations (variable obs), 
5) number of covariates(nvar), 
6) adjusted R2 (r_sqr_a), 
7) in-sample root mean square error (rmse_in), 
8) normalized linear combination of user selected (and weighted) model selection criteria 

(as nindexor mindex if this option is specified) 
9) additional user specified statistics (if the cmdstat option is specified), 
10) out-of-sample root mean square error (if outsample option is specified), and 
11) residual test statistics (if specified). 
When compact option is specified, regression coefficients and t-statistics are omitted and 

replaced by a unique summary string variable as described in section 5.5.   
In addition, GSERG shows on screen the best regression in terms of the user specified 

nindex or mindex (or the adjusted R2 if these options are not specified). Therefore, all this 
“best model” results are also saved in memory (as scalars, macros, matrices and functions).  
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