A Defeasible Reasoning Web Service

Nicolas D. Rotstein
Alejandro J. Garcia

Fernando M. Sagui

Alejandro G. Stankevicius

Guillermo R. Simari

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering
Universidad Nacional del Sur,

Bahia Blanca - Buenos Aires - ARGENTINA
e-mail: {ndr, fms, ags, ajg, grs}@cs.uns.edu.ar

ABSTRACT

In this article we outline a research line whose main
goal is to give access to the software agents inhabiting
the Web to a powerful inference service built around
Defeasible Logic Programming (DeLP), a formalism
that combines features of Logic Programming with
Defeasible Argumentation. To do so, the web service
prototype we proposed is the next logical step to take
in order to allow agents to draw conclusions through
DeLP within the Semantic Web.

Keywords: web services, defeasible reasoning,
dialectical argumentation, semantic web.

1 INTRODUCTION

The World Wide Web Consortium defines Web
Services as “software systems designed to sup-
port interoperable machine-to-machine interac-
tion over a metwork” [5]. It has an interface
that is described in a machine—processable format
so other systems can interact with it in a man-
ner prescribed by its interface. Agents can use
web services to communicate with other agents
or with software applications written in different
programming languages and running on various
platforms over the Internet. This interoperability
is due to the use of open standards and protocols.
Data can be transported using common protocols,
such as HTTP, FTP, SMTP, etc., that conforms
the Web Service Protocol Stack.

Defeasible Logic Programming (DeLP) [2] is a
formalism that combines features of Logic Pro-
gramming with Defeasible Argumentation. DeL.P
provides the possibility of representing tentative
information in the form of weak rules, and strong
knowledge in the form of strict rules. A defea-
sible argumentation inference mechanism is used
for warranting the entailed conclusions. Queries

Partially supported by Agencia Nacional de Pro-
mocién Cientifica y Tecnolégica (PICT 2002 Nro. 13096,
PICT 2003 Nro. 15043, PAV 2003 Nro. 076), CONI-
CET (Consejo Nacional de Investigaciones Cientificas y
Técnicas de la Republica Argentina), and CIC.

are supported by arguments, and the inference
mechanism provides an answer according to the
outcome of the warrant process. This process
yields one of four possible answers: YES, NO, UN-
DECIDED, and UNKNOWN. An online implemen-
tation of DeLP can be found at: http://lidia.
cs.uns.edu.ar/delp.

fxu?/
quBry

quiry
program program

B

Figure 1: DeLLP and WS layers

The web service prototype introduced in this
article is the next logical step to take in order to
allow agents to draw conclusions through DeLLP
over the Semantic Web [1]. Currently, our pro-
totype is based on a layered approach (briefly
sketched in Figure 1, further explained in Sec-
tion 2.2), where clients interact with the Web
Service Layer, which, in turn, queries the DeLP
Layer to serve each client. This layered design al-
lows us to update the system in a modular fash-
ion, keeping apart the different components.


http://lidia.cs.uns.edu.ar
http://www.cs.uns.edu.ar/
http://www.uns.edu.ar/
mailto:ndr@cs.uns.edu.ar
mailto:fms@cs.uns.edu.ar
mailto:ags@cs.uns.edu.ar
mailto:ajg@cs.uns.edu.ar
mailto:grs@cs.uns.edu.ar
http://lidia.cs.uns.edu.ar/delp
http://lidia.cs.uns.edu.ar/delp

In what follows, we address (i) how to enhance
the interactions among layers, and (ii) outline the
requirements of a hypothetical client in an ideal
scenario. This scenario is deemed ideal in the
sense that the client can expect to receive infor-
mation about the argumentation process that is
not currently available in our implementation.

2 ARCHITECTURE

Briefly stated, our main goal is to give access
to the software agents inhabiting the web to a
powerful inference service built around DeLP.
This research line requires that we define how
these agents get access to DeLP’s inference en-
gine. We start by considering an ideal scenario
within which a hypothetical client interact with
this service, and then in section 2.2 we present
what has been implemented so far. To avoid con-
fusions, both ‘client’ and ‘agent’ will be under-
stood as the same (i.e., the entity making use of
our service).

2.1 Ideal scenario

In an ideal scenario, the client would expect to
have a completely transparent interaction with
it, sending requests with a minimum of informa-
tion, and receiving replies with a maximum of in-
formation (regarding the outcome of the process
performed). Clearly, the client has to be able
to establish a session with the service (that will
maintain the state of execution), in order to start
interacting with it. Then, the client should be
able to provide (i) queries, (ii) knowledge bases,
and (iii) commands.

A request involve the evaluation of a query
against a knowledge base (i.e., a defeasible logic
program (de.l.p.)), no matter whether the latter is
in possession of the agent or not. Having several
agents turning over their own knowledge bases to
the Web Service ought to be handled with secu-
rity in mind. Naturally, these secure transfers
must be completely transparent to the client.

The interaction between the client and our ser-
vice is based on the following requests:

e Query: a term (possibly with unbound vari-
ables in it) which will be answered according
to the current knowledge base.

¢ Knowledge Base (KB): it conveys the
agent knowledge, and there might be more
than one.

e Command: it modifies the current state of
execution of the service.

Note that the service provided should be ca-
pable of joining several knowledge bases. This
is useful, for instance, when the agent has two

separated modules (i.e., de.l.p.’s), one contain-
ing codified background knowledge, and another
module modelling perceptions. Since perceptions
are likely to be dynamic, it makes sense to have
them as a separate module. Hence, whenever the
client poses a query, it has to send both modules,
which should be automatically joined.

Regarding commands, agents can adjust several
aspects of the inference being carried out by this
web service:

e Preference criteria: the client might want
to set which criteria defines the defeat rela-
tion being used.

e Double-block check: the client may set it
on or off. This concerns a particular aspect
of the warrant process.

e Strict rules consistency check:' the
client can also define whether the strict rules
set consistency check is required or not.

¢ Remove knowledge base: the client can
request to remove a given knowledge base.

The Web Service maintains the state of exe-
cution of every agent connected with it to allow
them to personalize its usage by sending com-
mands to it. Without state, the service will have
no memory, rendering commands useless.

For example, lets suppose that we have a soft-
ware broker that helps us in the task of finding
the best plane to travel between two given cities.
The knowledge will be encoded in the form of a
de.l.p., stating reasons for and against choosing a
certain flight. The broker will seek for the avail-
able flights between those cities, along with their
description (stages, cost, and so forth). Then,
according to its knowledge, a certain flight will
be selected as the best choice. Since the reasons
for and against choosing a certain flight must be
weighed with respect to a preestablished prefer-
ence criterion, it should also be capable of se-
lecting that preference among a pool of argument
preference criteria available on the web service.
Briefly put, the software broker follows these four
steps:

1. Establish the session with the web service.

2. Send both the background knowledge and
the information about the available flights
gathered.

3. Send a command establishing the desired
preferences criterion (for instance, it may

1The argumentative formalism upon which DeLP is
based requires the strict part of the program to be con-
sistent. Whenever this condition does not hold, either the
program is modified to accomplish it, or the answers com-
puted by DeLLP become unreliable.



prefer a cheap flight over one with many
stages).

4. Query the service about what flight to take.

In this context, a reply involves not only get-
ting the answer for the query just performed, but
also getting that query grounded (if it had un-
bound variables), and the explanation for the an-
swer. Note that this explanation consists of a set
of dialectical trees: precisely, those built while
generating the answer. The format of this set of
dialectical trees must be standardized, to avoid
agents having to know the way those trees were
constructed. Lets assume that, in this ideal sce-
nario, an ontology of dialectical trees (including
the notions of arguments, attacks, and so forth)
is available. Thus, the agent will be aware of
what a dialectical tree is, what an argument is,
what an attack is, etc., as well as the relation
among these. Therefore, with this information at
hand, the agent will be able to reason about the
explanations to the answers received, something
quite useful to have when trying to understand-
ing what is happening in the world and what is
being warranted. Note that an agent could also
infer the reason why something is not being war-
ranted. These replies should carry the following
information:

e Answer: either YES, NO, UNDECIDED, or
UNKNOWN.

e Ground Query: the service provides,
whenever possible, the instantiation of the
unbound variables of the query.

e Dialectical Trees: the set of dialectical
trees built; codified in the form of an agreed,
public ontology.

To sum up, a typical agent may establish a con-
nection with the Web Service, send a couple of
knowledge bases and start querying over them.
Later, the agent may decide to remove one of the
knowledge bases and send a new one, set off the
consistency check, perform another set of queries,
and so on.

Finally, the agent might encounter some ex-
ceptional conditions while interacting with the
service; namely, communication errors, lack of
knowledge base consistency, etc. In order for the
client to handle any problem that might arise, the
web service should keep him informed about the
occurrence of the following errors:

e Communication error: SOAP and/or
XML encoding errors, or timeouts.

¢ Knowledge Base Join error: signalling
an error while joining several knowledge
bases.

e Consistency error: arising when a given
program fails the consistency check.

Having these exceptional conditions catego-
rized allows the clients to behave consequently.
Sometimes, it will be capable of fixing the error
(e.g., if the program transferred is intrinsically
inconsistent), or not (e.g., if there was a broken
communication link).

Regarding consistency, there are two possible
sources of contradiction within an agent knowl-
edge: (i) when the contradiction arises from the
join of knowledge bases performed by the DeLP
Layer, and (ii) when individual programs are in-
consistent. When a program is inherently con-
tradictory, it will be considered as a Consistency
error; when a set of programs is joined into a new
program that turns out to be contradictory, it will
be considered as a KB Join error. Note that the
inclusion of an inconsistent program in a join will
trigger a Consistency error, which, in turn, will
throw a KB Join error.

Should any of these exceptional situations hap-
pen, the client may expect further information
about it (besides the type of error just encoun-
tered). Hence, the Web Service also provides the
following information:

e Type of error: stating the type of error
encountered.

e Description: where the web service provide
any additional information the client may
need to overcome this situation.

Each error type we mentioned can be triggered
by several situations. The following table relates
some types of error with short descriptions about
the possible situations that cause them:

Error Type Description
Network failure,

Communication | Malformed message,

Timeout
KB Join A set of literals in
contradiction
Pairs of the form:
Consistency (Program, Set of

literals in contradiction)

Since errors are handled in a modular fashion,
it is easy to add new error types and/or descrip-
tions, as well as modify the existent ones.

After an error is triggered, it is up to the agent
to deal with the problem. For instance, if a KB
Join error arises, the agent could have a policy
that turns the strict rules under conflict into de-
feasible rules. Sometimes, the problem has noth-
ing to do with reasoning issues, like an error that
occurred because of a timeout. Here, the agent
cannot do anything but to wait and resend the
message.



2.2 Current Prototype

The web service we have implemented is in its first
stage of development. It is composed by two lay-
ers: the inner called DeLLP Layer, and the outer
Web Service Layer (shown above in Figure 1).
Clients interact only with the Web Service (WS)
Layer, and the interaction between layers (shown
in Figure 2) is totally transparent to them.

>delp (program, query)

< answer >

l DeLP Layer

Figure 2: Interaction between DeLP and WS layers

The DeLP Layer is the reasoning core of the
web service. It receives a single defeasible logic
program and a query as input, and returns the
answer for it. Whenever the agent wants to query
a program, it has to send both program and query
in the request to the web service. Program con-
sistency issues and syntax checking are addressed
by this layer. When an error occurs, it is com-
municated to the outer layer by reutilizing the
answer and query response fields.

The DeLLP Layer also generates the necessary
information to draw the dialectical trees that sup-
port the argumentative process performed. This
data is later used by an external application (or
applet) to draw these trees.

The WS Layer is the interface between the
reasoning module and the clients. In order to
bring the reasoning module to the web, we ad-
vertise it as a web service. This layer receives
queries and programs from agents and forwards
them to the inner layer; afterwards, the latter
sends the response to the outer layer, and the
answer finally arrives back to the clients. The
WS Layer handles the peer-to-peer communica-
tion with clients, and manages the individual en-
vironments for each of them. This layer provides
a standard interface to the clients; hence, clients
might be implemented in any language that sup-
ports interaction with web services via standard
protocols (like SOAP[3], WSDL[6], UDDI[4]).

3 IMPROVEMENTS
A first prototype of the model overviewed in this
work was implemented in order to have a running
version of it. This is a first step towards the ideal

scenario described in the previous section.

In this work, we presented both the current
prototype and the scenario we want to achieve.
To shorten the gap between them, we identified
a series of improvements that ought to be imple-
mented; some of them involve interaction between
layers, and others, between the client and the web
service. These improvements are summarized as
follows:

e The current implementation does not main-
tain the agents state of execution which
is needed to support file (knowledge base)
transfers, commands and successive query-
ing. We have to implement a robust session
management model that allows keeping the
state of every connected client.

e Security issues regarding the transport of
knowledge bases were not addressed in the
first versions of the system. Some secu-
rity mechanisms must be implemented, given
that the transfer of these files is essential to
the functioning of the service.

e Our prototype does not support the trans-
fer of more than one knowledge at once. We
would like to drop this restriction, so to in-
crease the service flexibility. Therefore, an
updated version of the service should include
the possibility of not only sending several
knowledge bases at the same time, but also
add the capability of joining them into a sin-
gle de.l.p. in a transparent way.

e Regarding error management, the interac-
tion between layers may be improved. The
current prototype reutilizes the answer and
query response fields to communicate the
outer layer about the occurrence of an er-
ror. We wish to improve the error handling
model, by separating the error output from
the query—answer output. The objective is
to achieve the type—description schema pre-
sented in the ideal scenario mentioned above.

e The scalability of the system ought be tested
in the real world, and improved, if necessary.
Replication and physical distribution of the
layers are options that must be assessed.

4 SUMMARY & CONCLUSIONS
Web Services are a powerful tool to standardize
and distribute different types of services over the
Web. In this paper, we intend to bring the Defea-
sible Logic Programming reasoning to the Web.
This a first step towards the integration of DeLLP
in the Semantic Web. By doing so, we initiating a
new research line that takes this work as a start-
ing point, aiming to develop higher level tools,



like ontology-based reasoners, mobile agents, and
so forth.

1]

References
BERNERS-LEE, T., HENDLER, J., AND LAS-
SILA, O. The semantic web. Scientific Amer-
ican 284, 5 (2001), 35—43.

GARciA, A. J., AND SIMARI, G. R. Defea-
sible logic programming: An argumentative
approach. Theory and Practice of Logic Pro-
gramming 4, 1 (2004), 95-138.

SOAP. Simple object access protocol. http:
//www.w3.org/TR/soap/.

UDDI. Universal description, discovery, and
integration. http://www.uddi.org/.

W3C. World wide web consortium. http:
//www.w3.org/.

WSDL. Web services description language.
http://wuw.w3.org/TR/wsdl.


http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.uddi.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/TR/wsdl

	1 Introduction
	2 Architecture
	2.1 Ideal scenario
	2.2 Current Prototype

	3 Improvements
	4 Summary & Conclusions

