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ABSTRACT

It is interesting and important to compare, analyze and as-
sess the alternative tools that could be used in the area
of Knowledge Representation. In this paper we present a
reasearch line associated to this goal: to formally establish
the relation among Knowledge Representation formalisms
in order to make a sensible use of them. As a part of
this main task, we present a comparison between Normal
Default Theory and Defeasible Logic Programming. This
comparison is achieved introducing a DELP variant, called
DELP∅, which allows to associate the answers of a DELP
interpreter to the consequences, credulous and skeptical, of
a Normal Default Theory.

Keywords: Knowledge Representation, Non-
monotonic Reasoning, Default Logic, Defeasible
logic programming.

1 INTERESTS AND MOTIVATION

In general, it is interesting and important to compare,
analyze and assess the alternative tools that could be
used to confront a specific problem. In particular,
in the area of Artificial Intelligence there are several
research lines dedicated to the development of for-
malisms and tools regarding Knowledge Representa-
tion. These formalisms are so diverse that many times
it is difficult to recognize their advantages, disadvan-
tages and differences in order to make a plausible use
of them. For this reason, it is interesting to analyze the
relation among knowledge representation formalisms
to evaluate their differences and similarities. Sev-
eral works relating diverse approaches of defeasible
and non-monotonic reasoning have been developed
[6, 5, 4, 3, 1, 2].

In this paper, we present, as a part of a major
work, a preliminary analysis about the relation be-
tween Default Logic and Defeasible Logic Program-
ming (DELP). The current goal is to establish the pos-
sibility of defining a set of conditions and transfor-
mation rules that allows us to study this relation in
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a formal way. In this first stage, we analyze several
scenarios and specific examples that evidence the dif-
ferences between these two formalisms, in order to
establish their causes. This is the first step to clarify
the relation under study.

2 DEFAULT LOGIC AND DELP

In this section, we briefly describe the theoretical
background of both Default Logic and DELP. We will
also introduce a variant of DELP that will be used for
comparison.

2.1 Default Logic

A Default TheoryT = 〈W, D〉 consists of a set of
factsW of ground sentences. Each default rule in
D has the forma : b1,...,bn

c (sometimes writtena :
b1, . . . , bn/c), wherea is called the prerequisite,bi

are the justifications andc is the consequent of the de-
fault. The intuitivemeaning of a default is: ifa can be
derived and it is possible to consistently assume each
bi, then concludec. In this first work, we will consider
default theories with the following characteristics:

(C1) The theories are normal. The defaults have the
form a : c/c; for short, we writea ↪→ c.

(C2) Only propositional sentences are allowed.

(C3) For every defaulta ↪→ c, the sentencec is a sin-
gle literal.

2.2 DELP and DELP∅

Defeasible Logic Programming (DELP) is a formal-
ism that combines Logic Programming and Defeasi-
ble Argumentation. DELP allows the representation
of defeasible information in the form of two kinds
of rules: defeasiblerules andstrict rules. The first
ones, also called weak rules, are used in the represen-
tation of tentative information, and the second ones
for representing strict knowledge. The language used



allows strong negation, and DELP uses an argumen-
tation formalism to deal with contradictory knowl-
edge. In DELP, a literalh is warrantedif there ex-
ists a non-defeatedargumentA supportingh. An
argument〈A, h〉 for a literal h is a minimal consis-
tent set of defeasible rules that infersh. In order to
establish whether〈A, h〉 is a non-defeated argument,
argument rebuttalsor counter-argumentsthat could
be defeatersfor 〈A, h〉 are considered,i.e., counter-
arguments that, by some criterion, are preferred to
〈A, h〉. Since counter-arguments are arguments, there
may exist defeaters for them, and defeaters for these
defeaters, and so on. Thus, a sequence of arguments
calledargumentation linemay appear, where each ar-
gument defeats its predecessor in the line. Usually,
each argument has more than one defeater and more
than one argumentation line exists. Therefore, a tree
of arguments calleddialectical tree is constructed,
where the root is〈A, h〉 and each path from the root
to a leaf is an argumentation line. Adialectical anal-
ysis of this tree is used for deciding whetherh is
warranted. This dialectical analysis is carried out la-
belling the arguments conforming the dialectical tree.
The arguments in the leaves of the tree are considered
undefeated. Every inner node with at least a child
marked as undefeated, is considered and marked as a
defeated argument. In the other case, it is undefeated.
Following this analysis, a literalh is said warranted if
there is a dialectical tree where the root is an argument
for h that has been marked as undefeated.

In this formalism, several elements can be adjusted
to define variants of DELP; for instance, the notions
of attack and defeat, as well as the conditions required
for acceptable argumentation lines. We will consider
a DELP variant, that we call DELP∅, observing the
following condition:

• The relation defining the comparison criterion is
the empty set. This criterion turns attack into
defeat.

In general, given two conflicting arguments A and
B, they can be compared using some criterion. In that
case, if A is better than B, A is aproper defeaterfor
B. But, if neither of the two is better than the other, A
is ablocking defeaterfor B, and vice versa. Note that,
in DELP∅ every attack is a blocking defeat and there
are no proper defeaters.

3 EXTENSIONS AND ANSWERS

Default Logic allows the existence of multiple exten-
sions; therefore, in these cases, it is necessary to de-
fine what pieces of information (or beliefs) will be
accepted. For instance, a reasoner may choose to be-
lieve only in those pieces of information present in

every extension. Several semantics had been defined,
but we will consider the classical notions of conse-
quence: skeptical and credulous. If a literall belongs
to every extension of a default theory,l is said to be
skeptical, denotedl ∈ SKEP. Otherwise, if there ex-
ists an extensionE such that literall does not belong
to E, we say that literall is acredulousconsequence,
denotedl ∈ CRED. In the general case, it is possible
for a default theory to have no extensions, but, in the
case of normal theories, the existence of at least one
extension is ensured.

In a defeasible logic program (de.l.p.)P it is possi-
ble to associate each literal inP to one of the follow-
ing three sets:

• YES= {L : L is warranted fromP}

• NO = {L : L is warranted fromP}

• UND = {L : L, L are not warranted fromP}

We want to determine the relation between Nor-
mal Default Theories and DELP∅. The de.l.p. asso-
ciated to a default theory will be determined through
an transformation from default rules (in the default
theory) into defeasible rules (in the de.l.p.).

Other research works had established the relation
between Logic Programs and Default Logic. For this,
the standard translation considers: rules of the form

c← a1 . . . , an, notb1, . . . , notbm

can be viewed as the default rule

a1, . . . , an : ¬ b1, . . . ,¬ bm/c

wherenot represents negation as failure.

We will show that, for our purpose, a default rule
can be expressed as adefeasible rule. In both for-
malisms the existence of this kind of rules (defaults
and defeasible) follow a similar goal: to represent a
relation among pieces of knowledge that could be de-
feated if new or global information is considered. For
instance, we can accept the general rules:
- if it is Sunday and there is no reason against going
shopping, we go.
- if we have homework and nothing is contrary to keep
working at home, we stay at home.
and the strict rule:
- if we stay at home, we do not go shopping.

This information could be represented by a normal
default theory with the rules:

(sunday ↪→ go) (homework ↪→ stay)
(stay → ¬ go) (sunday) (homework)

and through a de.l.p. with the rules:



(go —≺ sunday) (stay —≺ homework)
(¬ go← stay) (sunday ←) (homework ←)

Considering the fact“we have homework”, both
formalisms conclude reasonably“do not go shop-
ping” , but additional knowledge about the fact“it
is Sunday”makes no conclusion drawn about going
shopping or not.

Therefore, we use a defeasible rule:

b —≺ a

to represent each default rule

a : b/b.

Then, given a normal default theoryT = 〈W, D〉,
such thatD = {δ1, . . . , δn}, whereδi = ai ↪→ bi, the
associated defeasible logic programis

PT = (Π, ∆)

where∆ = {bi —≺ ai : δi ∈ D} andΠ consists of
strict rules originated from clauses inW .

In the rest of the article we will show that every lit-
eral belonging to the set SKEP of a normal default the-
ory T will be in the set YES of the associated de.l.p.
PT , and vice versa.

4 EXAMPLES

In this section we present some examples in order
to clarify the relation between Normal Default Logic
and DELP∅.

Example 1
Consider the default theoryT1 = 〈W1, D1〉, where

W1 = {a, b}
D1 = {(a ↪→ x), (b ↪→¬ x), (b ↪→ w)}

The corresponding de.l.p. will bePT1 = (Π1, ∆1),
where

Π1 = {(a←), (b←)},
∆1 = {(x —≺ a), (¬ x —≺ b), (w —≺ b)}

TheoryT1 has two extensions. Literalx belongs to
one of these extensions, whereas¬ x belongs to the
other, andw is in both extensions. For this reason,
we say that{x,¬ x} ⊆ CRED andw ∈ SKEP. In
PT1 , literal w is warranted, but literalsx and¬ x are
undecided. That is,w ∈ YES and{x,¬ x} ⊆ UND.

Example 2
Consider the following theoryT2 = 〈W2, D2〉 where

W2 = {a, b, c}
D2 = {a ↪→ x, b ↪→ x, c ↪→ ¬ x}

The corresponding de.l.p. isPT2 = (Π2, ∆2), where

Π2 = {(a←), (b←), (c←)}
∆2 = {(x —≺ a), (x —≺ b), (¬ x —≺ c)}

In example this example, we can also see that for
theoryT2, {x,¬ x} ⊆ CRED and forPT2 , {x,¬ x} ⊆
UND.

Note that, in example 2 there are two default deriva-
tions for literalx, one using the default rulea ↪→ x
and the other usingb ↪→ x, whereas there is only a
single derivation for¬ x. Each default derivation in
T2 can be associated to a defeasible derivation in the
associated de.l.p.P2. Then,there are two arguments
for x and only one argument for¬ x. However, since
in DELP∅ every attack is a defeat, and all defeaters
are blocking defeaters, there is no chance ofdefense.
That is, if an argumentA is defeated by argumentB
there is no chance of defeatingB using a third argu-
mentC. This is because of the condition that avoids
blocking-blocking situations in the formation of argu-
mentation lines.

c
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b

x!
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Figure 1: Blocking situation en DELP∅

It is important to note that, in normal default the-
ories, the existence of two applicable conflicting de-
fault rules makes their conclusions to be in different
extensions. Since DELP∅ avoids any opportunity of
defense among arguments (see figure 1), the literals
supported by conflicting arguments areundecided.

The next example shows that the concept of“de-
fense among arguments”arises just when a prefer-
ence criterion among arguments can be established.
If an argumentA is preferred over an argumentB, A
coulddefendan argumentC from being attacked by
B.

Example 3
Given the theoryT3 = 〈{x, w, z}, {δ1, δ2, δ3}〉where

δ1 = x ↪→ b,
δ2 = x, w ↪→ ¬ b,
δ3 = x, w, z ↪→ b

The associated de.l.p. isPT3 = (Π3, ∆3), where

Π3 = {(x←), (w←), (z ←)}
∆3 = {(b —≺ x), (¬ b —≺ x, w), (b —≺ x, w, z)}



Considering the normal default theoryT3,
{b,¬ b} ⊆ CRED, and considering DELP∅, we have
{b,¬ b} ⊆ UND. Nevertheless, suppose that the
information supplied by the ruleδ3 is preferred to the
information given byδ2, and this is preferred toδ1.
Normal Default Logic and DELP∅ cannot express
this preference.

Observe that the de.l.p. of example 3 allows the
construction of argumentsA = {b —≺ x, w, z}, B =
{(¬ b —≺ x, w)}, andC = {(b —≺ x)}. Suppose that
we are considering a DELP variant with a preference
criterion based on a relation establishing thatA is bet-
ter thatB, andB is better thanC. In others words, ar-
gumentA is a proper defeater forB, andB is a proper
defeater forC. This situation allows the construction
of an acceptable argumentation lineC − B − A (see
figure 2), and the literalb, which is supported byC, is
finally warranted.
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Figure 2: Preference in DELP

In Default Logic, conflict between default rules ap-
pears either directly or indirectly. A direct conflict
occurs when two applicable defaults rules conclude
complementary literals, which will end up in sepa-
rate extensions. Regarding the associated de.l.p., one
argument for each literal is built and since these argu-
ments are in conflict, both literals will beundecided.
The other kind of conflict we are considering is the
indirect conflict. This one occurs when the strict in-
formation of the theory concludes a literal that blocks
the application of a default rule.

Next, we describe an example that evidences the
occurrence of an indirect conflict in a normal default
theory, and we show how DELP∅ models this conflict,
and gives the expected answers.

Example 4 (Buy)
Consider the theoryT4 = 〈W4, D4〉 whereW4 con-
sists of the facts and rules:

(pricy)
(studyBook)

(mandatory→ buy)

andD4 consists of the default rules:

δ1 = interesting↪→ buy
δ2 = pricy ↪→ ¬ buy
δ3 = studyBook↪→mandatory

Figure 3 shows that the associated DELP∅ deter-
mines a mutual attack between arguments for¬ buy
andbuy. However, the attack is indirectly determined
by literalsbuyandmandatory.
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A B
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mandatory!
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Figure 3: Indirect conflict

Example 5
Given the theoryT5 = 〈W5, D5〉 where

W5 = {p, x, z}
D5 = {p ↪→ a, x ↪→¬ c, z ↪→ c, c ↪→ ¬ a, },

The corresponding de.l.p. has the rules:

Π5 = {(p←), (x←), (z ←)}
∆5 = {(a —≺ p), (¬ c —≺ x), (c —≺ z), (¬ a —≺ c)}

The theoryT5 has three extensions and the sets of
conclusions{c, a}, {c,¬ a} and{¬ c, a} are subsets
of CRED. In DELP∅ literalsa,¬ a, c and¬ c areun-
decided. Figure 4 depicts extensions and arguments
defined by this theory.
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Figure 4: Extensions and Arguments



Example 6
Given the theoryT6 = 〈W6, D6〉 whereW6 consists
of the following rules and facts:

anniversary
rain
noon

(overcast→ ¬ sunny)
(anniversary→ winter.day)

andD6 consists of the default rules:

δ1 = noon↪→ sunny
δ2 = winter.day↪→ overcast
δ3 = ¬ sunny↪→ cold
δ4 = rain ↪→ ¬ sunny
δ5 = overcast, cold ↪→ take.a.taxi

The associated de.l.p. determines, for instance, that
take.a.taxi∈ UND, because of the presence of an ar-
gument forsunnythat attacks (and defeats) the argu-
ment fortake.a.taxi. The default theoryT6 in a simi-
lar way, sanctionstake.a.taxi∈ CRED, because there
is an extensionE such thatsunny∈ E and both lit-
eral are incompatible, sincetake.a.taxiis derived from
¬ sunny. Hence,take.a.taxi∈ E and it is a credulous
consecuence.

Example 7 (A classical example)
Given the theory〈W7, D7〉 where:

W7 = {evidenceA, evidenceB}

D7 = {↪→¬ guilty,

evidenceA↪→ responsible,

responsible↪→ guilty,

evidenceB↪→¬ responsible}

In this final example, we can see again that de-
fault theory sanctions literalsguilty and responsible
as credulous conclusions, and the de.l.p. associated to
this theory classifies both literals asundecided.

Note that the default rule (↪→¬ guilty) states the
presumtion of innocence. This rule is associated to
the defeasible rule (¬ guilty —≺ .)

5 DELP∅ AND DEFAULT THEORY:
FUTURE WORK

In this article, we have presented a variant of DELP,
which we call DELP∅, which allows to model the be-
havior of a Normal Default Logic via defeasible ar-
gumentation. The relation under study maps the dif-
ferent kinds of consequences from the default logic to

the different answers given by DELP∅. In this way,
every skeptical consequence of a particular normal
default theory will be a warranted literal in DELP∅,
whereas every credulous consequence of a default
logic will be an undecided literal in DELP∅. The vari-
ant we are considering defines the argument prefer-
ence criterion as the empty relation. This decision im-
plies that no argument is better than any other. Thus,
there are no proper defeats since every defeat is a
blocking defeat. The definition of DELP∅ follows the
behavior of the normal default theories. In this for-
malism, the application of a default ruleblocks the
derivation of a literal that conflicts with the conclu-
sion of the rule being applied. In default logic, when-
ever thisblockingsituation arises, a new extension is
generated. In DELP∅, this situation turns the conflict-
ing literals intoundecided.

Future work in this research line includes the study
of the relation between DELP and general default
theories, prioritized default theories, and other exten-
sions.
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