
Managing Conflicts in Aspect-Oriented Software

Jane L. Pryor

ISISTAN Research Institute
Facultad de Ciencias Exactas, UNICEN

Paraje Arroyo Seco, B7001BBO Tandil, Argentina Tel/Fax: + 54 – 2293 – 440362 / 3
http://www.exa.unicen.edu.ar/~isistan/

E-mail: jpryor@exa.unicen.edu.ar

Abstract. Aspect-Oriented Software Development is an approach which supports the modularisation
of crosscutting concerns through the development phases of an application. One of the limitations in
the main approaches to AOSD is that they do not provide support for the definition and handling of
conflicts that may arise between multiple competing aspects. This paper describes how conflicts are
managed by a framework that we have developed for the construction of aspect-oriented applications.
In the first place, we describe the main characteristics of this reflective multi-level framework and the
tool that instantiates it. We then present our categorisation of different conflicts and how they are
defined and handled by our environment for the development of aspect-oriented software.

Keywords Aspect-oriented software development, crosscutting concerns, reflective architectures,
aspect conflicts, frameworks.

1. Introduction
Aspect-Oriented Software Development (AOSD) [1] is a widespread and experimented approach to the
separation of concerns [2] in software engineering. The goal of aspect-oriented software development
is to provide explicit support for modularising the design decisions that overlap or crosscut the
functional decomposition of a system. As these features crosscut the primary functionality of the
application, their code is spread throughout the basic functional components. In AOSD the crosscutting
concerns are encapsulated in separate modules called aspects, whose code is woven into the functional
components of the system at predetermined join-points.

Current approaches and techniques for Aspect Oriented Software Development [3][4][5][6]
differ on many issues. Some of these issues include the manner and timing for the composition of
aspects with other components, whether aspects may be composed with other aspects, how to improve
aspect reusability, and how conflicts among multiple competing aspects are solved.

Computational reflection is a technique that permits a system to observe and modify the
properties of its own behavior. It is a solution to the problem of creating applications capable of
maintaining, using or changing the representation of their own designs [7]. It seems natural therefore,
to consider reflection as an adequate technique for the implementation of systems with crosscutting
concerns. By its very own definition, the solving of associations between crosscutting and basic
concerns may be handled dynamically, as a system observes its behavior and consequently modifies it
at runtime.

Our work on reflective architectures in different problem domains including AOSD [8][9] has
led to the development of a framework for the construction of aspect-oriented software. This
framework was designed to include the characteristics for aspect-oriented applications that we
considered would increment the adaptability, flexibility, and reuse of the resulting software.

A tool has also been constructed to facilitate the instantiation of the framework. This tool, called
Alpheus, provides an environment which allows the developer to define all the components of the
application and their associations, and to visualize them graphically in UML based notation [10]. From
these specifications, the tool generates the Java code of the application.

One of the problems of the current approaches and techniques for AOSD is the lack of support
for the definition and handling of conflicts between aspects. When more than one aspect is associated
to the same object and they are not totally independent, the system´s behaviour may be unpredictable.

In order to explore a solution to these situations in AOSD, we studied the different dependencies
that may arise between competing aspects, and defined categories of conflicts. Our objective has been
to permit the developer to define different types of conflicts between components of the software, and
to include the treatment of conflicts in our environment for AOSD, including the above-mentioned
framework and Alpheus, the tool for specifying and generating the application.

The following section presents the multi-level reflective framework. Section 3 describes
Alpheus, the AOSD tool. Our categorization of conflicts and how they are defined and handled by the
framework and Alpheus, is described in Section 4. Lastly we present our conclusions.

2. A Framework for the Construction of Aspect-Oriented Software
We have developed a framework for the construction of aspect-oriented applications. In the reflective
architecture developed to support the administration of aspects or crosscutting concerns, the
components of a system reside on two different types of levels:
- The base level, which contains the objects that deal with the basic functionality of the application.
- One or several metalevels, which contain the aspects or crosscutting components of the application.

The framework, implemented in Java [9], was designed to provide the components and
functionality necessary for the construction of quality aspect-oriented applications. It includes planes
for the grouping of aspects, a variety of reflection and association strategies, and the runtime solving of
conflicts between competing aspects.

The framework provides structures called planes, where a plane is a set of aspects which carry
out a specific functionality, thereby facilitating their reuse.

We have identified and provided different reflection strategies for redirecting the thread of
control from the base level to the aspects located in planes at the metalevel, adding flexibility to the
reflection process [11].

Conflicts may occur if two or more aspects compete for activation. An object at the base level
may be associated to more than one aspect, each with its own behavioural objective. If the task to be
carried out by each of these aspects is totally independent of the others, the system will execute without
any problem. However, if the competing aspects have some dependency between them, the system will
behave unpredictably. The framework supports user definition and runtime solving of different
categories of conflicts.

This reflective framework was designed to support the development of aspect-oriented
applications, avoiding the tangling of code between functional and non-functional components, and
enhancing software properties such as flexibility and reuse.

3. Alpheus: A Tool for Aspect-Oriented Software Development
Alpheus is a visual tool designed to aid users in the development of aspect-oriented applications. The
tool supports the following tasks:
- the specification of all the components of an application (planes, basic objects, and aspects), and the

specification of the associations and conflicts between the components;

- the visualization of these specifications and components by means of different levels of abstraction
and UML based diagrams;

- the generation of the corresponding application code.
The tool allows developers to define the classes of the base application and the aspects using pre-

existing ones or creating new ones. A developer may use Alpheus to add aspects to a standard
application without modifying its classes, by defining the aspect classes to be added to the application,
and by specifying the associations and conflicts between the basic application components and the
aspects. For an aspect to be composed (or activated) at runtime with a component of the application
(class, object, or method), the corresponding association between that aspect and the reflected
component must be specified with Alpheus.

Alpheus also supports the specification of conflicts between aspects. The developer specifies the
pair of conflicting aspects (or planes), and then specifies how the conflict has to be solved by
identifying the type of conflict (see Section 4).

In order to facilitate the design and specification of an application´s components and their
associations and conflicts, Alpheus provides different views of the system. It is possible to identify two
main groups of diagrams: firstly, those related to planes, conflicts and association levels; secondly,
those related to the UML diagrams [10].

Although this tool for the instantiation of the framework currently generates Java code, it has
been designed so that it may be extended in order to generate the application code in other
programming languages.

4. Specification and Handling of Conflicts between Aspects
Conflicts may occur if two or more aspects compete for activation. There may be different types of
hidden dependencies or conflicts between aspects, and each will require a different solution in order to
avoid problems [12][13]. It may be the case that a specific aspect should be executed before others, or
that the execution of two aspects may produce an inconsistency that would be avoided if only one of
them was executed. In other cases, the corresponding activation of the competing aspects may depend
on the current runtime context of the system.

In these and other cases, it would be desirable for the developer to specify the type of conflict
between competing aspects, and to describe the actions to be carried out, determining the priorities and
activation policy of the conflicting aspects. The reflective framework has been designed to permit the
definition and runtime handling of conflicts between competing aspects.

In order to incorporate runtime conflict handling in our framework, we first identified and
classified the most common types of conflicts. The conflicts which are detected at runtime are called
dynamic conflicts, and the developer must specify what actions are to be undertaken when a conflict
arises. It is possible that some situations are not problematic at certain moments of execution, but may
be at others. For example, a conflict may be defined between two aspects that are not yet associated to
the same base object; thus they do not yet present a conflictive situation, but may do so in the future if
they are associated to the same object.

We have identified and implemented different categories of conflict activation policies:
- InOrder: the aspects are activated in the order specified by the developer;
- ReverseOrder: the aspects are activated in the reverse order to that established by the developer;
- Optional: the system itself decides which aspect to activate, according to some pre-established

system of priorities or in a random fashion;
- Exclusive: only one conflicting aspect is executed;
- Null: neither one of the aspects is activated;

- Context dependent: the developer adds the code that specifies the activation policy of the aspects.
Although we believe that the above categories of conflicts cover most situations, the framework

has been designed to permit the incorporation of other categories. However, this should be unnecessary
as context dependent conflicts are coded by the developer and ensure flexibility .

In small systems the declaration and handling of conflicts between specific aspects may be
sufficient. However, in more complex and large systems this may become very tedious and difficult to
maintain. It is therefore important to abstract the concept of conflicts to a higher level of granularity,
permitting their declaration at levels of functionality and not only between specific aspects. With the
introduction of planes, the reflective framework supports a more flexible handling of conflicts, easier to
define and maintain. The framework supports the following levels of granularity between conflicts:
aspect – aspect, aspect – plane, plane – plane, and aspect - all.

Alpheus, the environment which supports Aspect-Oriented Software Development, supports the
definition of the different categories and levels of conflicts. Once the corresponding application is
generated by Alpheus and it is running, these conflicts are identified at runtime and solved
automatically.

Figure 1 shows the definition of a conflict with Alpheus in an example of a Hospital Resource
Allocation System. The conflict occurs when a patient arrives and is admitted. The method invoked to
add a patient is AdmittoHosp of the HospitalSystem class. This is a reflected method which is
associated to the ASAssignWard and ASStMedicalHistory aspects, which assign a ward to the patient
and open his medical history. The allocation of resources has to be carried out before the patient´s

Figure 1: Specification of a Conflict with Alpheus

medical history is opened and updated, so an order conflict is declared between the ASAssignWard and
ASStMedicalHistory aspects.

5. Conclusions
This paper briefly describes a multi-level reflective framework and Alpheus, the tool which supports
the specification of all the components of an aspect-oriented application and their associations and
conflicts. This tool automatically generates the Java code of the application, and also provides the
visualization of different UML based diagrams to aid the development process. By using this tool, the
resulting aspect-oriented applications are easy to specify and implement. They are also easy to maintain
and extend, and their structure enhances reusability. We have also presented our categorization of
conflicts between competing aspects, and described how they are specified and handled at runtime.

References
[1] AOSD 2002. 1st. International Conference on Aspect-Oriented Software Development. Enschede. Gregor

Kiczales (Ed.). ACM Press. The Netherlands. April 2002.
[2] Dijkstra E.W. A Discipline of Programming. Prentice Hall, 1976.
[3] Aksit, M., Bergmans, L., and Vural, S.: An object-oriented language-database integration model: The

composition filters approach. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), 1992.

[4] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loingtier, J-M., and Irwin, J.:
Aspect-Oriented Programming. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), 1997.

[5] Tarr, P., Ossher, H., Harrison, W., and Sutton, M.: N Degrees of Separation: Multi-Dimensional Separation
of Concerns. Proceedings of the International Conference on Software Engineering (ICSE), May 1999.

[6] Pawlak, R., Seinturier, L., Duchien, L., Florin, G. JAC: A Flexible Framework for AOP in Java.
Reflection'01 The Third International Conference on Metalevel Architectures and Separation of Crosscutting
Concerns Kyoto, Japan. September 25-28, 2001, Kyoto, Japan.

[7] Maes, P.: Concepts and Experiments in Computational Reflection. In N.K. Meyrowitz, pages 147-155.
[8] Pryor, J., and Bastán, N.: A Reflective Architecture for the Support of Aspect-Oriented Programming in

Smalltalk. Position paper at the Workshop on Aspect Oriented Programming of the European Conference on
Object-Oriented Programming (ECOOP), 1999.

[9] Valentino, F., Ramos, A., Marcos, C., and Pryor, J.: A Framework for the Development of Multi-Level
Reflective Applications. In Proceedings of the Second Argentine Symposium on Software Engineering
(ASSE). Argentina, 2001.

[10] Booch, G., Rumbaugh, J., and Jacobson, I. The Unified Modeling Language. User Guide. Addison-Wesley,
1999.

[11] Marcos, C.: Patrones de Diseño como Entidades de Primera Clase. PhD. Degree Dissertation. Universidad
Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Facultad de Ciencias Exactas, ISISTAN
Research Institute, April 2001.

[12] Nuseibeh, B., Kramer, J. and Finkelstein, A. A Framework for Expressing the Relationships between
Multiple Views in Requirements Specification. In IEEE Transactions on Software Engineering, October
1994.

[13] Truyen, E., Vanhate, B., Joosen, W., Verbaeten, P., Nørregaard Jørgensen, "Dynamic and Selective
Combination of Extensions in Component-based Applications", in Proceedings of the 23rd International
Conference on Software Engineering (ICSE'2001), May 2001, Toronto, Canada.

