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Abstract. Every day, new technologies are developed to combine the facilities arranged for
shared memory systems with the facilities that provide distributed memory systems. This
paper proposes a hybrid system that enables communication between threads running in a
shared memory environment and a cluster of computers. To do this we use specific directives
provided by MPI to solve a problem of similarity search on metric spaces .This work is
part of a larger project that deals with improving query searches over high dimensional
spaces, managing large volumes of data, reducing the number of distance evaluations and
query response times. While the proposal of this work may be generalized and used for
other problems, the results show that the proposed hybrid algorithm allows a significant
improvement.
This work is part of a larger project that deals with improving the execution of parallel algo-
rithms using a hybrid architecture. The goal is to take advantage of the features and facilities
provided by the new parallel architectures that combine distributed and shared memory sys-
tems. The former allows to solve large scale problems while the second allows better use of
resources.
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1 Introduction
New applications for search engines demand the use of data more complex than plain-text. Metric
spaces have been proven to be useful and practical for performing similarity search on very-large
collections of complex data objects such as images or audio. In this case, queries are represented
by objects of the same type to those stored in the database where, for example, one is interested
in retrieving the top-k objects which are the most similar to a given query. The degree of simi-
larity between two objects is calculated by an application-dependent function called the distance
function, which is usually expensive to compute, and pre-computed distances are used to index
the database in order to reduce the average number of calls to this function during search.

Typically a large search engine is composed of a broker machine and a collection of P search
nodes or processors forming a distributed memory cluster system. The broker is in charge of send-
ing queries to processors for results calculation. Each processor is seen as a search node which
is in charge of a fraction of the whole text collection. Efficient search is supported by an index
data structure that is distributed onto the P processors and parallel search query processing is per-
formed by sending the query to different processors where in each processor the arriving job can
be processed by using several CPUs. For systems under heavy query traffic it is critical to reduce
the number of processors hit by queries and yet to maintain an efficient throughput (defined as
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number of queries entirely solved per unit of time). Smart index distribution onto processors and
cache memories can be used to achieve this goal [9, 5].

Recently, the hybrid model has begun to attract more attention for at least two reasons. The
first is that it is relatively easy to pick a language/library instantiation of the hybrid model; in this
work we used OpenMP+MPI, solids commercial products with implementation from multiples
vendors. The second reason is that several scalable parallel computers now appears to encourage
this model. The idea of the hybrid parallel paradigm is to exploit parallelism beyond a single
level using the threads paradigm to exploit the multiples cores per node (with one multithreaded
process per node) while using message passing to communicate among the nodes.

This paper studies and evaluates a multimedia search index named Sparse Spatial Selection
(SSS) [1] on a hybrid architecture that combines shared memory (multicore technology) with dis-
tributed memory systems (clusters of processors). Each processor has a number of active queries
Q at any instant of time. Each query is processed locally in each distributed processor and then
the results are collected by the Broker machine. Therefore, the problem addressed in this work
requires communication and collaboration of different processors in a cluster of computers that
can handle large volumes of information. In addition, the query processing within each processor
is organized to improve the cache management and RAM memory accesses. In this way, we can
also improve response query times achieved on each processor of the cluster.

2 Related work

In this section, we review the properties of metric-space, the data index selected for this work and
existing approaches on parallel query processing for metric-space similarity search.

2.1 Metric spaces

A metric space (U , d) is composed of a universe of valid objects U and a distance function d :
U × U → R+ defined among them. The distance function determines the similarity between
two given objects. The goal is, given a set of objects and a query, to retrieve all objects close
enough to the query. This function holds several properties: strictly positiveness (d(x, y) > 0
and if d(x, y) = 0 then x = y), symmetry (d(x, y) = d(y, x)), and the triangle inequality
(d(x, z) ≤ d(x, y) + d(y, z)). In this setting a database (instance) X is simply a finite collection
of objects from U . The finite subset X ⊂ U , with size n = |X |, is called database and represents
the collection of objects.

There are two main queries of interest for this paper:

– range search: that retrieves all the objects u ∈ X within a radius r of the query q, that is:
RX (q, r) = {u ∈ X : d(q, u) ≤ r}, and

– k-nearest neighbors search: retrieves the set kNNX (q, k) ⊆ X such that |kNN X (q, k)| = k
and, for every u ∈ kNNX (q, k) and every v ∈ X \kNN (q, k), it holds that d(q, u) ≤ d(q, v).

In this work we focus on range queries because k-NN queries can be efficiently solved using range
queries [3]. The distance between two database objects in a high-dimensional space can be very
expensive to compute and in many cases it is certainly the only relevant performance metric to
optimize (they are even more expensive than the cost of secondary memory operations). Thus for
large and complex databases it becomes crucial to reduce the number of distance calculations in
order to achieve reasonable running times. Some data structures for metric spaces can be classified
as pivot based techniques. Pivoting techniques select some objects as pivots, calculate the distance
among all objects and the pivots, and use them in the triangle inequality to discard objects during
search. Many algorithms are based on this idea [2, 11, 12].
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2.2 Sparse Spatial Selection (SSS)

During construction, this pivot-based strategy selects some particular objects as pivots from the
collection and then computes the distance between the pivots and the objects of the database
[1]. The result is a table of distances where columns are the pivots and rows the objects. Each
cell in the table contains the distance between the object and the respective pivot. These dis-
tances are used to solve queries as follows. For a range query RX (q, r) the distances between
the query and all pivots are computed. The objects x from the collection that do not hold the
condition |d(pi, x)− d(pi, q)| ≤ r for all pivots pi can be immediately discarded due to the tri-
angle inequality. The objects that pass this test are considered as potential members of the final
set of objects that form part of the solution for the query and therefore they are directly compared
against the query by applying the condition d(x, q) ≤ r. The gain in performance comes from the
fact that it is much cheaper to effect the calculations for discarding objects using the table than
computing the distance between the candidate objects and the query.

A key issue for efficiency is the method employed to calculate the pivots, which must be
effective enough to drastically reduce total number of distance computations between the objects
and the query. To select the pivots set, let (U , d) be a metric space, let X ⊆ U be a database,
and let M be the maximum distance between any pair of objects in X . The set of pivots contains
initially only the first object of the collection. Then, for each objects xi ∈ X , xi is chosen as a
new pivot if its distance to every pivot in the current set of pivots is equal or greater than α ·M ,
being α a constant parameter. Therefore, an object in the collection becomes a new pivot if it is
located at more than a fraction of the maximum distance with respect to all the current pivots.

2.3 Parallel Query Search in Metric Spaces

Distributed metric-space query processing was first studied in [10]. In this seminal work, the au-
thors presented analytical and experimental results showing that it is possible to achieve scalable
performance in this application domain. The work in [10] was extended in [7] for the context
of a clustering based index data structure for metric-space databases. Several alternatives for in-
dex distribution onto processors were studied, concluding that global indexing achieves better
performance than local indexing. Global indexing refers to a single index that is constructed by
considering the whole set of database objects and then evenly distributing the index onto the
processors. In a way, global indexing helps the broker to quickly select the f processors most
likely to contain the global top-k results, and makes very unlikely to go further on the remaining
P − f processors. However, a drawback of global indexing is the potential for processor imbal-
ance which arises when many queries tend to hit the same few processors. Usually, user queries
tend to be skewed to particular fragments of data that change in a dynamic and an unpredictable
manner. The work in [9] proposes a solution to the imbalance problem of global indexing which
is based on an off-line method to distribute the index onto processors. However, this requires very
expensive O(n2) pre-processing of the n-sized sequential index to determine to which processors
the different sections of the index are assigned. In addition, this solution fails when user queries
dynamically change focus along time.

In regards with shared memory systems, the work in [4] presents and analyze different search
strategies to improve running time and load balance in a multi-core architecture. The authors
show that a sync/async algorithm is suitable for different query traffic.

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 314



3 Hybrid Algorithm
3.1 Data Partition

There are different techniques to partition the data collection on P processors [7, 8, 6]. The sim-
plest technique is called local partition. This technique distributes the objects between processors
and then each processor builds its own local index using local information. Another well-known
technique is the global partition, which constructs a single index and then distributes it somehow
among processors. This paper does not intend to study different partitioning techniques and their
advantages and/or disadvantages, but we focus on combining a distributed and shared memory
system. Therefore we use the first technique mentioned above, i.e. local data partition technique.
But the algorithm proposed in this paper can be adapted to other types of partitions with minimal
modifications.

3.2 Query processing

To process queries we have two kind of processors or nodes: a) Broker Node: receives queries
from users and send them to the search nodes. Then it receives the results from the search nodes to
obtain the final answer. b) Search Nodes: search for similar objects to the queries. Each node has
its own local index and a data collection partition. They access the index in order to find similar
objects to the queries and retrieve those similar objects to the broker node.

The broker sends a batch of queries to all the search nodes. Each node receives the queries
and process them using the local SSS index. When each node retrieves the most similar objects to
the query and sort them by distance, it sends them back to the broker. Finally, the broker collects
all responses and merge them into a single answer.

3.3 Search Algorithm

This algorithm uses the MPICH library for message passing communication between participat-
ing nodes and OpenMP library to perform the query processing using a shared memory system.
The algorithm parameters are: 1) queries: file containing the queries. 2) queryCount: number of
queries to be processed. 3) batchSize: number of queries to be sent from the broker to the search
node. 4) searchThreads: number of threads per search node. 5) ratio: query search radius.

Algorithm 1 shows the main MPI directives used for the search process. First we read the
parameters and we initialize the MPI execution environment. We start all participating nodes in
parallel based on the parameters of MPI as well as the parameters of the program. In lines 2
and 3 we define the communicators that will be used by the MPI processes. Here we use two
communicators, one for sending and one for receiving messages. Then, from line 4 to 15 we
declare a new type of data used for sending messages. In line 7, we declare an array of size
batchSize where each cell will contain information relevant to a query. In line 8 we declare a
name for the data type. Then in line 9 we declare an array that indicates which are the basic types
of data that makes up the structure used and the order of location within the structure. In line
10 we declare an array of integers which specifies the maximum size of each of the basic types,
in this case, we use an integer and an array of 128 characters. In line 11 we declare an array of
memory addresses that is initialized in lines 12 and 13. In line 14 we create the MPI data type
taking the characteristics indicated in the previous lines. Basically it indicates the creation of a
new data type that will contain blocks where the length of each block as well as the displacement
between them and the type of each line was defined in the previous lines of code. The new type
is named sendMsgType (line 8). In line 13, MPI indicates that this new type of data can be
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1. Search Hybrid (queries, queryCount, queryCount, searchThreads)
2. MPI Comm dup comm a //Communicator of the thread that sends messages
3. MPI Comm dup comm b //Communicator of the thread that receives messages
4. //---------Data structure used to send messages
5. struct sendMsgStruct sendMsg[batchSize]
6. MPI Datatype sendMsgType
7. MPI Datatype typeSend[2] = {MPI INT, MPI CHAR}
8. int blockLenSend[2] = {1, 128}
9. MPI Aint dispSend[2]
10. dispSend[0] = 0
11. dispSend[1] = (MPI Aint)&(sendMsg[0].query) - (MPI Aint)&sendMsg[0]
12. MPI Type create struct(2, blockLenSend, dispSend, typeSend, &sendMsgType)
13. MPI Type commit(&sendMsgType)
14. //-------Data structure used to receive messages
15. MPI Datatype recvMsgType
16. struct recvMsgStruct recvMsg[batchSize]
17. MPI Datatype typeRecv[3] = {MPI INT, MPI INT, MPI INT}
18. int blockLenRecv[3] = {1, 1, RESPONZE SIZE}
19. MPI Aint dispRecv[3]
20. dispSend[0] = 0
21. dispSend[1] = (MPI Aint)&(sendMsg[0].query) - (MPI Aint)&sendMsg[0]
22. MPI Type create struct(2, blockLenSend, dispSend, typeSend, &sendMsgType)
23. MPI Type commit(&sendMsgType)
24. MPI Init thread(.. MPI THREAD MULTIPLE .. )
25. MPI Comm size(MPI COMM WORLD, &nodeCount)
26. MPI Comm rank(MPI COMM WORLD, &myRank)
27. MPI Comm dup(MPI COMM WORLD, &dup comm a)
28. MPI Comm dup(MPI COMM WORLD, &dup comm b)
29. if( myRank == BROKER PROCESS )
30. Run broker code()
31. else
32. Run node code()

Fig. 1. Search algorithm.

used within communications messages. From line 14 to 24, we declare the data structure used to
receive messages. Here we proceed in the same way as for the data type defined in the previous
lines to send messages. In line 15 we define the name of data type. We declare an array that
contains details of relevant responses (line 16). In line 17 we declare an array that defines the
basic types of this structure, in this case consisting of 3 integers. Then in line 18 we declare an
array indicating the size of each block, the two first block corresponds to a single integer, while
the third block corresponds to an integer array of size RESPONSE SIZE. In lines 19, 20 and
21 we define the offset between each block. In line 22 we create the data structure. From line 23
on, MPI can use this data structure.

Line 24 shows the use of the MPI Init thread() function that initializes the thread environ-
ment with multiple levels to support threads (MPI THREADS MULTIPLE) without restriction
to make calls to MPI directives. Then, one or more threads per processor can execute MPI direc-
tives concurrently. Later in line 25 the variable nodeCount determines the number of running
processes. In line 26 we recover the process identifier (myrank). In lines 27 and 28 we create
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two communicators to be used. The global communicator MPI is duplicated. Finally, depending
on the process identifier we run the code in line 30, which corresponds to the Broker machine, or
we go to the line 32 which corresponds to the search nodes.

3.4 Design of the threads

In MPI, the message passing between processes is done using a communicator. Because we al-
ways need a communicator, MPI provides the MPI COMM WORLD and is the main com-
municator for all processes involved. To avoid conflicts when using the same communication
channel, we proceeded to double the MPI communicator MPI COMM WORLD through the
variables dup comm a and dup comm a. These variables use the same set of processes but oper-
ate in different context, allowing, for example, to send a batch of queries and to receive an answer
from one of the search nodes at the same time. Below are the specific tasks of each node.

The Broker node uses OpenMP directives to create two threads, one for sending queries
and another for receiving query results from the search nodes as shown in Algorithm
2. To do so, each thread gets its identifier in line 3. Since this process is running on a
multicore processor, we assign each thread to a different core allowing a higher degree
of parallel execution. The allocation of threads into cores is done using the affinity mask
sched setaffinity() as shown in line 7. Thus, it makes better use of multicore processor
and two threads perform their tasks on separate cores largely avoiding the overhead that
is created when making an exchange of context in the case of two threads running on a
single core.
The following describes the Broker threads called Thread B 0 and Thread B 1.

– Thread B 0: Reads the query, then iterates over for delivering a message with a
query batch determined by the parameter batchSize. That message is sent to the
search nodes by a blocking broadcast in each iteration. To this end, lines 8 through
16 of Algorithm 2 are executed by the Thread B 0 responsible for sending queries.
The iterations are made between lines 9 and 15. Then we use the MPI Bcast in
line 14 to send queries via a broadcast operation. Note that the communicator uses
dup comm a defined in Algorithm 1.

– Thread B 1: Iterates until it receives all the answers from all search nodes. The code
in this thread is between lines 17 to 25. In each iteration, the thread keeps waiting
for a reply message using the MPI Probe directive (line 21). Upon a reception of a
message the thread identifies the search node that sent it and processed the responses
recording statistics. The reception of the message is done through the MPI Recv
directive in line 22.

The search nodes use MPI to assign a process identification number (tid), which is also used to
identify the partition and the index used to process queries. Threads are created with the OpenMP
directive parallel indicating the number of threads to be create, as well as the shared data between
them. We classify the threads into two groups: a) threads of communication and b) search threads.
The threads of communication work as the broker threads, one to send messages and other to
receive messages using different communicator variables. They communicate with the Broker
node for receiving queries and send the results. The number of search threads is indicated by the
parameter searchThreads.

Since the search nodes are also multicore processors, threads are created and allocated into
cores using the sched setaffinity() function, but taking into account the following conditions:
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1. Run broker code()
2. #pragma omp parallel num threads(2)
3. tid← omp get thread num()
4. cpu set t mask
5. CPU ZERO (&mask)
6. CPU SET (tid, &mask)
7. sched setaffinity(.. &mask ..)
8. if ( tid==0 ){
9. while( queryCount > 0 ) {
10. while( i< batchSize ){
11. q← get query
12. Msg← add query
13. }
14. MPI Bcast(Msg, batchSize, sendMsgType, BROKER PROCESS, dup comm a)
15. }
16. }
17. else {
18. MPI Status status
19. total← number expected of messages
20. while ( total > 0) {
21. MPI Probe(MPI ANY SOURCE ... dup comm b, &status)
22. MPI Recv(.. dup comm b, &status ..)
23. Process the message received and to obtain statistics
24. }
25. }

Fig. 2. Algorithm executed by the broker machine.

the threads of communication are allocated into the first two cores and the other threads are
distributed among the remaining cores.

The data shared by the threads is listed in the clause shared of the OpenMP parallel direc-
tive. These data remain in shared memory and can be accessed by concurrent threads. The data
are:

– A FIFO input queue, where incoming queries are located and not yet processed.
– An output FIFO where to place the results of queries that must then be sent to the Broker

node.
– They also share the partition of the collection of objects and the local index.

While these data are shared by the threads, the queue access is restricted because they have
the condition that only one thread can remove or insert an object in the queue at a time. This
restriction is achieved indicating critical regions of code with the OpenMP directive critical.
Thus, we obtain a similar behaviour to a blocking queue.

OpenMP identifies each thread with a number that is obtained with the routine omp get num thread().
As mentioned above, identifying the threads not only allows us to allocate them into the corre-
sponding cores but also indicates the functionality of each thread.
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– Thread S 0: It is the thread that receives batch of queries sent from the Broker node. In each
iteration the thread waits for a broadcast message containing a query batch. Upon receiving
each query removes the batch and add it to the input queue so they can be taken by the search
threads. It uses a duplicated communicator and dup comm a.

– Thread S 1: It is the thread responsible for sending the query answers. The thread loops
through the output queue by removing the answers and put them together into a message that
is sent to the Broker using the routine MPI Send(). It uses a duplicated communicator and
dup comm b.

– Thread S n: These threads process the queries. So they have access to both the input queue,
to take new queries, as well as to the output queue where they leave the answers. When they
remove a query from the input queue the threads proceed to search for similar objects by
applying the SSS algorithm as mentioned before, using the partition data collection and the
local index. Once they get the answers for the given query, those answers are packaged to be
sent to the broker node.

As we saw, the queues are FIFO data structures that are used for communication between the
threads of a search node and on the other hand, the message passing is used to process commu-
nication between the nodes. Fig. 3 shows the communication between the search nodes and the
Broker node as well as the communication that takes place between the threads.

Th S_2

Fig. 3. System architecture: communication between process and threads. 1)The broker node sends a mes-
sages with queries. 2) Thread S 0 receives the messages, obtains the queries and put them into the input
queue, 3) the search threads access to the queue to obtain a query, 4) each search thread process a different
query and 5) stores the results into the output queue, 6) Thread S 1 obtains the results, and 7) those results
are sent to the broker.
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4 Experimental Results

4.1 Experimental Settings

This paper used three collections to evaluate the performance of the proposed search algorithm.
For the collections made up of words we use the edit distance to compute the similarity between
two terms. The collections are: a)Spanish: with 51.589 words from a Spanish dictionary. The
maximum distance between two words is 21. b ) English: Consisting of 69.069 English words
where the longest word in this collection has 21 characters. c) UK: Consisting of 200,000 words
from a sample of 1.5TB from the UK Web. Queries on all collections were selected at random
from the same database.The experiments were performed in the WS-49 cluster of the UNSL
which consists of 16 CPUs of 64 bits with Intel Q9550 Quad Core 2.83GHz processors and
RAM memory of 4GB DDR3 1333Mz. 9 CPUs of 64 bits with Intel E6750 Core 2 Duo 2.66GHz
processors and RAM memory 2GB DDR2 667Mz.

The broker node was executed on a dual core processor and the search nodes were executed
on the remaining 16 Quad Core processors which are responsible for processing queries. To an-
alyze the system we performed different executions for different numbers of processors, number
of search threads, message size, etc. which are shown in Table 1 and will be referenced for sub-
sequent figures.

N Th Bs
C1 2 1 32
C2 2 1 64
C3 2 1 128
C4 2 1 256
C5 2 2 32
C6 2 2 64
C7 2 2 128
C8 2 2 256
C9 2 4 32
C10 2 4 64
C11 2 4 128
C12 2 4 256
C13 2 8 32
C14 2 8 64
C15 2 8 128
C16 2 8 256

N Th Bs
C17 4 1 32
C18 4 1 64
C19 4 1 128
C20 4 1 256
C21 4 2 32
C22 4 2 64
C23 4 2 128
C24 4 2 256
C25 4 4 32
C26 4 4 64
C27 4 4 128
C28 4 4 256
C29 4 8 32
C30 4 8 64
C31 4 8 128
C32 4 8 256

N Th Bs
C33 8 1 32
C34 8 1 64
C35 8 1 128
C36 8 1 256
C37 8 2 32
C38 8 2 64
C39 8 2 128
C40 8 2 256
C41 8 4 32
C42 8 4 64
C43 8 4 128
C44 8 4 256
C45 8 8 32
C46 8 8 64
C47 8 8 128
C48 8 8 256

Table 1. Configuration for different experiments. The column N indicates the number of search nodes, Th
the number of search threads and Bs indicates the number of queries in each message.

Running Times First we compute the running time for each of the settings of Table 1 for all
three data collections. The results are shown in Fig. 6 for the Spanish, English and UK collec-
tions, which is plotted separately because the running times are higher with this last collection.
The three collections present a tiered effect by varying the settings. This is due mainly to the
increasing e amount of search nodes and the number of threads used in each processor. The most
significant jumps occur with the configurations C5, C21 and C37 and are produced because we
increase the number of threads and we use a small batch size. Namely, the running time reported
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with 4 processors with a single search thread was similar to the running time reported with 2 or 4
processors and 8 threads. A substantial improvement occurs when increasing from 1 to 2 threads
when we have 4 processors. Something similar occurs with the configuration C37 (with 8 proces-
sors and 2 threads). In the first jump located between configurations C4 and C5, the improvement
in execution times is produced by increasing the amount of thread.

Batch Size An important parameter to analyze is the size of the batch of queries that are sent
in each message. In Fig. 4 we can see the behavior produced by the batch size using the UK
collection. In Fig. 5(a) we can see the execution time using a batch size of 32 queries. In Fig.
5(b) we can see in contrast, the behavior using a batch size of 256 queries. In both cases there
is a significant improvement by increasing the size of threads from one to two, then for a greater
number of threads the system remains stable.

Number of Threads and Nodes The next parameter to consider is the number of search threads
used per node. As we saw in Fig.6 a significant improvement is obtained when switching from
one thread to two threads per node. Fig.7(a) shows the execution times using different numbers
of threads for a batch size of 32 queries and Fig.7(b) using a batch size of 256 queries. Both
figures were obtained from the execution of the algorithm with the UK collection. Using more
than one thread has a significant impact in a system performance. Note also that there is almost
no difference when using 2 or 4 threads, however an improvement is achieved by using 8 threads
with two search nodes. This shows that by using more threads a major improvement in execution
time is achieved. Keep in mind that we can not add an infinite number of threads because they
consume time in context switching.

Finally, Fig.8 shows the running time obtained with the UK collection and processing 100000
queries. This figure shows normalized times to better illustrate the behaviour of the algorithm. To
this end we divide the observed values by the maximum. Increasing the number of threads has
the same effect with P=4 and P=8. We can reduce the running time by 5%. With more threads the
execution time is slightly decreased, but the results do not show a significant improvement. On
the other hand, doubling the number of nodes or processors we reduce running time by 80%.

5 Conclusions and Future Work

In this work we developed an algorithm that combines the facilities provided by distributed sys-
tems and shared memory systems. To this end, we have combined the use of two parallel program-
ming libraries: MPI and OpenMP. The results show an important improvement when using more
than one thread per node, but with two threads or more the improvement is minimal. As future
work will investigate load balancing and scheduling algorithms to allow better use of resources
and avoid competition.
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Fig. 7. Running time for different number of nodes a) with a batch size =32; b) and a batch size = 256.
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