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Abstract. In this paper, we compare Skill-Relatedness Networks (SRNs)
across selected countries, representing statistically significant interindus-
trial interactions that capture latent skill exchanges derived from ob-
served labor flows. Using data from Argentina (ARG), Germany (DEU),
and Sweden (SWE), we analyze their SRNs through an information-
theoretic method designed to compare networks with non-aligned nodes,
a crucial aspect for cross-country comparisons. By extracting network
portraits—structural fingerprints based on shortest path distributions—
we measure pairwise divergences to contrast differences in binary con-
nectivity and weighted skill-relatedness across countries.
Our findings reveal that ARG’s SRN structural connectivity differs sig-
nificantly from those of DEU and SWE, while at the same time also
contrast with each other. These findings suggest that the fundamental
structure of skill-related interconnections is country specific. However,
when viewed through the lens of the SR indicator, the differences between
countries become less pronounced, suggesting a universal phenomenon
in skill exchanges, highlighting a structured pattern of labor mobility
across sectors in any national economy. These findings support the idea
that historical and cultural factors shape SRNs, but structural connec-
tivity remains country-specific. While skill intensity patterns (weighted
SRNs) appear consistent across economies, the topological structure (bi-
nary SRNs) varies sharply, highlighting distinct labor market dynamics,
patterns of specialization and pools of skills in each country.
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Abstract. En este trabajo comparamos redes de parentesco de habil-
idades (SRNs), que resumen interacciones interindustriales estadística-
mente significativas que representan intercambios latentes de habilidades
derivados de flujos laborales observados. Utilizando datos de Argentina
(ARG), Alemania (DEU) y Suecia (SWE), analizamos sus SRN medi-
ante un método basado en teoría de la información diseñado para com-
parar redes con nodos no alineados. Mediante la extracción de network

portraits-identificadores estructurales basados en las distribuciones de
caminos cortos- medimos las divergencias entre pares para contrastar las
diferencias en la conectividad binaria y la relación ponderada entre par-
entescos de habilidades de estos países. Encontramos que la conectividad
estructural de la SRN de ARG difiere significativamente de las de DEU
y SWE, al mismo tiempo que las conectividades entre estos países con-
trastan entre sí. Ello sugiere que la existencia de especificidades en las
estructuras fundamentales de interconexiones relacionadas con las habil-
idades en cada país.
En cambio, cuando al utilizar el indicador de parentesco de habilidades,
las diferencias se vuelven menos pronunciadas sugiriendo un fenómeno
universal en los intercambios de habilidades, destacando un posible pa-
trón estructurado de movilidad laboral intersectorial en cualquier economía
nacional. Estos resultados apoyan la idea de que los factores históricos
y culturales conforman las SRNs, pero la conectividad estructural sigue
siendo específica de cada país. Mientras que los patrones de intensidad de
las habilidades (ponderados) parecen coherentes en las economías anal-
izadas, la estructura topológica (binaria) varía notablemente, poniendo
de relieve las distintas dinámicas del mercado laboral, los patrones de
especialización y los conjuntos de habilidades disponibles de cada país.

Keywords: Datos Administrativos · Movilidad Laboral · Parentesco de Habil-
idades · Comparación de Redes · Portraits de Redes.
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1 Introduction

Labor flows are an essential factor to understand economic activity, as they re-
flect the interaction between labor supply and employer demand in the labor
market. Among these, job-to-job transitions are particularly relevant, display-
ing well-documented pro-cyclical behavior [9]. Such transitions provide implicit
insights into the relevance of previous work experience for new employers, espe-
cially those that occur between firms with different economic activities. Under-
standing these transitions is essential for understanding how skills and expertise
transfer across economic sectors.

In this context, the alignment between the skills demanded by firms and
those supplied by workers represents a dimension where significant gaps may
exist, making it a highly relevant area of research. Skill mismatches can take
various forms, such as skills gaps, skills shortages, geographical disparities, etc.
[4,13]. However, rather than focusing on these dimensions, our analysis takes a
different approach. We assume that observed job transitions reflect a form of
proximity in terms of skills requirements between economic activities. In other
words, we consider that workers predominantly transition to sectors where their
existing skills remain relevant and transferable. This assumption enables us to
interpret job mobility patterns as the interconnectedness of industries within the
productive structure through overlapping skill sets.

Traditionally, economists analyze labor flows using data at high level of aggre-
gation of the standard classifications of productive activities, in order to correlate
it with conventional national accounts data of sectoral activity. The evolution
of labor flows in Argentina has been analyzed using administrative records, and
it has been shown that more disaggregated data can provide a richer picture of
the temporal evolution of labor flows than aggregated data [16]. This is because
labor flows carry information about the productive structure and diffuse knowl-
edge among economic activities. Clearly, a more disaggregated level of detail, at
the same time brings more complexity in interpretation tasks.

Labor mobility across different industries reflects interconnections between
economic activities, which can be effectively represented as networks. These net-
works highlight the properties of connectivity between economic sectors, offering
insights into the flow of labor and the relationships between various industries
within an economy. Various networks of connections can be derived from these
interactions. First, labor flow networks (LFN) can be constructed directly from
job transitions between industries, capturing employment exchanges as work-
ers move from firms in one economic sector to another. Building on the idea
that these transitions reflect skill relatedness between sectors, we can further
extract skill relatedness networks [12,17], which underlie the observed labor flow
patterns. In this work, our primary focus is on analyzing these networks to bet-
ter understand the structure and to compare their structure between different
countries.

In Argentina, the Undersecretariat for Employment and Job Training has
data of administrative records of formal private labor employment from the Ar-

3

SADIO Electronic Journal of Informatics and Operations Research (EJS) e-ISSN 1514-6774



gentine Pension System3 provided by the Observatory of Business and Employ-
ment Dynamics4. The data covers interannual employment exchanges between
productive economic activities registered between 2009 and 2014. This set of
activities includes nearly 400 sectors at four digits of ISIC5 Rev.4 classifier.

Previously, in [7,8] the inter-industry labor flows of Argentina have been
studied at high level of detail, and it has been revealed that extracted labor
networks were characteristically dense, with clear core-periphery structures, and
small-world properties. These labor flow networks are characterized by a high
prevalence of small-flow transitions, which increase their density and connectiv-
ity. As a result, the networks are not sparse and exhibit a highly interconnected
structure with a giant component. This indicates that high granularity job tran-
sitions between industries are frequent and very heterogeneous.

In turn, this connected structure evidence short (average path) distances be-
tween pairs of any given sectors, v.g.: a small-world, which has also functional
structure between groups of sectors, some acting like “cores” while others acting
as “peripheries”. Nevertheless, the prevalence of small flows raises the issue of
significancy or relevance of these transitions, requiring the application of net-
work reduction techniques to filter out weaker links and extract the backbone
of significant connections (see, for example [7,8,6]). In this study, we employ a
specific filtering technique to retain a significant backbone of the network which
will be explained in the following section. Although these microscale networks
provide new and useful information, they also pose several challenges for their
interpretation and applications in, for example, policy design and analysis. Also,
from a temporal analysis perspective, the structure of interannual labor networks
varies over time due to both cyclical and structural factors (see [7,16,6]).

In this study, we focus on skill-relatedness networks (SRNs) to explore the
structure of skills overlap between industries, as inferred from labor flow transi-
tions. We are interested in comparing the SRN of Argentina (ARG) with those
of Germany (DEU) and Sweden (SWE)6. This comparative approach allows us
to investigate how inter-industry labor networks differ between developing and
developed economies. By contrasting these SRNs structures, we look for insights
into the variations in industrial interactions across different economic, social,
and historical contexts.

Comparing networks is a challenging task. When given two networks, de-
termining how similar they are typically involves quantifying their structural,
topological, or functional similarities. This typically requires measuring connec-
tivity patterns, node relationships and overall organization. Various methods
have been developed [5,15] to address this challenge: graph invariants (fixed
properties such as degree distribution), network measures (structural charac-
teristics such as modularity and centrality), graph matching algorithms (align
nodes and edges), information-theoretic methods (measure variations in network

3 Spanish: Sistema Integrado Previsional Argentino (SIPA).
4 Spanish: Observatorio de Empleo y Dinámica Empresarial (OEDE).
5 International Standard Industrial Classification of economic activities (ISIC).
6 Germany and Sweden were selected due to data availability.
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entropy), network alignment (preserves structural relationships), and machine
learning approaches. Choosing an appropriate method depends on the specific
characteristics of the networks and the research question at hand.

The proposed challenge presents a new problem when the networks belong to
systems of different dimensions, in terms of network science. Indeed, approaches
to network comparison can be roughly divided into two groups based on whether
or not they consider two graphs defined on the same set of nodes. When we
consider networks defined on the same set of nodes, the comparison becomes
straightforward since there is no need to align nodes between the two networks.
For example, the cases of comparison of SRNs with the same number of (aligned)
nodes has been already done by [17]. However, even if two networks have identical
topologies, they might have no nodes or edges in common simply because they
are defined on different sets of nodes. This highlights the importance of carefully
considering the context and objectives when choosing a comparison approach
for networks.

In the present case, we are dealing with a “non-aligned” network comparison,
v.g.: not the same nodes are necessarily shared between the networks. For this,
we are using portraits divergence, a method for characterizing large complex net-
works by introducing a new matrix structure, unique for a given network, which
encodes structural information, provides useful visualization, and allows for rig-
orous statistical comparison between networks [2]. In particular, the network

portrait encodes the information of its connectivity structure by representing
how nodes (sectors, in our case), relate to each other based on their position in
the entire network. This is visualized (like in an onion) as layers of connections,
where the distance between layers represents increasing degrees of separation
between nodes. This can also be understood as successive neighborhoods of con-
nectivity: i.e. how each node is connected to its neighbors (first layer), the neigh-
bors of those neighbors (second layer), and so on, creating a multi-layered map
of connections, its fingerprint. This helps to identify clusters of closely connected
sectors or entities. In the context of skill-relatedness networks, it can serve as a
map of opportunities generated by the exchange of skills between sectors. This
allows us to identify areas where workers might transition between industries or
sectors with similar skills sets. The portrait divergence is then used to quantify
the similarity between pairs of these network fingerprints. The fingerprints pro-
vide exhaustive descriptions of structural connectivity information, summarizing
the mutual information between them. The intuition behind portrait compar-
ison is that a network portrait acts like a topographic map of labor mobility,
showing how industries are interconnected and how easily workers transition
between them. Comparing two labor markets through this method is similar
to analyzing different geographical landscapes—some may have smooth, well-
connected pathways (indicating high labor mobility), while others may feature
isolated peaks and valleys (suggesting low connectivity). The network portrait
divergence then serves as a tool to quantify how similar or different these labor
mobility landscapes are.
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In this study, we compare skill-relatedness networks (SRNs) across Argentina,
Germany, and Sweden to understand differences in labor market structures be-
tween developing and developed economies. The key findings can be summarized
as follows. Using network portraits and network portrait divergence, we find these
methods to be effective in analyzing and comparing SRNs of different sizes. The
analysis of binary SRNs (pure connectivity) reveals significant differences be-
tween countries, suggesting that the fundamental structure of skill-related inter-
connections varies significantly across countries, forming particular “skeletons”
of sectoral linkages. When examining weighted SRNs (which account for skills
intensities), the differences between countries are less pronounced, suggesting a
universal phenomenon in skill exchanges, highlighting a structured pattern of la-
bor mobility across sectors in any national economy. These findings support the
idea that historical and cultural factors shape SRNs, but structural connectiv-
ity remains country-specific. While skill intensity patterns (weighted SRNs) ap-
pear consistent across economies, the topological structure (binary SRNs) varies
sharply, highlighting distinct labor market dynamics, patterns of specialization
and pools of skills in each country.

The paper is organized as follows. In section 2 we describe the three datasets
used in the analysis and introduce the methodology. In section 3 we show the
results. In section 4 we discuss our work.

2 Data and Methods

To address the proposed objective, we use three available datasets for selected
countries: Argentina (ARG), Germany (DEU), and Sweden (SWE), at the level
of 4 digits of detail of their national economic activity classifications, procured
from various sources (see Table 1 for details).

The interaction networks are constructed based on these data. These net-
works are constructed on different sets of nodes, leading to variations in size and
differences in the number and types of economic activities they represent. As
mentioned in section 1, this presents a challenging problem of comparison and
identification. To tackle this, we employ an information-theoretic method called
portrait divergence, which allows us to extract structural insights and perform
rigorous statistical analyses of the networks.

2.1 Data

We processed data at the four-digit level of national economic activity classi-
fications for ARG, DEU, and SWE, which are compatible with ISIC 4 or its
European counterpart, NACE 2, using data from various sources. Table 1 pro-
vides a summary of the data, detailing for each country: the classification system
used in the available data, the time periods considered for each averaged net-
work, average annual employment, total accumulated flows and yearly averaged
inter-industry job transitions, the number of sectors available and the subtotal
used in the analysis and the formal data source.
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For Argentina, we use labor flows transitions for the period 2009-2014, pro-
vided by the Observatory of Employment and Business Dynamics within the
Undersecretariat for Employment and Job Training. This data is sourced from
administrative records of the Revenue Collection and Customs Control Agency.

For Germany and Sweden, the available data consist of skill-relatedness ma-
trices, enabling us to directly construct the SRNs for each country. In the case
of Germany, we use directly the SR data at four digit WZ08 national industrial
classification (equivalent to NACE 2), for the period 2007-2013, published in
[10] by the authors7 originally estimated from data of the Employee History8,
based on the social security records of Germany. Additionally, we use German
employment data from DESTATIS, the Federal Statistical Office of Germany.

In the case of Sweden, we use directly the SR data at four digit SNI 2007
national industrial classification (equivalent to NACE 2), for the period 2007-
2017, calculated by the Swedish Agency for Growth Policy Analysis (see [14])
using the methods in [10] with Swedish administrative data9. We use Swedish
employment data from Statistics of Sweden for the period of analysis.

Argentina Germany Sweden

Data Inter-industry labor
flows

Inter-industry skill-
relatedness

Inter-industry skill-
relatedness

Classification ISIC 4 WZ08 (NACE 2) SNI 2007 (NACE 2)

Period 2009-2014 2007-2014 2007–2017
Transitions (#) 5 7 10

Avg. Empl. 5,619,134 28,467,487 4,665,205

Flows
. total 2,060,515 5,529,890 4,800,000
. avg./year 412,103 789,984 480,000

Sectors (#)
. original 410 597 586
. SR+ 407 584 577

Source Ex-Ministry of La-
bor, Employment,
and Social Security

Table 2, [11], based
on Beschäftigten-
Historik, Federal
Statistical Office

Rapport 2021:02:04,
Swedish Agency
for Growth Policy
Analysis, based on
LISA data, Statistics
of Sweden

Table 1. Data reference summary for Argentina, Germany and Sweden. Administrative
data at 4 digits of economic activity classifications. Comparable classification systems
ISIC 4 and NACE 2.

7 See “Skill relatedness matrices for Germany” at https://iab.de/publikationen/
publikation/?id=7202046.

8 German: Beschäftigten-Historik, BeH.
9 See “Skill relatedness matrices for Sweden” at https://www.tillvaxtanalys.se/

in-english/publications/pm/pm/2021-05-18-skill-relatedness-matrices-for-sweden.
html.
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2.2 Methods

Skill-Relatedness Networks. For Argentina, we proceed first to construct the
skill-relatedness matrices and then its corresponding SRN [17]. After averaging
interannual flows for all transition matrices available, we calculate the skill-
relatedness indicator, SRij , ∀i, j ∈ N , where N represents the total number of
industries10 included. The skill-relatedness indicator between industries i and j is
computed as a ratio between the observed labor flows and the expected flows from
a null model, which is calculated from the margins of the respective (AN×N ) flow
matrix for each cell (see [10,11,12] for further insights on this methodology), as
described in Fig. 1. The indicator is then symmetrized and normalized to map it
to the interval cSRij ∈ [−1, 1), hereafter used as SR to avoid notation cluttering.
The SR indicator is a measure of labor mobility between different sectors and
the degree to which these sectors are related in terms of required skills. An
important aspect of SR is the interpretation of its positive and negative values
and their implications for the labor market structure and functioning and the
valuation of workers’ skills.

Positive (negative) values of SRij indicate that there are more (fewer) ob-
served employment exchanges between two sectors i and j than would be ex-
pected under a random mobility model. In this context, we can interpret that the
skills demanded by sector i can (or cannot) be found in workers coming from
sector j. Additionally, the more positive (negative) the SRij value, the more
(less) valuable the skills from one sector appear to be in the other. Limiting to
positive values appears to be an appropriate method and a suitable criterion
for pruning the networks, removing the less significant interactions in terms of
skill-relatedness11 Values greater than 0 indicate that the number of observed
job switches is greater than what would be expected at random under the null
model specified, v.g. workers that would have moved at random given the re-
spective size of each industry (similar to the Configuration Model [3]). Hereafter
we refer to these networks with positive skill-relatedness, SRij > 0, as SRN+s
or simply SRNs and conveniently index them by country whenever needed [17].

In the cases of Germany and Sweden, since we have skill-relatedness data,
we construct the matrices directly. For the remainder of the analysis, we focus
solely on using the SRNs for all three countries. For the subsequent analysis and
network comparison, we retain only the positive skill-relatedness values from the
SR matrices for the three countries as explained earlier.

Regarding the size of the networks to compare, which refers to the number of
nodes, i.e. industries, included in the analysis, it is worth noting that Germany
and Sweden have more than 40% industries at their four-digit detailed classi-
fication compared to Argentina (see Table 1). We compare these non-aligned

10 From this point forward, the terms “industries”, “economic activities” and “sectors”
will be used interchangeably.

11 Negative skill-relatedness would suggest a lower than expected level of employment
exchanges between two sectors, implying that the skills required by one sector are not
well aligned or are significantly different from those found in workers transitioning
from the other sector.
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Fig. 1. Construction of skill-relatedness indicator (used for Argentina). Sequential steps
of the process to get from the observed flow matrix, F , to the skill relatedness indicator
matrix, cSR (SR later on). A reference matrix of “expected flows”, fe

ij , is built on the
basis of the table edges (e.g.: totals per rows, Fi., columns, F.j , and table, F..) of the
observed flows matrix. This matrix reflects “random” flows in the sense that sectoral
exchanges are proportional to the outflows and inflows between sectors with respect
to total flows. For each cell an associated matrix of elements, SRij , is calculated as
the ratio of the observed value of employment flows with respect to the theoretical or
expected value. Thus, one can interpret values less than unity, SRij ∈ [0, 1) as not
departing significantly from a random distribution, while values greater than unity,
SRij ∈ [1,+∞), showing deviations from the specified random distribution. SR matrix
is then symmetrized by means of averaging the SR matrix with its transpose, making
the associated graph undirected. Finally, the normalization step leaves out the cSR

(symmetric) matrix, with cSRij ∈ [−1, 1), referred in the text simply as SR and used
to build the SRN for Argentina.

networks, without considering node correspondence,12 using the portrait net-
work divergence [1], a method based on a graph invariant. Using an invariant
helps mitigate concerns regarding the encoding or structural representation of
the graphs, enabling the measure to focus exclusively on the network’s topol-
ogy. Graph invariants can take various forms, including probability distributions,
thus providing, size-independent, structural characteristics of networks, allowing
meaningful comparison across different datasets.

Network portraits describe the distribution of path distances in a network. In
the case of SRNs, they represent the different levels of connectivity, or maps of
proximities between sectors, showing how closely each sector is linked to others.
This information helps answer questions such as how many sectors each sec-
tor interacts with and how these (direct) connections are distributed across the
entire network. They also show how well-connected a sector’s direct neighbors
are and how (indirect) connections extend through the network. These layers
of extended connectivity characterize the structure of skills’ exchanges of these
networks. Thus, by focusing on the topology of the networks and abstracting
from the problem of node correspondence, we can compare these networks with-
out ensuring that networks use the exact same industrial classification encoding,
which allows for a direct comparison of salient aspects of their structures without
the need to align nodes. This approach enables us to analyze the similarities and
differences in the network topology across different countries or contexts.

12 That is to say, disregarding sector count and identification.
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Portraits. The method stands on the construction of a Bℓ,k-matrix (v.g.: the
network portrait, see [2]) consisting of:

Bℓ,k ≡ the number of nodes who have (exactly) k nodes at distance ℓ,

for 0 ≤ ℓ ≤ d and 0 ≤ k ≤ N − 1, where the distance is taken as the shortest
path length and d is the graph’s diameter (see Fig. 2).

In this sense, like onion layers, each node vi ∈ V , where V is the set of all
nodes of a given network, is surrounded by ℓ-shells or connectivity layers of order
ℓ. The rows represent histograms (or distributions13) of ℓ-order shortest paths.
This matrix condenses structural properties of the network based on the distance
connecting two nodes in terms of successive links or path lengths, ℓ, which encode
shortest path distributions, for example including the degree distribution (ℓ = 1,
for an unweighted network) and higher order paths. It is important to state
that the network portraits are agnostic of the identity of the nodes, capturing
topological information without reference to the nodes attributes. As a graph
invariant, the B-matrix of a network is unique and can be used as a network
“fingerprint”. In this way, comparing two networks G and G′ can be translated
into comparing their portraits, B and B′.

In unweighted networks, the diameter d is an integer, whereas in weighted net-
works, d ∈ R is continuous. Since our analysis focuses on comparing the SRNs,
where shortest paths may have non-integer values, the algorithm for finding
shortest paths changes from breadth-first-search (used for unweighted networks)
to Dijkstra’s algorithm (used for weighted networks). To facilitate network com-
parison, it is necessary to define an appropriate binning strategy for aggregating
continuous shortest paths. A simple approach is to use b bins based on quan-
tiles, allowing us to compute the network portraits, Bℓ,k and B′

ℓ,k. In our case,
we determine BinEdges based on the weight distributions of the SRNs under
analysis.

In our analysis, we use both binary and weighted versions of SRNs. It is
important to highlight what each network represents and how their interpreta-
tions differ. While SRNs are closely related to labor flow networks (LFNs), they
are conceptually distinct, as they capture the latent skill similarity between sec-
tors inferred from observed worker transitions. Unlike LFNs, which describe how
workers move, SRNs infer why they move, based on skill compatibility. In the bi-
nary SRN, a link simply indicates whether two sectors are skill-related, without
accounting for the strength of this relationship. This can be seen as an indicator
function version of SRNs, where two sectors are connected only if they share a
minimum level of skill similarity inferred from worker transitions (i.e.: SRij > 0,
as in our case).

Thus, binary SRNs capture the existence of structural similarities in skill
requirements across sectors. In contrast, weighted SRNs provide a ranking of skill
similarity, reflecting how strongly any two sectors are related within the network.
This allows to better capture variations in the intensity of worker transitions and

13 When divided by N , the total number of sectors or nodes.
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Fig. 2. Example of Bℓ,k(G)-matrix construction (for binary/unweighted SRN). For
each node vi ∈ V , count connected nodes at ℓ-steps distance, its ℓ-shell or connectivity
layer, then summarize for each ℓ-distance (in rows) the number of nodes that have k-
neighbors, taken as shortest path length (ℓ-shells). The first row ℓ = 0 gives the number
of nodes. The second row ℓ = 1 stands for degree distribution: each sector’s number
of direct connections. The subsequent rows ℓ ≥ 2 distribution of ℓ-nearest neighbors.
The last row ℓ = d gives the diameter of the network, v.g.: longest shortest path in the
network.

the degree of skill overlap between industries, and also shed light into the value
and usefulness of the SR indicator.

Network Portrait Divergence. After computing the portraits of these net-
works, denoted as G and G′, each portrait can be transformed into a matrix of
row-wise probability distributions by dividing each row by N . These matrices
are then normalized and further reduced to two joint probability distributions
encompassing all rows. Since these are probability distributions, they remain
independent of the size of networks, enabling direct comparison using a single
Kullback-Liebler (KL) divergence measure (see [1]).

The network portrait divergence (NPD) is defined then as the Jensen-Shannon
divergence:

DJS(G,G′) ≡
1

2
KL(P ||M) +

1

2
KL(Q||M),∈ [0, 1]

where M ≡ 1
2 (P ||Q) is the mixture distribution of P and Q, where P is P (k, ℓ) =

kBℓ,k

N2 and Q is, likewise, Q(k, ℓ) =
kB′

ℓ,k

N2 .
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3 Results

The SRNs for each country, built from the positive skill-relatedness indicator
matrices and ancillary employment data, present a visible dense structure with
a unique giant component (induced by the construction of an SRN), as can be
appreciated in Fig. 3. The figure illustrates the skill-relatedness networks for the
three countries, where we plot the heatmap representation for both, unweighted,
v.g.: binary (Fig. 3, upper row), and weighted version networks (Fig. 3, lower
row). As reported in Table 1, although the statistical systems of classification
for economic sectors are compatible between countries in terms of international
standards methodologies (by construction and via correspondence tables), the
composition and size of these networks may vary because of: a) differences in
some sectors’ specification as informed by each country, i.e.: new sectors created
by national statistical choices, additional disaggregation of sectors used by one
country to identify some particular kind of activity in a code (available and) not
used by any other country; and, b) as a result of the filtering process described in
section 2, of significantly observed flows in terms of the skill-relatedness criteria,
i.e.: exclusions induced by construction of national SRNs, could be the case that
some sectors appear in one country while in other remain disconnected (and left
out of the analysis) because of its exclusive participation in nonsignificant flows,
in terms of the SR filtering criteria for SRN construction (SRij > 0).

Fig. 3. Skill-Relatedness Networks (SRNs). Visualizations of SRNs for Argentina
(ARG), Germany (DEU), and Sweden (SWE) for periods and size according to the
specifications in Table 1. Heatmap representation of undirected networks: Unweighted
(binary, upper row) and weighted (lower row) SRNs. Sorting is done with a hierarchical
clustering algorithm with complete linkage.
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After building each country SRN, we computed their respective portraits
for weighted, Bwc

ℓ,k, as well as unweighted, Bc
ℓ,k, versions of the SRNs with

c ∈ {ARG,DEU, SWE}, plotted in Fig. 4. We use their unweighted versions
to naturally introduce a way to better comprehend the information contained
therein in terms of node connectivity.

In a network portrait, ℓ refers to the length of shortest paths and k counts
the “number of nodes“ having paths of length ℓ, that is to say considering ℓ-
shells of each node in the network (see methods in section 2 and Fig.2). In an
unweighted network ℓ = 1 is the degree distribution, ℓ = m is the distribution of
shortest paths of order m, and ℓ = d is the max length representing the network
diameter. In a weighted network, ℓ has to be discretised as it is continuous.

Fig. 4. Network portraits. Upper row: Unweighted (binary) SRNs. Discrete short-
est path length ℓ from 0 to d, the diameter of the network with dARG = 4,
and dDEU = dSWE = 5. Lower row: Weighted SRNs. Continuous (binned) short-
est path length ℓ from 0 to d, the diameter of the network with dARG = 1.95,
dDEU = 1.43, and dSWE = 1.96. For a better visualization we used 16 bins
(vertical axis), with smaller bins destined to lower values of SR > 0 (BinEdges
∈ (0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2)).

For the unweighted portraits (Fig. 4, upper row), depicting the fingerprints
of the pure connectivity in the SRNs, show the distribution of shortest paths for
each country’s network. These portraits present a kind of P -shape plot related
to the big connected component topology that is characteristic of SRNs, as
mentioned earlier. Their range goes from ℓ = 0 (representing the total count
number of nodes, N), occurring Bc

ℓ=0,k = Nc for each country network, to ℓ = d,
the corresponding (unweighted) diameter of each network (v.g.: dARG = 4, and
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dDEU = dSWE = 5). Intuitively, the visualizations of this portraits show a
condensed image of the way nodes, economic sectors in SRNs, are connected and
proximate to each other albeit not identifying the specific connection between
any pair of sectors m and j.

The second row (Bc
ℓ=1,k) corresponds naturally to the standard degree dis-

tribution of direct connections. It can be appreciated that this distribution is
relatively more widespread for ARG than for SWE and DEU. In particular,
DEU accumulated relatively more (less connected) nodes in small values of k,
that is to say more sectors with direct connections of low degree (or simply less
intersectoral connections).

The next row, Bc
ℓ=2,k, show the distribution of “two steps” paths or the

most proximate indirect neighborhood shell for each node (ℓ-shell=2), that is to
say: industries connected (through SR-links) with the industries in their direct
connections circle. It can be appreciated that all countries show distributions
centered in higher values of k, corresponding to the majority of nodes (industries)
having a great number of nodes (industries) at this distance. In this case, DEU
has a relatively more widespread distribution, while ARG and SWE appear more
alike with higher density in high values of k. This means that most sectors show
many “two steps” connections, a fact consistent with the analysis of labor flow
networks for Argentina evidencing dense networks with short average paths and
diameter, and having small world properties (v.g.: typical diameter of three steps,
see [7,8]).

The following row, Bc
ℓ=3,k, show the distribution of “three steps” paths length,

an enhanced indirect neighbors set. It can be appreciated that the distributions
are again skewed towards lower values of k, meaning that as the length of shortest
paths approaches the diameter (shortest paths maximum length) there are less
nodes (sectors) having many nodes at this distance. In this case, ARG and SWE
appear more similar with a greater concentration of nodes (sectors) having a
small k number of nodes at a three step distance, while DEU has more dispersed
distribution with higher values of k nodes at three steps distance. This indicates
that DEU has longer chains of connectivity, in line with a lower concentrated
degree distribution of direct connections, as described earlier. Additionally, it
suggests that DEU may have more sectoral skills specialization than ARG and
SWE.

The last rows of these unweighted portraits, referring to the more distant
layers of connectivity near or at their (respective) diameters, show high concen-
tration of these longer paths in lower values of k. This refers to the paths linking
nodes with sectors in the outer periphery having very poor connectivity.

For the weighted portraits (Fig. 4, lower row), depicting the valued finger-
prints of the SRNs, show the distribution of shortest paths in terms of SR for
each country’s network. Their range goes from ℓ = 0 to ℓ = d, in this case corre-
sponding to the continuous diameter of each network (v.g.: dARG = 1.95, dDEU =
1.43, and dSWE = 1.96). To compare this portraits showing the distributions of
weighted shortest paths, we computed the same number of bins for the three
SRNs so the interpretation can equally be made for all values of (binned) ℓ. As
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can be appreciated, the interpretation of weighted path lengths and the compar-
ison between them is more demanding although differences and similarities can
be appreciated between the fingerprints. The chosen binning, with BinEdges ∈
(0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2),
highlights lower SR+ weights in line with their decreasing prevalence in SRNs
(see weight distributions in Fig. 5) across the (maximum) range, r ∈ (0,max(dc)),
of observed weighted paths for all countries.

Fig. 5. SRN’s SR > 0 weight distributions.

With this weight aggregation, the weighted portraits in Fig. 4 (lower row) can
be divided into three “charge zones” in relation with the quantification of sector
connectivity referenced in the horizontal axis and the weighted paths measured
in the vertical axis:

a high-concentration, low-weighted shortest ℓ-paths in bins 1 to 5, correspond-
ing to a total weighted distance of ℓ ∈ (0.00, 0.01) and involving the inter-
connection of just a few sectors;

b high-dispersion, medium-weighted shortest ℓ-paths in bins 6 to 10, corre-
sponding to a total weighted distance of ℓ ∈ [0.01, 0.10), involving a sharply
increasing interconnected (horizontal dispersion) and decreasing concentra-
tion (low intensity, showed in black and white gradient colors) sectors topol-
ogy; and

c high-concentration, high-weighted shortest ℓ-paths in bins 11 to 16, corre-
sponding to a total weighted distance of ℓ ∈ [0.10, 2.00] and involving the
decreasing interconnection of most sectors with sectors in the “periphery”.

To quantify these dissimilarities we calculate the (pairwise) network portrait
divergence, DJS(G,G′) ∈ [0, 1], with higher values showing more dissimilarity,
presented in Fig. 6 for both unweighted and weighted portraits. The comparison
for the unweighted portraits present stark differences between ARG and those
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SRN networks pairwise portrait divergence

Fig. 6. SRNs network pairwise portrait divergence. Left: unweighted portraits diver-
gence. Color range for DJS(G,G′) ∈ [0, 1], greater values showing more dissimilar
network portraits.

of DEU (0.63) and SWE (0.80), while at the same time it is also informative of
the differences between DEU and SWE structure (0.55). In light of this results,
it is useful to revisit the original binary structure of the SRNs in the upper row
of Fig. 3. Taking the case of ARG, it is quite clear that its (clustering ordered)
connectivity structure differs strikingly with both DEU and SWE. In partic-
ular, in ARG there is a group of approximately 30% of total sectors (bottom
right) with high interconnection within them and some non-trivial interconnec-
tion with the rest of the sectors. In turn the rest of the sectors are grouped
and ordered in decreasing order of total connectivity, showing some subgroups
with more connectivity within. In the case of DEU, the connectivity structure is
smoothly decreasing and characterized by a small modular structure, with some
small sector groupings with high connectivity within. The case of SWE appears
as an intermediate between the others, also with smoothly decreasing modular
connectivity structure but with subgroups bigger than in the case of DEU.

Regarding the comparison of weighted portraits, the differences of ARG’s SRN
and their counterparts in DEU (0.27) and SWE (0.25) appear less pronounced,
and the comparison between DEU and SWE (0.19) show the lowest divergence.
Again, it is useful to revisit the original weighted SRNs in the lower row of
Fig. 3. This time the visible connectivity structure is more difficult to disentan-
gle because of the weak density in all cases. In particular, SWE presents more
modular structure detectable with the hierarchical clustering at the corners up-
left (higher intersectoral connectivity within and also between this group and the
immediate neighbors down/right, more central), and down-right (smaller group,
less connected with the rest of the network, more periphery like).

At this point, it is worth understanding the differences in the results obtained
between the weighted and binary SRNs. By definition, when SR is high (low),
the intensity of skills exchanges enhances (reduces) the relevance of connections
between sectors. The SR weights, by shrinking distances between sectors with
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lower SR, show similarities between countries that are not visible when looking
only at the bare connectivity of SRNs. This may be related to the fact that
SR weight distributions across countries share a similar profile, although with
some differences in scale (see Fig. 5). Since SR weights are derived from the
margins of the original labor flows tables, the proportionality-bias inherent in
the random null model could be indicating the existence of a more universal-like
phenomenon, showing a smooth structure of significative skill exchanges between
sectors in any national economy. In contrast, the stark differences observed in
the binary SRNs suggest that the particular interactions between sectors (v.g.:
skills exchanges) selected by the SR criteria vary significantly between countries.
This suggests that each country’s SRN connectivity structure follows a distinct
pattern of connectivity of (possibly) groups of sectors and of the network as a
whole.

4 Discussion

In this paper, we compared skill-relatedness networks (SRNs) across different
countries using data from Argentina (ARG), Germany (DEU), and Sweden
(SWE) to explore potential differences between SRNs in a developing economy
vis-a-vis those in developed economies. To achieve this, we applied a method
designed for comparing networks of different sizes (non-aligned networks) that
focuses on topological information [1]. Specifically, we used network portraits
[2], a condensed representation of shortest path length distributions that serves
as a unique structural fingerprint of each network. Through this analysis, we
found that both the portrait representation of networks and the network por-
trait divergence measure are appropriate and effective methods to characterize
and compare SRNs.

Our analysis of the unweighted network portraits of these SRNs reveal con-
trasting differences in the pure connectivity (binary) structure of SRNs across
countries. In particular, Argentina’s SRN exhibits significant differences in inter-
industry connectivity compared to those of developed countries like Germany
and Sweden. Sweden’s SRN shows a markedly distinct connectivity pattern,
while Germany’s network presents a high contrast with both Argentina and
Sweden. This comparison underscores the variability in skill-related connectiv-
ity even among developed economies. This suggest that the specific structure of
interconnections underlying the SRN for each country are quite distinct when
considered as a binary structure, like a skeleton of uniform bridges. Additionally,
in the case of DEU which showed a (degree) distribution of direct intersectoral
connections concentrated in lower connectivity levels, may be indicating of a
structure more specialized regarding skills exchanges.

When comparing the weighted skill-relatedness networks, we found less pro-
nounced differences across the three SRNs. In particular, Argentina’s SRN re-
mains notably distinct from those of both Germany and Sweden, whereas Ger-
many’s SRN closely resembles Sweden’s, suggesting greater similarity in skill-
relatedness structures between these two developed economies. This pattern
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goes in line with a more conventional way of classifying the countries, for exam-
ple through the glass of the developed/underdeveloped distinction or GDP per
capita ranking. Furthermore, the similarity in SR weight distributions across
countries suggests the presence of a universal phenomenon, showing a smooth
structure of significative skill exchanges between sectors in any national economy.
These findings give relative support to the hypothesis of similarity of different
countries SRNs conditioned on historical and cultural differences (see [10]). On
the other hand, they show that the connectivity (topological) structure of dif-
ferent observed SRNs present stark differences between countries.

We identify several potential extensions to this work. From a sectoral perspec-
tive, a deeper exploration of the most significant connections in each economy
could help identify key sectors and inquire about the specific pool of skills ex-
change they facilitate. From a systemic viewpoint, analyzing the meso-structure
of SRNs could reveal relevant linkages relating different core- and periphery-like
sectoral groups and their interactions.
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