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Introduction

In a former article 1. we have argued in favor of a broader use of nonlinear dynamical analysis 

in economic theory as a way of studying the processes of change in the economy.

We have stressed that this approach allows us to think change in a different way to the 

one prevalent in economic theory, where evolution is seen just as a smooth, gentle, continuous 

process.

On the contrary, nonlinearity paves the way to the analysis of economic discontinuity, 

i.e.. abrupt, sharp changes in economic variables, like the October 1987 stock market crash, 

the currency crises that shattered the Bretton Woods system in the early 70s or hyperinflation 

processes

We posit that this sort of phenomena are better analyzed within the framework 

provided by nonlinear dynamics.

In this paper, we illustrate by means of an oversimplislic example some implications of 

the adoption of that approach and we further analyze its consequences from a methodological 

point of view.

Dynamic instability in market analysis

As it is well known, under the assumption of linearity in the demand and supply 

functions. Walrasian dynamic stability depends on the slopes of the demand and supply curves 

as well as on the adjustment coefficient of prices with respect to excess demand

Instability, in the linear case, implies an explosive time path. As in reality explosive 

time paths seem to be a somewhat rare and very particular case, if at all. it Is usual to assume 

well-behaved demand and supply curves, I.e., curves that warrant stability of equilibrium 

prices

Although linearity is recognized Io be too restrictive an assumption, the wide use of the 

linear approach is justified from the point of view of local stability analysis.
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However, local stability is a narrow concept for economic applications. It restricts 

stability analysis to fluctuations that keep the system close to its equilibrium values.

Although the linear assumption is an acceptable approach for close-to-equilibnum 

analysis, this is not the case when the aim is global stability analysis, which is far more 

important from the point of view of applied economics.

As soon as we leave close-to-equilibnum analysis, linearity, in most cases, is no longer 

a reasonable assumption. For instance, in a linear unstable system a small perturbation will 

increase indefinitely. That is why. in business cycle theory, "ceilings' and 'floors’ were 

introduced (Hicks. 1950) as a way to put a limit to fluctuations. However, this in itself implies to 

resort to a nonlinear element (Blatt. 1983. p. 162).

As a general case, far-from-equilibnum analysis implies the use of nonlinear models. 

Market stability analysis with nonlinear functions

We will illustrate the complexities that arise as soon as we abandon the linearity 

assumptions analizing a case of market stability For that purpose we will employ a logistic 

equation model (Peters. 1991).

Although this model is extremely simplistic it is useful to illustrate the sort of 

complexities that arise in even a simple nonlinear system. We can begin to Imagine the 

complex results that can originate in more realistic and thus larger nonlinear systems.

Let us suppose that the demand is represented by a logistic equation of the form: 

DfaPKc-Pt)

where D, is the quantity demanded in period I and P( is price in the same period. For the sake 

of convenience let us assume in what follows that c=1, i.e., Pt takes values in the interval (0.1 J. 

Anyway, the qualitative results hold for any other value we want to give to c.

What does this demand function mean? As illustrated in Figure 1. as pnee begins 

increasing the quantity demanded increases too until reaches a maximum when P=0.50. 

Further increases in price are accompanied by a quantity decline as in well-behaved demand 

curves2.

2 It is interesting to remark that one of the pre-Marshallian economists dealing with the laws of 
demand and supply. Hans von Mangold! (1824-1868), cited the case of demand curves that 
nse with price because of expectations of even higher future prices Contradicting his 
contemporary Dupuit -who argued that demand curves must be of convex shape- Mangoidt 
also held that negative sloping demand cuves could be either convex or concave depending on 
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Fig. 1

An upward-sloping segment of the demand curve is a familiar feature in asset markets. 

As assets are demanded as value bearers, the more the price is expected to increase in the 

future the higher will be its demand today. So, when prices begin moving up. it is interpreted as 

an announcement of further increases and this stimulates the quantities demanded3.

the type of goods (luxuries or necessities).on the degree of inequality of income distribution, 
and on the availability of close substitutes (Humphrey. 1992).
3 This is a particular case of the more general one where price is taken as a sign of quality See 
Scitovsky (1944-45) and Kreps (1992).I want to thank my son Pablo, who draw my attention on 
this point
4 With reference to the October 1987 crash Martin Feldstein states. 'Institutional portfolio 
managers were blamed for program trading strategies that involved selling stock as equity 
prices fell" (M.Feldstein. 1991, p 8). In the same volume. Lawrence H. Summers mentions The 
Economist as saying that 'almost four-fifths of foreign exchange trading is driven by technical 
systems that give rise to positive feedback' (Ibid. p. 141).

In a context of rational expectations, market prices are supposed to reflect all the 

available information. Therefore, they may be considered by the less-informed agents as 

revealing the information possessed by informed traders. Positive feedback trading -buying 

after price increases- may be, from this point of view, quite a rational behavior.

Positive feedback trading may also result from technical analysis models designed Io 

catch incipient trends4, from the use of stop loss orders, from portfolio insurance, from a 

positive wealth elasticity of demand for risky assets, or from margin call-induced selling after 

periods of low returns (Cutler et al. 1990).

Positive feedback trading may also be the result of herd behavior. I.e.. investors driven 

by group psychology, simple mimicking the investment decisions of other investors.
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This behavior suddenly changes when y=3. At this critical level there appears a 

bifurcation. The system oscillates between two values. The same happens again when y=3,45; 

then, four possible solutions appear.

The route to chaos 

period 2 appears As y continues to increase the dynamics of Fy becomes increasingly more 

complicated: it undergoes a series of period-doubling bifurcations (see Fig. 3). Finally. Fy 

becomes chaotic.
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(The integers represent the penods) 
Fig. 3

In fact, a necessary and sufficient condition for the fixed point to be stable is that the 

y increases the hump of Fy becomes higher and Py moves down into regions where the slope is 

greater. Thus the fixed point becomes unstable7.

7 It can be easily proven that — < 1 implies y<3.
dx

8 Some authors include a third condition: periodic points are dense in V. (See Devaney. 1989, 
P 50).

What does chaos mean?

a) f has sensitive dependence on initial conditions;

b) f is topologically transitive8.

This means that a chaotic map possesses two basic ingredients: unpredictability and 

indecomposability

A map possesses sensitive dependence on initial conditions if there exist points 

arbitranly close to a point x which eventually separate from x by at least a certain 8>0 under 

iteration of f. This makes a chaotic map unpredictable

More formally, f.J—> J has sensitive dependence on initial conditions if there exists 8>0 

such that, for any x e J and any neighborhood N of x. there exists y e N and n i 0 such 

that |f°(x) - fn(y)| > 5.
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A chaotic map cannot be broken down into two subsystems which do not interact under 

f. In fad, a topologically transitive map has points which eventually move under iteration from 

one arbitrarily small neighborhood to any other. Then, the dynamical system cannot be 

decomposed into two disjoint open sets which are Invariant under the map.

Fig. 4

More formally. f:J-»J is topologically transitive if for any pair of open sets U.WCJ 

there exists k>0 such that fk(U)rA W *0.

Indecomposability means, in essence, that any subset, whatever its size, gives way to 

different trajectories diverging under iteration The opposite happens in the case of stable 
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systems where neighboring points are transformed into neighboring points -or into one single 

point.

Turning back to our initial example, we have in Figure 4 the orbit diagram of Fy with 

2 5? y <4. It plots potential values of x versus the associated values of y.

As 4 can be observed, there appear succeslve bifurcations until for each value of y we 

have infinite solutions in the chaotic region. Although generated by a deterministic equation the 

series looks random.

Interpreting the genesis of chaos.

Whose is the responsibility for this change of behavior**

As we have seen, instability appears in the interval 3s y <4. This means that unstable 

equilibrium occurs on the negative sloping branch of the demand curve of Figure 1 Ghat is.for 

P(>0.5) (see Figure 5).

Fig.5 The graphs of Fy (Pp=y Ptfl-P,) for y=3 and y=4 from left to right. In both cases P*  
>0.5.

In other words, a sufficient condition for equilibrium stability is for it to take place on (he 

positive sloping branch of the demand curve.

On the other hand, a necessary condition for instability is that equilibrium takes place 

on the negative sloping branch of the demand curve. However, it is not a sufficient condition as 

it may be immediately verified for 2<y<3.

A sufficient condition for instability Is ya 3. The equivalence between this condition and 

lhe one in the case of a linear demand curve is demonstrated in the Appendix.
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The aforementioned condition means that instability, in our model, is proper of a bull 

market.

Let us recall that y= So. the increases in the value of y are explained by an 
P

increase in the value of a or a decrement in the value of |5. or both.

u comes from the demand function:

Dja a(Pt -Pf)

The term between brackets may be interpreted as a sort of 'corrected' price. Then, a 

may be considered the adjustment coefficient of demand to changes In the 'corrected' price. 

An increase in a moves the demand curve to the right in Figure 1.

P measures the slope of the supply curve and its inverse is the coefficient of reaction of 

pnce to excess demand.

So. as p decreases, the supply curve moves to the left, augmenting the excess 

demand at a given price, and. at the same time, it increases the price reaction to a given 

excess demand.

That is why we have said that instability is a charactenstic of a bull market: it depends 

positively on increases in demand and in the coefficient of reaction of pnce as well as on 

decrements of supply. When, due to the combination of these elements, y reaches the value of 

3. instability appears on the stage.

Instability increases as y tends to 4. which is the maximum value it can reach in our 

exerase. In that case the critical point for P|+, equals 1. which by hypothesis, is the maximum 

value the price may take.

Where does instability come from?

When y passes through 3 there appears an attracting periodic point of period 2. The 

system is attracted to it and enters a loop oscillating between two pnces without converging Io 

the equilibrium point’ (see Figure 6).

9 Strictly speaking, the set of all points which under iteration are penodically visited by the 
system, always in the same order, form a periodic orbit or limit cycle (see Medio. 1992,p. 45).
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Fig. 6

As y increases new attracting periodic points are bom of period 4. 8. etc. Fy undergoes 

a series of period-doublings as y increases until it becomes chaotic.

Thus, while the linear approach allows, in general, only two alternatives: either stability 

or an explosive path, nonlinearity allows for a continuum of alternatives from stable equilibrium 

up to chaos, depending on the value of the parameters.

Tho measurement of chaos

It is still an unsettled question whether strange attractors10 are really the key to chaos 

or not”. Some authors argue that chaotic dynamics depend on the existence of a strange 

attractor. However. Eckmann and Ruelle (1985) have argued that 1 is sensitive dependence 

on initial conditions which is the true meaning of chaos, on the ground that the dynamical 

aspect is a more important aspect than the geometrical one.

10 Strange attractors are a kind of attractors which, unlike point attractors or limit cycles, are 
nonperiodic but whose points and orbits stay within the same region of phase space. For a mce 
analysis of strange attractors see Medio (1992).
1’ One of the reasons for this is that there is no agreement on what a strange attractor is. There 
is no consensus at all on the use of the terms ’strange" and ’attractor". See. for instance, 
Devaney (1989, p. 211) and Medio (1992, pp. 46 and 158).

Anyway, inasmuch as sensible dependence on initial conditions is the essential feature 

of chaotic dynamics the measure of chaos is provided by the Lyapunov exponent, more 

precisely by the largest Lyapunov exponent.

Lyapunov exponents measure how quickly neaiby orbits diverge in phase space. Thus, 

they measure the susceptibility of a system to sensitive dependence on initial conditions.
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There is one Lyapunov exponent for each dimension In phase space. A positive 

Lyapunov exponent1* measures how rapidly nearby points diverge from one another. On the 

contrary, a negative Lyapunov exponent measures how long it takes for a system to reestablish 

itself after a perturbation.

Deterministic chaos requires the largest Lyapunov exponent to be positive.

Let us suppose two initial conditions. x0 and x'o. as near one from the other as we 

want, and follow the trajectories (Fk(xo)) and Fk(x'o), starting from x0 and x-0. Sensitive 

dependence on initial conditions means that nearby trajectories must diverge. The largest 

Lyapunov exponent measures the rate of local divergence and avorages the rate over a typical 

long trajectory generated by the map F.

Suppose we make a small error in measuring the initial state and want to forecast the 

slate one period from now. The largest Lyapunov exponent is a measure of how fast the initial 

measurement error multiplies into error in one's forecast.

For example, let us suppose the largest Lyapunov exponent was 0.05. This means we 

lose 0,05 bit of predictive power with each iteration. Therefore, if we could measure current 

conditions to 2 bits of accuracy, we would lose all predictive power after 40 iterations.

Inasmuch our measurements have a finite accuracy, errors of measurement are 

unavoidable. We can increase precision, adding more decimals to our measurement, thus 

reducing the value of the largest Lyapunov exponent and, then, the rhythm at which nearby 

trajectories diverge. But this only postpones the moment of the divergence. It would only 

disappear if we could get an infinite degree of precision, which means infinite information. That 

would be the cost for exact prediction in a system subject to chaotic behavior.

Limits to forecasting

Sensitive dependence on initial conditions means that the further out in time we go. the 

less accurate our forecast become. We do know the equations of motion, but the accuracy of
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the predictions depends on the quality of the inputs. Nonlineanty amplifies initial lack of 

precision until we become unable of predicting where a certain trajectory will be.

The inverse of Lyapunov exponent Is called the Lyapunov time (t ■ 2) and it

measures after how many iterations the knowledge of initial conditions of the system Is lost and 

its trajectory cannot be known.

In this respect, chaos implies the existence of a temporal horizon -defined by the 

Lyapunov time- after which our forecasts lose reliability at all.

Impredictibility is an intrinsic charactenstlc of chaotic systems. It cannot be eliminated 

by any finite increase in the accuracy of information. We can extend the Lyapunov time. i.e.. 

the time during which a trajectory may be forecasted, increasing the precision of (he 

measurement of initial conditions, but sooner or later we will be faced with diminishing marginal 

returns.

Randomness and determinism

One interesting question raised by this analysis Is whether there exist truly random 

events. The question has early been raised in the survey article by Baumol and Benhabib 

(1989)

If a series generated by quite a deterministic equation looks perfectly random, is there 

anything like a truly stochastic process at all? If. ’from the point of view of practice, there ts no 

difference between high-dimensional deterministic chaos and randomness,’’which is the 

space left for the concept of a purely random process? 14

For lhe lime being, what can effectively be said is that lhero docs not exist the sort of 

sharp opposition it was used to be thought to exist between determinism and randomness.

On the contrary, we are tempted to think of lhe existence of a continuum, where 

randomness appears as the extreme case of determinism or, if we prefer, deterministic chaos 

may be thought of as the bridge between simple determinism and pure slochaslicity.

} 3 Brock, Hsieh, and LeBaron (1993. p. 14).
14 A significant effort is being devoted to devise methodological procedures which may allow to 
distinguish a random senes from one generated by deterministic chaos The so called 80S 
statistic -named after its authors: Brock, Dechert, and Scheinkman- is an example of lhe 
advance in this direction. See Brock et al, ibid
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Up to now, Mathematics was the realm of determinism and Statistics, the kingdom of 

randomness. Now, we are inclined to think that nonlinear analysis and, particularly, chaotic 

dynamics represent an intermediate zone between one and the other field of knowledge. 

Perhaps, further research may show there are more things in common between them than what 

we presently think of.

Perhaps, in a future we may be forced to conclude that the relationship between 

determinism and randomness is one that resembles that existing in quantum theory between 

particles and waves.

As we have said, it has already been established that although we may improve the 

accuracy of the measurement of initial conditions, chaotic dynamics lead us. sooner or later, to 

face a temporal barrier beyond which no exact prediction is possible. Further on the Lyapunov 

time probabilities replace determinism. We can only predict, with a certain level of probability, 

that a certain trajectory will fall within a certain region but we are unable to forecast it with 

certainty as if it were a truly random trajectory. Beyond (he temporal horizon. Statistics replaces 

Mathematics.

Conclusions

By means of a very simple model of demand and supply we have shown the 

consequences of the introduction of the assumption of a nonlinear behavior.

Basically, we are faced with a more general model than the linear one, inasmuch as it 

allows for different solutions which range from equilibrium up to chaos, depending on the 

values taken by the control parameters.

The main characteristic of nonlinearity Is precisely that the same model may lead to 

qualitatively different results in response to qualitative parametric changes. In Hegelian terms, 

quantitative change becomes qualitative change.

In less philosophical terms. Peters (1991) illustrates the point as the straw that breaks 

the camel's back. In fact, as we add weight to the burden a camel is to carry, a point is reached 

where the animal cannot handle any more weight. A straw placed on the camel's back will 

cause the camel to collapse. The weight reaches a critical level al which the animal collapses.

In other words, the message is. in Economics quantity matters.
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Postulating nonlinearity implies the belief that the portion of reality under analysis is 

better modeled by assuming a non-uniform response to changes in the independent(s) 

variable®.

Linearly is a sort of pre-Columbian way of reasoning: it tells us that if we point to the 

West we can never reach the East. The size and direction of the response to equal changes in 

the exogenous variable(s) are always the same.

Of course, this sounds quite plausible for local analysis but it is a very particular and 

unusual case when the analysis is referred to big changes. The latter is the kingdom of 

nonlinearity.

Although we have restricted our analysis to just an exercise using the logistic equation, 

most of the results are valid for a wider field of applications.

First, one should recall that mappings that are topologically conjugate are completely 

equivalent in terms of their dynamics.

This means that, in particular, provided a function is single-peaked, has a negative 

Schwartzian derivative and is increasing in y, then our results will go through.

The second reason is the following. Although a detailed mathematical theory has been 

developed so far only for one-dimensional dynamical systems, higher-dimension systems have 

been studied in particular cases or by means of computer simulations. These systems display 

the kinds of behavior discussed in this paper as well as other forms of complex behavior.

There is another argument in favor of nonlinear dynamic analysis.

If a visitor of Mars arrives at the Earth and in order to understand the world economy 

begins studying economic theory she would expect to find economic series randomly 

fluctuating around equilibrium or converging to steady states. She will be astonished when, 

analyzing the behavior of empirical variables, she will realize that 'there is little if any evidence 

that economic date converge to stationary states, to steady growth or to periodic cycles.* 15 This 

'corollary fact of monumental importance for the construction of economic science'16 as Day 

calls it. emphasizes the importance of nonlinear models as a tool for studying economic 

change

15 R H Day (1993. p 3).
16lbid (the emphasis is ours).
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Change is incompatible with equilibrium. If a system is in equilibrium it has no history; it 

is always in that slate, but for randomly distributed shocks.

On the contrary, evolution is associated with structural instability.

Structural instability refers to perturbations in (he function space. A dynamical system is 

said to be structurally stable if it is dynamically equivalent to a system sufficiently close to it in 

some sense.

On the contrary, a system is structurally unstable if a small perturbation is capable of 

yielding a qualitatively new dynamical behavior.

In particular, the qualitative change that maps undergo as parameters change is called 

bifurcation.

Thus, bifurcation theory studies structurally unstable dynamical systems. For instance, 

one of the major ways a map can be structurally unstable occurs when there is a lack of 

hyperbolicrty’7. Bifurcations occur, precisely, near non-hyperbdic fixed and periodic points.

Here it comes the relationship with the concept of evolution. Evolution is what we call 

the transit -from one mode of functioning to another- a dynamical systom undergoes at a 

bifurcation point due to a parametric change.

Nonlinearity sheds a new light on the boundaries of comparative static analysis which, 

already pointed out by Samuelson's principle of correspondence, are not always well 

remembered by the members of the profession.

Static comparative analyses are legitimate provided equilibrium is stable and only 

within the limits of validity of that stability.

If equilibrium is locally stable, local will also be the scope of comparative statics 

analysis.

Nonlinearity implies that a change in a parameter value can lead the system to a new 

equilibrium point -in which case comparative static analysis holds- but it may also reach a point 

of bifurcation, a limit cycle, a chaotic map. etc.

A thorough review of nonlinear models applied to Economics may be found in the 

survey article by Boldrin and Woodford (1990) and in the excellent books by H. W. Lorenz

17 A periodic point pis hyperbolic if [(F")' (p) | * 1.

271 



(1989), J. Barkley Rosser Jr. (1991) and Medio (1992). Some of their policy implications are 

analizcd in Bullard and 8utler (1993). All these works show that, since the pioneering works Dy 

Goodwin in the thirties and after the second wave of nonlinear dynamic analysis led Dy 

BenhabiD, Day and Grandmont m (he early eighties. a slgniflcanl developmenl has (aken place 

in this field during the last years.

It is still an open question (he exact relationship existing between chance and 

determinism. Deterministic chaos appears as a bridge between pure stochasticity and pure 

determinism. This is only one of the vanous areas open to research In this promising field of 

nonlinear dynamics.

What is out of question is that nonlinearity provides a powerful tool to develop a 

thorough analysis of far-from-equlllbdum economic systems and of the laws of motion that 

govern their evolution.

Undoubtedly, lhe next years will witness a nonlinear growth of the interest in the field 

we have already proposed to christen as "economic nonequilibnum" (see Beker. 1994).

APPENDIX

Let us analyze the relationship existing between the results obtained above for the 

nonlinear demand case and the one in the linear case as far as stability is concerned.

Let us suppose, for the linear case, that lhe demand and supply functions are the 

following:

D| ■ a P| * b

St = A Pt * B

and that the price adjustment equation is

PH| » k (D( • Sj) = k Et

as in lhe main text.

In this case, stability holds if and only if

-1 < 1 * k < 1

So. instability arises in the linear case in lhe following situations (assuming k>0 and 

A>0):

1) If a<0 and k(a - A)<-2.
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Let us now compare these results with the ones obtained in the main text for the 

nonlinear demand function.

For this purpose, a will be the slope of the tangent to the demand curve at the point we 

choose to consider.

In our supply curve,the slope was represented by 0. so |}=A.

In the nonlinear example we have analized above, case 2.1) is excluded because the 

supply curve slope always exceeds the demand curve one whenever the latest is positive and 

equilibrium exists at a positive price.

Case 2.2) is also ruled out because of the assumption we have made that k = 1.

Then. k(a - A) ■ 1-1 > -2.
A

So. the only one case of instability which may hold in our example is 1). It will happen 

whenever | a| a |A|. that is if the demand curve slope exceeds in absolute value the supply 

curve one. This coincides with the conclusion we have already arrived at for the nonlinear case: 

instability appears on the negative sloped branch of the demand curve when £ i 3. This
P

condition is analytically equivalent to the former one.

In fact, for any equilibrium point P*.  on the negative sloping branch of the demand 

curve it holds that a = a (1 - 2P»),



If

q.e.d.

This result is just a particular case of the general rule slated by the Hartman-Grobman 

theorem which says that -under certain conditions- the local behavior of a nonlinear system is 

qualitatively similar to that of the linearized one (see Medio, 1992, p. 50).
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