ECONOMIC NONEQUILIBRIUM, INSTABILITY AND CHADS

VICTOR A. BEKER"

Introduction
in & former article], we have argued in faver of a broader use of nonlinear dynamical analysis
i economic theory as a way of stedying the processes of change in the economy,

We have stressed thal this approach allows us to think change in a differenl way to the
one prevalent in economic theory, where evolution is seen just as a smooth, gentie, continuous
PIOCESS,

On the contrary, nonlirearty paves (he way fo Ihe analysis of economic disconlinuity,
i.e.. abrupt, sharp changes in economic varables, like the October 1987 stock markel crash,
the currency crises that shatiered the Bretton Woods system in the eardy "70s or hyperinfiation
processes.

We paosil that this sort of phenomena are betler analyzed within the framework
provided by nenlinear dynamics,

In this paper, we Rusirate by means of an oversimplistic example some implications of
the adoption of (hat appreach and we furdher anaiyze ils consequences from a methodological
poinl of view.

Dynamic instability in market analysis

As il i well known, under the assumplion of linearly in the demand and supply
functions, Walrasian dynamic stabilty depends on the slopes of the demand and supply curves
as well 85 on the adjustment coefficient of prices with resped o excess demand.

Instability, in the linear case, implies an explosive lime palh. As in reality explosive
fime paihs seem {o be a somewhal rare and very paiticular casa, il at-all, it Is usual 1o assume
well-behaved demand and supply curves, e, curves that wamranl stablity of equilibrium
prices

Although linearty is recognized o be oo restrictive an assumptlion, the wide use of the

linear approach i justified from the point of view of jocal stability analysis,

X University of Belgrano and University of Buenos Aires. | wanl to thank my son Pablo for his
help al differemt stages of the elaboration of the present paper. The responsibility for any
remaining amoar ks, of course, ming alone
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However, local stability is a namow concepl for economic applications. I resiricts
stability analysis to flucluations thal keep the system close to its eguilibrium values.

Althowgh the Rnear assumplion & an acceplable approach for close-lo-equilibrium
anaiysis. 1his is nol the case when the aim is global stability analysis, which is far more
Iimportant from the point of view of applied economics.

A z00n as we leave close-to-equilibrium analysis, inearity, in most cases. is no longer
a reasonable assumption. For instance, in a lnear unstable system a small perdurbation will
increase indefinitely, Thal is why, in business cycle theory, “ceilings” and “foors” were
imtroduced (Hicks, 1950) as a way 1o put a linit to Bucluations, However, this in Asell Implies to
resoit 1o a nonlinear element (Blatt, 1983, p. 182),

As a goneral case, far-from-equilibrium analysis implies the use of nonlinear modals.
Market stability analysis with nonlinear functions

We will illusirate the complexities that arise as soon as we abandon the linearty
assumplions analizing 8 case of market stability. For that purpose we will employ a logistic
equation model (Pelers, 1991).

Although this model s extremely simplistic it is useful to ilustrale the sort of
complexiiies that arise in even a simple nonlingar System, We can begin lo Imagine Lhe
compiex resulls that can ofginale in more realistic and Lhus farger nonlirear syslems.

Let us suppose that the demand Is represented by a logistic equation of the form:

Dy= a Pyic-Py)
where Oy is 1he quantity dernanded in pericd § and Py is prica In the same periad. For the sake
of converienca el us assume in what fallows that e=1, Le,, Py lakes values in the Interval [0,1],
Anyway, the qualitative results hold for-any other valua we want to give to c.

What does this dermand function mean? As ilustrated in Figure 1, as price begins
increasing the gquantily demanded ncreases too until reaches 3 maximum  when P=0.50,
Further increases in price @re accompanied by g quantily decline s in well-behaved demand

corvess

s intergsling to remark that cne of the pre-Marshallian economisis deafing with the laws of
demand and supply, Hans von Mangoldt (1824-1868), cited tha case of demand curves fhal
rse with price because of expeclations of even higher fuhwe prces. Contradicting his
comemparary Dupud -who amued thal demand curves must be of convex shape- Mangoid!
also held that negative sloping demand cuves could be either convex or concave depending on
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Fig. 1

An upward-sloping segment of the demand curve i a familiar featura in assel markels.
As assets are demanded as value bearers, the more fhe price is expecled o Increase in the
future fhe higher will be its demand loday. So, when prices begin moving up, it is inferpreted as
an announcement of further increases and this sfimulates the quantities demanded3,

In a context of rational expeciafions, markel prices are supposed to reflect sl the
available informalion. Therefore, they may be considered by lhe less-informed agenis as
revealing the information possessed by informed traders. Posilive feedback Lrading -buying
afler price increases- may be, from this point of view, quile a rational behavior,

Paosilive feedback trading may also resull from technical analysis models designad 1o
catch incipient lrends®, from the use of slop loss orders, from portfofia insurance, from &
positive wealth elasticity of demand for dsky assets, or from mangin call-induced selling after
petiods of low returns (Cutler o al, 1980).

Posilive feedback trading may also be the resull of herd behavior, Le.. investors driven

by group psychology, simple mimicking tha invastment decisions of other invesiars.

ihe type of goods (Juxuries of necessities),on the degree of inequatily of income distribution,
and on the availabilily of close substitules (Humphrey, 1992

3 Thisis a particular case of the more gensral ane whera price is taken as a sign of quality. See
Scitovsky (1944-25) and Kreps (19921 want to thank my son Pablo, who draw my attention on
this point

* With reference to the October 1987 crash Marlin Feldstein stales: =Institutional porfolic
managers were blamed for program trading sirategies that involved selling stock as equity
prices fell” (M Feldstein, 1981, p. 8), In the same volume, Lawrence H. Summers mentions The
Economisl as saying that "aimast four-fifths of forelgn exchange Wrading s driven by techrical
syslems thal give rse to positve feedback” (Ibid, p. 147).
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Lt us postulale a linear supply function
Sy=pP

The excess demand funclion is then;
Ey =Dy-5 =aP(1-PP-PR

Let us assume 3 Walrasian mechanism for price adjustment:
Piey-PL=kE

As [ is just a converier from prices to physical quaniities, we mey assume

Thus
Piei-P= 5 laPi01-P-BPI (1
Pui-Pi= 3 PL1-PY-PL @)

Calling

-
1
h=11-]

il becomes
Piag =R (1-P) (3}
which is, again, a loglstic equation.
Our inleresi is to know the asymplolic behavior of Lhis difference equation.
Far thal purpose, lel us take any initial value for Py and any value for y included in the
interval T<pd. Il we Horale equation (3} we will realize thal prices always converge io a single
value, whichever be lhe initlal price. For instance, Figure 2 depicls the case for Py = 0.30 and
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Fig. 2

This behavior suddenly changes when =3, AL Ihis crifical level there appears a
bifurcation, The sysiem oscillaies belween iwa values, The same happens again when =3,45;
hen, four passible solutions appear,

The route fo chaos

Broadly speaking, if F(x)=x(1-x), Fy has an atiracting fixed point at P,ni";—“

provided® 14<3. As y passes hrough 3, a bifurcation lakes place: a new periodic point® of
paricd 2 appears. As y continues to increase the dynamics of Fy becomes increasingly more
complicated: I undargoes a series of period-doubling bifurcations (see Fig. 3). Finally, l=1r

becomes chactic.

5 Itys 1, peo.

B The point x Is a perodic paint of period n it Mixj=x, whers Mg oo of (), that s the n-

n Times

foid compasition with isalf,
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{The Iintegers represant the periods)
Fig. 3

In faci, 8 necessary and sufficient condition for the fixed point lo be stable is thal the

ud

absolule value of the dervative of Fual xg =P beless than 1, e, < 1. As the value of

'I'

¥ increases the hump of P becomes higher and Py moves down into regions where the slope is
greater, Thus the fixed poinl becomes unstable’.

What does chaos mean?

Lot ¥ be a sel. £V — V i5 said 1o be chaolic on Vil
a) I has sensitive dependence on inilial conditicns;

b) f is topologically transitive®,

This means that a chaolic map possesses two basle ingredients; unpredictability and
Indecompaosability.

A map passesses sensiive dependence on mifial conditions If there exisl points
arbatrardy ciose 10 a point x which eventuaily separaie from x by ab teasi a cergin 5>0 under
ileration af {. This makes a chaotic map unprediciable.

Mare formaily, f.J—J has sensitive dependence on initial condilions if Lhera exisis §>0
such (hal, for any x & J and any neighborhood M of x, there exists y & M and n = 0 such

fhat |7 {x) = T"(y}| > &,

71l can be easily proven (hat %F < 1 impfies y<2

3 Some guithors include a third condition; perlodic points are dense in V. {Ses Devanay, 19889,
p. 50
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A chaolic map cannot be broken down inlo two subsysiems which do nof inferact under
T, In fact, a fopologically fransitive map has poinis which eventually move under iteralion from
ong arbifrarly small nelghborhood lo any other. Then, the dynamical system cannol be

decompasad into hwa disjoinl open sels which are invartant under the map,

=

] T T
L3 1o 145 154 158

Fig. 4

More formally, [J—J & lopologically transitive il for any pair of open seis U W)
there exists k=0 such that (RN~ W 2 0
Indecamposabilily means, in essenca, (hat any subsel, whatever ils size. gives way 10

different Irajectores diverging under ilerafion The opposite happens in ihe  case of stable
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systems where neighboring points are lransformed into neighboring polnts -or into one single

point.

Tumning back lo our inilial example, we have In Figure 4 the orbil diagram of FT'W'Eh"I
25% ¥ =4. i plots potential values of x versus the assoclaled values of .

As it can be observed, there appear succesive bifurcations until for each value of ywe
have infinite satutions in the chaotic region. Although generated by a deterministic equation the
series looks random,

Interpreting the genesis of chaos.

VWhosa is the responsibility for this change of behavior?

Aswa have seen, instability appears in the interval 32 v =4, This means thal unstabie
equifioium occurs on Ihe negative sloping branch of the demand curve of Figure 1 (that is,for

P=0.5) (s2e Figure 5},

L %

Fig.5. The graphs of F.I,. (Py=r Py 1-Py} for =3 and y=4 from lef 1o rghl. In both cases Pt'
=0.5.

In ether words, a sufficient condilion for equilibrium stability is for i to take place on the
pasitive siaping branch of the demand curve.

On the other hand, a nocessary condition for instability is thal equilibrium 1akes place
on the negalive sioping branch of the demand curve, However, |1 is nof 8 sufficient condition as
It may be immediately verlfied lor 2<w3.

A sufficient condilion for instability |s = 3, The equivalence between Ihis condition and

the ong in the case of a linear demand curve i5 demanstrated in the Appendix.

264




The alorementioned condition means thal instability, in our model, is proper of 3 bull

markel,

Let us recall thal y= % Sa, Ihe increases n the value of ¥ are explained by an

Increase in he value of « or a decremenl in the value of J, or both,

o comes from the demand function:

Dy= aPy(1-Py= a(Py -Ff)

The term betwean brackels may be inlerprefed as a sor of "comecled” price. Then, a
rmay be considered the adjustment coefficient of demand fo changes In the "corrected” price,
An increase in o moves the demand curve Lo the nght in Figure 1.

f measures the slope of Ihe supply curve and s inversa is the coefficient of reaction of
price o axoess demand.

S0, as [ decreases, lhe supply curve moves to the kefl, sugmeniing fhe excess
demand al a given price, and, al the same lime, § increases the price reaction o 8 given
excess demand.

That is why we have said thal instability is a charactenstic of a bull market: it depends
positively on increases in demand and In the coefficient of reaction of prce as well as on
decrements of supply, When, dug lo Ihe combination of these elements, v reaches the value of
3, instability appears on the slage

Instability increases as y tends lo 4, which i the maximum value it can reach in our
exercise. In lhat case the cofcal point for Py,q equals 1, which by hypolhesis, is the maximum
value lhe price may fake.

Where does inslabiity come from?

When y passes through 3 there appears an aliracling penodic poinl of penod 2. The
sysiem |5 attracled o it and enlars a lcop asclilating between two prices withoul comvenging lo

the equilibrium point® (see Figure §),

* Siriclly speaking, the sel of all poinis which under lleralion are perodically wvisiled by the
system, slways in the same order, lommn a penodic orbit or limit cycle (see Madio, 1992.p. 45).
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Fig. 8

Asvincreases new altracting periodic points are bom of period 4, 8, 8ic, F‘r undesgons
a sengs of perod-doublings as yincreases until il becomes chaclic:

Thus, while the linear approach aliows, in general, only two ailematives: either stability
o an explosive path, nonlineanty allows for @ confinuum of alfematives from stable equilibrium
up lo chaos, depending on the value of the paramelers,

The measuremeant of chaos

It is still an unseliled question whether strange attractors'? are really the key lo chaos
or nol', Some authors argue thal chaotic dynamics depend on the existence of a strange
atiractor. However, Eckmann and Ruelle {1985) have argued (hat i s sensitive dependence
on Initlal senditions which is the true meaning of chaos, on the ground thal Lhe dynamical
aspect 15.a more imporiant aspect than the geometrical one,

Anyway, inasmuch as sensible dependence on inilial conditions is the essential feature
of chaslic dynamics the measure of chaos &5 provided by lhe Lyapunov exponent, more
precisely by the larges! Lyapunov exponent

Lyapunoy expanents measure how quickly nearby orbits diverge in phase space. Thus,

Ihey measura the susceptibility of 3 system 1o sensitive dependence on inilial conditions.

‘o Strange atiractors are a kind of altractors which, unfike point  attraciors or Imil cycles, arm
nongenodic bul whose points and orbils slay within the same region of phase apace. For a nice
analysis of strange allractors see Medio (1992},

1! Gine of the reasons for this is Ihat 1hera is no sgresment on what g sirange attractor is, There
is no oonsensus al all on the use of the terms “strange™ and “attractod®, See, for instance,
Devaney (1989, p. 211) and Medio (1992, pp. 48 and 153).
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There is one Lyapunov exponent for each dimension In phase space. A posiive
Lyapunov expanent’® maasures how rapidly nearby points diverge from one another, On the
conlrary, a negalive Lyspuncy exponent measures how leng it 1akes for a system to reeslabiish
isell afler a perturbation,

Oelerministic chaos requires the larges! Lyapunov expanent to be posiiive.

Let us suppose wo Initial conditions, X, and x5, 85 neac one from the other as we
want, and follow the trajectories (FR(xp)) and FX(<y), starting from x, and x©. Sensitive
dependence on initial conditions means Ihal nearby frajeciories must divergs. ‘I-'ha largest
Lyapunov exponent measures the rate of local divergence and avarsges the rate aver & lypical
long trajeciory generated by the map F.

Suppose we make & small eror in measuring the initisl state and want lo forecast the
state ona period from now, The largest Lyapunov exponent is 3 measure of how fast the initial
measurament emor mulliplies Into error in one’s forecast,

For example, let us suppose the largesl Lyapunov exponent was 0,05, This means we
lose 0,05 bit of predictive power wilth each fAeralion, Thersfore, if we could measure currenl
conditions 1o 2 bits of accuracy, we would lose ail prediclive power afler 40 leealions,

Inasmuch our measurements have 8 finile sccuracy, erors of measuremen! are
unavoidabie. We can Increase precision, adding more decimals to our measurement, thus
reducing the value of ihe largest Lyapunav exponent and, then, the rhythm 3t which nearby
Irajectaries diverge. Bul this only pastpones the moment of the divergence. Il would only
Qizappear if we could get an infinite degree of precision, which means infinite information. That
would be Ihe cost for exacl prediclion in 2 $ystem subject to chaalic behavior,

Limits to foracasting
Sensitive dependence an initial conditions means thal {he furiher out in time we go, the

less accurate our forecast become. We do know the equations of motion, but ihe accuracy of

12 The Lyapunov exponent (L) fs defined by

L = im [In (GRS |, 1]
where Flix) denales the tih ilerate of F starling at initial condition x. je., Xpaq= Flix), = is
derivalive, | | s a norm, v is a direction veclar and *.* denotes a scalar product.
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the prediciions: depends on the quality of the inpwis, Nonlineanty amplifies initial lack of
precision unlil we become wnable of predicting where a cerfain trajeciory will be.

The inverse of Lyapunov exponeni |s cailed the Lyapunov time (t = %} and it

measures afler how many ilerations Ihe knowledge of inilial condilions of the system (s lost and
its frajeciory cannot be known,

In thiz respect, chaos implies the existence of a femporal horizon -defined by the
Lyapunoy time- after which our forecasts losa reliability at all.

Impradictiodity 5 an innnsic charactenstic of chaolic systems, |1 cannot e eliminated
by any finile increase n the accuracy of information, We can exiend the Lyapunov time, La.,
the fime during which a trajectory may be forecasied, increasing the precision of the
measurement of inifial conditions, but sooner or lalar we will be faced with diminishing marginal
relums.

Randomness and doterminism

Cna interesting question raised by this analysis s whelher there axist truly random
events. The guestion has early been raised in the survey adicle by Baumol and Benhabib
(1868)

It & serigs generated by quite a deterministic equation looks perdfecily random, is there
anything like a truly slochastic process al ali? If, “from the point of view of practice, there is no
difference between high-dimensional deterministic chaos and mndomness,”!3 which Is the
space left for the concept of a purely random pmcm‘?“

Far the lime being, what can effectively be said is that thero does not exist the sort of
sharp opposilion it was used to be thought 1o exist between delerminism and randomness,

On he contrary. we are lempted Lo think of the existence of 2 continuum, whera
randomness appears as the extrame case of determinism or, i we prefer, delerministic chaos

may be thoughlt of as the bridge between simple determinism and pure stochasticiy,

13 Brock, Hsieh, and LeBaron (1993, p. 14),

14 4 significant afforl is baing devoted 1o devise methodalogical prmcedures which may allow 1o
distinguish a random seres from one generaled by delamministic chaos The so called BOS
statistic -named after A5 authors: Brock, Decher, and Scheinkman- is an exampie of the
advance in this direction, See Brock ef af. ibd.
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Up lo now, Mathematics was the realm of detemminism and Slatistics, the kingdom ol
randomness, Mow, we are inclined to think that nonfinear analysis and, paricularly, chaotic
dynamics represen! an inlermediate. zone between one and the other field of knowledge,
Perhaps, further research may show there are more things in common between them than what
we presently think of.

Perhaps, in a fulure we may be forced to conclude thal the relationship between
determinism-and randomness is one thal resembles that existing In quantum  theory betwaen
particles and waves.

As we have said, it has already been esiablished hal although we may improve lhe
acouracy of the measurement of initial conditions, chaotic dynamics lead us, sooner ar later, Io
lace a temporal barrer beyond which no exact prediclion is possible. Further on the Lyapunov
time probamiibes replace determiniam. We can only predict, with a cealn level of probability,
that a cenain trajectory will fall within a certain region bt we are unable 1o forecast i with
certainty as o i were a truly random trajectory. Beyond the temporal honzon, Statistics replaces
Mathemalics.

Conclusions

By means of a very simple model of demand and sipply we have showm (he
consequences of the introduciicn of the assumption of 8 nonlinear behavior.

Basically, we ara faced wilh a more general model than the linear one, inasmuch as it
aliows for different solutions: which range from equilibnum up to chaos, depending on the
values taken by the control parameters.

The main characteristic of nonlinearty |s precisely that thea same model may lead 1o
qualitatively different resulis In response (o qualifative parametric changes. in Hegelian lerms,
quantitative change becomes qualitative change,

In less phitosophical lerms, Peters (1881) illustrates the point as the straw that breaks
the camers back. In fact, a5 we add weight to the burden a camel is 1o camy, 8 point i5 reached
where the animal cannol handhe any more weight. A straw placed on the camel's back will
cause the camel 1o collapse. The weighl reaches a crtical level al which the animal collapses.

In ather words, the message is: in Economics quanfily malfers
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Fostulating nonfineardly implies the belief thal the portion of reality under analysis Is
better modeled by assuming & non-uniform respesse lo changes in the independent{s)
variable(s),

Linearity is a sort of pre-Columbian way of reasoning: it leis us that if we poinl (o the
West we can never reach the Easl. The size and direction of the responsa lo equal changes in
the exogenous variable(s) are always lhe same.

Of course, this sounds guile plausibie for local analysis but i s a very parlicular and
unusual case when the analysis Is refered lo big changes. The latier s the kingdom of
nanlinearity

Although we have restricted our analysis to jusi an exercise using the logisiic squation,
most of the resulls are valkd for-a weder field of applications.,

First, one should recall thal mappings thal are lopologically confugate are compralaly
aquivatent m terms of their dynamics.

This means hal, in particular, provided ‘a funclion is single-peaked, has a negative
Schwartzian derivative and 15 ncreasing in v, then our results will go through.,

The second reasan is the follgwing, Although a detailed mathematical theory has been
developed so far only for one-dimensional dynamical systems, higher-dimension systems have
been sludied In panicular cases or by means of compuier simulations, These syslems display
the kinds of behavior discussed in this paper as well as other forms of comnplex behavior,

There is another argument (n favor of nanlinear dynamic analysls.

It & visitor of Mars amives af the Earth and in order lo understand the world economy
begins studyleg economic theory she would expect lo find economic seres randomly
fuctuating arcund equilibnum or converging to steady states. She will be astonished when,
analyzing the bebavior of empincal varables, she will realize that "there is liltle If any evidenca
that economic date converge lo siafionary states. lo steady growth or o perodic cycles. ™5 This
“coroilary fact of monumantal imporfance for the construction of economic science™'® as Day
calls it, emphasizes the impartance of nonlinear models as @ foof for studying economic

change

YR H Day (1993, p. 3).
"hid {ihe emphasis is ours).
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Change is incompatible with equilibrium. If a system is in equilibnum it has na history; i
is always in that siate, but for randomly distributed shocks.

On the contrary, evolution is associated with strucfural instabilty,

Structural instabilily refers o perurbations in the function space, A dynamical system s
said (o be structurally stable if it is dynamically equivalent lo a syslem sulficiently close 1o it in
SOME SeNss:

COn the contrary, a system [s struclurally unstabie If a small perturbation is capable of
yinkding a qualilatively new dynamical behavior,

In particular, the qualitative change thal maps undergo as paramelers change is called
bifurcation.

Thus, bifurcation theory studies struciuraily unstable dynamical systems, For Instance,
one of the major ways & map can be structurally unstable occurs when there Is a lack of
hyperbolicity'™, Bifurcations occur, precisely, near nan-hyparbolie fixed and paredic poinis,

Here it comes the relaticnship with the concept of evoiulion, Evolution is what we all
the transit -from one mode of functioning o another- 8 dynamical system undergoas at a
bifurcation point due to-a parametric change.

Monlinearity sheds a new light on the boundares of comparativa static analysis which,
already pointed owl by Samuelson's principle of comespondence, are nol always well
remembered by the mambears of the profession.

Slatic comparallve analyses are legilimale provided equilibrium s stable and only
within the limits of validity of that stability,

I equiliorium is lecally siable, local will aiso be the scope of comparalive statics
analysis.

Maonlinearity implies that a change In a parameter value can lead the syslem to @ new
pquilibeiurm paint -in which case comparative static analysis holds- bul it may also reach a paint
of bifurcation, a limil cycle, a chaotic map, elc.

A thorough review of nonlinear models applied to Economics may be found In the

survey article by Bokdrin and Woodford (1990) and in the excellent books by H, W. Lorangz

" A pericdic point p is hyperbolic if | {F7)* :p}| =1
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(1888}, J. Barkley Rosser Jr. (1991) and Medio (1892). Some of their policy implications are
analized in Bullard and Buller (1983). AN these works show thal, since the plonesring works by
Goodwin in ke thidies and after the second wave of ponlinear dynamic analysis led by
Benhabib, Day and Grandmont in Lhe early eighties, a significant development has taken place
in this field during the [ast years.

It s st an open question the exact refationship exisling between chance and
delerminism, Delesminisile chaos appears as o bodge between pure slochasticity and pure
detarminism. This is only one of the various areas open (0 research n this promising Maid of
nonlinear dynamics.

What is ol of queslion s that nonlineanty provides & powerful tool to develop a
therough anafysis of fac-from-equilibrium economic systems and of e laws of motion  [hat
govern their evolution,

Undoubtedly, the pext years will witness a nonlinear growth of the interest in the fald

we have aiready proposed to christen as “sconomic nonequilibrium® (see Beker, 1884).

APPENDIX
Lat us snalyze ine relationship existing between the resulls obtained above for the
nonlinear demand case and the one |n the linear case as far as stability Is concemed.
Let us supposa. for Ihe linesr case, that the demand and supply functions are the
folkowing:
Dy=aPy+s
S5i=AP+B
and that the price adjustrmen! equation is
Prat =K (Dy- S = kEy
&5 in the main fex
In this case, siability holds if and only if
deivked
S0, insfabiffy arises In the linear case In the following situations (assuming k=0 and
A=y

1) 11 a<0 and Kija - Ay<-2
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2)ifaz0and
21yazAor
2.2) kia - A)s-2

Lel us now compare these resulls with the ones obtained in the main text for the
nonlinear demand function,

Far this purpose, @ will be the slope of the langent lo the demand curve al the poin( we
choose 1o consider,

In our supply curve the siope was represented by f, so fi=A.

In the nonfinear example we have analized above, case 2.1) is excluded because the
supply curve slope always exceeds the demand curve one whenaver {he latesl ls positive and

equilibrium exists at 8 positive price.

Case 2.2) is also ruled owl because of the assumption we have made (hat k = %

Then, kia - &) = %-1 » =2.
S0, the only one case of instability which may hold in our example is 1). It will happen
whinever |aj = |A|. that is if the demand curve siope exceeds in absolute value Ihe supply

curve ane, This coincides with the conclusion we have already arrved al for the nonlinear case:
instability appears on (he negative sloped branch of the demand curve when % = 3. This

condition is analyticaily equivalent lo the former one,

In Iscd, for any equiiibium point FZ, on Ihe negalive sloping branch of the demand

curve it holds thal & = o {1 - 2F;),

being
aPf{1 - P) - pP; = 0
thus
pr=t1-2
Le 4
then
= 2-=
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a
L A
= IE-

q.e.d
This rasult is just 2 particular case of the general mile staled by the Hadman-Grobman
thearem which says thal -under cerlain conditions- the jecal bahavior of B nonlinear system is

quatitatively similar to that of the lineadzed one (see Medio, 1992, p. 50},
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