
A Discrete Event Model for Real Time System
Simulation

Francisco E. Paez, José M. Urriza, Carlos E. Buckle,
Lucas Schorb

Facultad de Ingeniería – Depto. de Informática
Universidad Nacional de la Patagonia

Puerto Madryn, Argentina
e-mail: josemurriza@gmail.com

Javier D. Orozco
Depto. de Ingeniería Eléctrica y Computadoras

Universidad Nacional del Sur - CONICET
Bahía Blanca, Argentina

e-mail: jadorozco@gmail.com

Abstract — In this work we present a discrete event
model to design and implement a real time system
simulator. This kind of software is useful to verify and
evaluate algorithms and models, and to compute
performance metrics. The discrete event model fits
perfectly with discrete dynamical system such as Real
Time Systems. The event graph technique is then used as
the modeling tool.

Keywords- Real Time Systems simulation; Modeling;
Discrete Event Systems.

I. INTRODUCTION
Computer aided simulation is an essential tool in a large

number of disciplines. It plays a key role accelerating the
creation process of investigation methods and technics.
However, the review and validation of simulation software
and the techniques used to get these investigation results are
often an overlooked issue. It is important that other research
groups can validate their results by reproducing experiments
using the same simulation software. Or at least with one that
uses the same or similar model.

The objective of this work is to formulate a discrete event
model for developing Real Time Systems (RTS) simulation
software. The model presented was used as basis for our
investigation group1 RTS simulation software.

In the past several applications have been developed for
RTS simulation: STRESS ([1]), PERTS ([2]), YASA ([3]),
Cheddar ([4]), RealTTS ([5]) and the Université Libre de
Bruxelles simulator [6], to name a few. Some development
modeling tools are MAST ([7]) and FORTISSIMO ([8]).
Works that studies RTS as discrete systems are [9] and [10].

In [10] is presented a general framework for studying this
kind of systems.

This paper is organized as follows: Section 2 presents an
introduction to RTS, the task model and the notation. Section
3 presents an introduction to the discrete event modeling and
simulation, and an overview of the event graph technique. In
Section 4 the model development is presented. Section 5

1Real Time Systems Group - Universidad Nacional de la
Patagonia San Juan Bosco (UNPSJB) Sede Puerto Madryn
(http://www.rtsg.unp.edu.ar).

discusses a reference implementation. Finally, Section 6
presents our conclusion and future work.

II. REAL TIME SYSTEMS
Stankovic presented in [11] a formal definition accepted

by the community discipline: “In real-time computing the
correctness of the system depends not only in the logical
result of the computation but also on the time at which the
results are produced”.

Depending on how critical it is to meet the deadline, a
RTS can be classified as a hard, soft or firm one. A hard RTS
does not tolerate any deadline loss. In contrast, a soft RTS can
afford to lose some deadlines. Finally a firm RTS typify the
losses according to some statistical criterion.

This work uses the single-processor, multiprogrammed
system model presented in [12]; the tasks are periodic,
preemptable and independent of each other. A scheduling
algorithm is used to determine which task has to be executed
at a particular instant. This algorithm could perform a static
assignation over the shared resource or an assignation based
on priorities.

Under this model, a real time task i (τi) is characterized by
its worst case execution time (Ci), period (Ti) and deadline
(Di). A set of n real time tasks is then specified as

1 1 1() {(, ,),..., (, ,)}n n nn C D T C T DΓ = . Each task generates an
infinite sequence of jobs (instances), where ji,k denotes the kth
job of a task τi. The executed time of a job ji,k at a time t is
denoted as ci,k(t).

Also, in [12] was proved that a single-processor scheduler
worst state of load occurs when all jobs require execution
simultaneously. This instant is known as critical instant. If all
the jobs can execute without missing its deadlines from this
instant, then it is said that the RTS is schedulable.

A. Characterization and Analysis of a Real Time
System
A dynamical system is one whose state changes in

function of time. Then a RTS is such a system. A study of
RTS as dynamical systems, when scheduled by Rate
Monotonic (RM, [12]) or Deadline Monotonic (DM, [13])
algorithms, can be found in [14]. In this work the RTS
evolution since the critical instant is modeled using a fixed
point (FP) equation [15] which calculates a task worst
response time:

JCS&T Vol. 12 No. 3 October 2012

99

1
1

1

qi
q

i j
jj

tt C C
T

−
+

=

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥
∑ (1)

This FP equation models the evolution of the Γ(i)
subsystem starting at the critical instant by using an iterative
process. The method stops when finds a FP such that
tq = tq+1 ≤ Di, in which case the system is schedulable. If the
FP is found after the deadline, the system is not schedulable
(tq+1 > Di). For certain systems such FP may not exist. The
equation (1) is monotonic, deterministic (for each value of t
there exists only one result), non-linear and describes a
dynamic system.

Therefore, a RTS could be characterized as a dynamic,
non-linear, discrete and deterministic system ([14]) when it is
scheduled by a fixed priority scheduler, such as RM or DM.

III. DISCRETE EVENT SIMULATION
Following there is a brief introduction to discrete event

simulation (DES) and the event graph technique is presented.
Discrete event simulation is used to study and simulate

systems which can be represented by discrete models2. In
such model, given a finite interval of time, state variables
changes instantaneously only in a certain number of moments
([16]). An event (v) is defined then as an atomic set of
changes over the state variables at a certain time.

The models are generally represented as recursive
relationships, for example tk+1 = 2tk, where k denotes the
number of discrete steps. Equation (1) is also an example of
such model.

During simulations a clock time t is maintained with the
actual simulation time and a future event list Λ. This list is a
collection of (ti, vi) tuples, being ti ≥ t the instant in which the
event vi will be executed. Generally Λ is a priority queue
prioritized according to the values of ti.

At each step of the simulation, the first event in Λ (the
one with the maximum priority) is executed and t is updated
with the value of ti. Concurrent processes can be simulated
scheduling multiple events at the same time. The simulation
starts with a set of events usually scheduled at t = 0. It ends
when one of these situations occurs: Λ = ∅ (there are no
further futures events); t ≥ tend, where tend is a predetermined
ending time; or a specific termination event (vend) is executed.

A. Event Graphs
A discrete event model can be developed with the Event

Graphs technique ([17, 18]). The dynamics of the modeled
system are represented with events which depict system’s
state changes. The logical and temporal relationships between
them are indicated by edges. It is important to note that the
final event graph it is not an automaton.

An event graph model M has the following components:
• S, the set of variables that conforms the system state.
• V, a set of vertexes, each corresponding to one event.
• E, the set of directed edges eod = (vo, vd) that describes the

scheduling relationship between two events vo and vd in
V.

2 The system under study could be either discrete or

continuous.

• { }: vf v= → ∀ ∈F S S V , the state changes functions
associated with each vertex v ∈V . They describe the
state changes on S when an event v executes.

• { }: {0,1}od odc e= → ∀ ∈C S E , edge condition functions
associated with each edge eod. The edge eod is traversed if
and only if cod = 1.

• { }0od odeδ += ∈ ∀ ∈D E , the set of time delays. One for
each edge eod.

• { }, ode E= ∈eA A , the set of attributes, if any, associated
with each edge eod.

• { },v V= ∈vB B , the set of parameters, if any, associated
with each vertex v.
Then an event graph model is specified as the set

(, , , , , , ,)=M V E S F C D A B . Each directed edge
eod = (vo, vd) is traversed if and only if the associated edge
condition cod evaluation is true after the execution of the
event vo. To traverse an edge eod means to schedule an event
vd at the instant t + δod, where δod is the time delay of the edge
eod. The set of state variables modified by fv is known as Sv,

⊆vS S .
Given an edge eod, the associated set of attributes Ae will

be the formal arguments required by event vd (set Bv). If no
parameters are needed, then A and B are empty sets.

It is important to note that Λ and t (the simulation clock),
are associated with a simulation execution of the model.
Therefore are not themselves part of M.

The event graph model technique will be used in the next
section to model a RTS as a discrete event system.

IV. A DISCRETE EVENT MODEL OF A RTS
Following a discrete event model for a RTS is developed

with the event graph technique. The model identifies the
instantiation of new jobs, and schedule events for the
execution, finalization and preemption of these jobs.

A. System state
The system state S is composed by a set of n real-time

tasks, Γ(n), and the most recent job ji,k for each task. The jobs
are grouped in a ready queue, sorted according to the task
priorities.

B. Events
The model identifies six different events. The first event,

v0, corresponds to the RTS setup time. For any job ji,k the
following events are identified: Arrival (v1), Execution (v2),
Finalization (v3) and Preemption (v4). The v1 event receives
the job ji,k as a parameter. Finally, an event EndSimulation
(v5) is scheduled at time tend when the simulation should end.

C. Simultaneous Event Precedence
Two or more events might be scheduled at the same

simulated time t. An erroneous execution order of these
simultaneous events could result in an invalid state of S. An
appropriate execution priority assignation to each event type
helps to solve this problem. The priorities assignment is
showed in Table 1. The maximum priority is 0.

JCS&T Vol. 12 No. 3 October 2012

100

TABLE I
EVENT EXECUTION PRIORITIES

Event Priority

Initialization (v0) 0
EndSimulation (v5) 1

Finalization (v3) 2
Preemption (v4) 3

Arrival (v1) 4
Execution (v2) 5

D. Edges
The events v0 through v4 are connected by six edges, as

shown in Figure 1. The edges are:
• e01: Schedule the arrival of the first job of each task (ji,1

for i = 1 .. n).
• e11: Schedule the next event v1 (Arrival).
• e12: Schedule a new event v2 (Execution).
• e23: Schedule a new event v3 (Finalization).
• e24: Schedule a new event v4 (Preemption).
• e32: Schedule a new event v2 (Execution).

E. Edge condition functions
The edge e01 schedules the first job of each task. Then it

is traversed only at the simulation’s start. In this work it
hasn’t got an associated edge condition, but one could be
added to, for example, perform schedulability analysis test.
Listed below are the edge conditions cod:
• c11: The previous job of the task τi has not exceeded its

worst case execution time. In that case a new event v1 is
scheduled with the task’s next job (ji,k+1).

• c12: There are no v1 events on Λ scheduled for the current
simulation time. This means that no new jobs
instantiations are scheduled. Then a new v2 event is
programmed at the current instant in order to execute the
highest priority job at the ready queue.

• c23: The highest priority job ji,k could finalize before or at
the scheduled time of the nearest v1 event in Λ. Then it
can complete its execution without interruptions, and a v3
event (Finalization) is programmed.

• c24: The highest priority job ji,k could not finalize before
or at the scheduled time of the nearest v1 event in Λ. Then
it could possibly be preempted by a highest priority job,
and a v4 event (Preemption) is programmed.

• c32: There are no v1 events on Λ for the current simulation
time and there is at least one job ji,k at the ready queue.
Then a new v2 event is programmed at the current instant
in order to execute it.
The edge condition c32 avoids the duplication of a v2

event in case of a v1 event is scheduled at the same time.
Notice that the edge conditions c23 and c24 are mutually
exclusive.

F. Time delays
A vd event should be scheduled for an instant td ≥ t. In the

event graph model this is expressed by associating a time
delay δod ≥ 0 to each edge eod, such that td = t + δod.

The edge e11 schedules a new event v1, which represents a
new job of a task i. The time delay δ11 is calculated with:

11
i

i
i

t T T t
T

δ +⎢ ⎥= −⎢ ⎥⎣ ⎦

The event v2 is scheduled at the current time by the edges
e12 and e32. Then δ12 = δ32 = 0. The time delay for the edge e23
is δ23 = Ci – ci,k(t), which is the remnant execution time of the
job ji,k.

The edge e24 is traversed when the nearest v1 event in Λ is
scheduled for a time t1 ˂ t + Ci – ci,k(t). Then a v4 event is
scheduled at t1 instant. So δ24 = t1 – t.

FIGURE I

FINAL EVENT GRAPH MODEL

G. Event execution
In this section we present the modifications to the system

state (S) that each event performs when executes. These are
the functions fi for each vi event.

The v0 event (Initialization) schedules the task’s initial
jobs. So the first v1 event of each task is programmed from v0.
The simulation clock is also initialized, generally with t = 0.
Any other activity that should be done at setup time (i.e.
worst case response time analysis) is performed at this event.

The v1 event (Arrival) adds a new job ji,k to the scheduler
ready queue. Then it schedules a new v1 event for the next
task job ji,k+1 adding (t + δ11, v1(ji,k+1)) into Λ. Finally if the
edge condition c12 is met, a v2 event (Execution) is scheduled
for that instant, Λ ← (t, v2).

In order to perform the simulated execution of the highest
priority job at the ready queue, the method or routine that
implements the simulated scheduler logic should be invoked
at the v2 event execution. If the edge condition c23 is satisfied,
then a v3 event (Finalization) is programmed
(Λ ← (t + δ23, v3)). Otherwise, a v4 event (Preemption) is
scheduled, Λ ← (t + δ24, v4).

The execution of a v3 event (Finalization) should change
S in order to indicate the highest priority job termination at
ready queue. Then if the edge condition c32 is valid, a new v2
event should be scheduled at the current simulated time in
order to continue the execution of the other jobs that are at the
ready queue. Similarly, the v4 (Preemption) event invokes the
necessary methods or routines to modify S in order to show
the possible preemption of the current highest priority job.

JCS&T Vol. 12 No. 3 October 2012

101

Finally the v5 event (EndSimulation) is scheduled at the
instant tend where the simulation should end. It must free any
resources and invoke the auxiliary routines, like report
generation.

H. Model execution example
An execution example of the model is shown at next; For

this we will use the RTS Γ(3) = {(1, 3, 3), (1, 4, 4), (1, 6, 6)}.
The next table shows the model evolution until t = 6.

TABLE II

MODEL EXECUTION EXAMPLE

t Event Λ Executed job Ready
queue

0 v0
(0, v1(j1,0)), (0, v1(j2,0)),

(0, v1(j3,0))
- -

0 v1(j1,0)
(0, v1(j2,0)), (0, v1(j3,0)),

(3, v1(j1,1))
- j1,0

0 v1(j2,0)
(0, v1(j3,0)), (3, v1(j1,1)),

(4, v1(j2,1))
- j1,0, j2,0

0 v1(j3,0)
(0, v2), (3, v1(j1,1)),

(4, v1(j2,1)), (6, v1(j3,1))
- j1,0, j2,0,

j3,0

0 v2
(1, v3), (3, v1(j1,1)),

(4, v1(j2,1)), (6, v1(j3,1))
j1,0 j2,0, j3,0

1 v3
(1, v2), (3, v1(j1,1)),

(4, v1(j2,1)), (6, v1(j3,1))
j1,0 j2,0, j3,0

1 v2
(2, v3), (3, v1(j1,1)),

(4, v1(j2,1)), (6, v1(j3,1))
j2,0 j3,0

2 v3
(2, v2), (3, v1(j1,1)),

(4, v1(j2,1)), (6, v1(j3,1))
j2,0 j3,0

2 v2
(3, v3), (3, v1(j1,1)),

(4, v1(j2,1)), (6, v1(j3,1))
j3,0 -

3 v3
(3, v1(j1,1)), (4, v1(j2,1)),

(6, v1(j3,1))
j3,0 -

3 v1(j1,1)
(3, v2), (4, v1(j2,1)),

(6, v1(j3,1)), (6, v1(j1,2))
- j1,1

3 v2
(4, v3), (4, v1(j2,1)),

(6, v1(j3,1)), (6, v1(j1,2))
j1,1 -

4 v3
(4, v1(j2,1)), (6, v1(j3,1)),

(6, v1(j1,2))
j1,1 -

4 v1(j2,1)
(4, v2), (6, v1(j3,1)),

(6, v1(j1,2)), (8, v1(j2,2))
- j2,1

4 v2
(5, v3), (6, v1(j3,1)),

(6, v1(j1,2)), (8, v1(j2,2))
j2,1 -

5 v3
(6, v1(j1,2)), (6, v1(j3,1)),

(8, v1(j2,2))
j2,1 -

6 v1(j1,2)
(6, v1(j3,1)), (8, v1(j2,2)),

(9, v1(j1,3))
- j1,2

At the instant t = 0 the future event list (Λ) contains the

initials v1 events, one for each task’s first job. These events
are generated by v0. Then, the first v1 event in Λ is executed,
v1(j1,0). It schedules a new v1 event at t = 3 for the next job of
τi (which is j1,1). This implies to put (3, v1(j1,3)) into Λ. The
execution of the events v1(j2,0) and v1(j3,0) is analogous. When
the last v1 event on Λ is executed, the edge condition c12 is
then valid. Therefore, a v2 event is scheduled at t = 0. This
event will simulate the execution of the highest priority job in
the scheduler ready queue (j1,0). As the job can finish before
any future event at Λ, the edge condition c23 is satisfied. Then
a v3 event is schedule at t = 1. With no more events of any

kind in Λ for t = 0, the simulation clock is then advanced to
the instant time at which the next event is scheduled (t = 1).
Then a new v2 event is scheduled at t = 1 in order to continue
the simulation of the jobs in the ready queue. The rest of the
model execution presents an analogous behavior.

V. IMPLEMENTATION
Next a reference implementation in Java using the SSJ

([19]) simulation library is described. This library offers the
package simevents for discrete event simulation, which has
two main classes, Simulator and Event.

The class Simulator represents the simulation executive.
It provides the simulation clock and the future event list Λ
(offering multiple implementations). Also provides methods
to start and stop the simulation.

The Event class represents an abstraction of an event.
Each one of the events presented in section 4B should be
implemented as a class which extends it (Init, Arrival, Run,
End and Preempt). These classes must override the actions()
method in order to perform the corresponding actions (that is
the fv functions listed in section 4G).

It is assumed that a collection or array with the RTS to
simulate is provided. Also there must be auxiliary classes that
implement the scheduler and other techniques to be
evaluated.

The Init class (v0 event) creates the initial instances of the
Arrival class. These instances are scheduled at the appropriate
times using the schedule(delay) method. The Arrival class
adds its associated job into the ready queue using the
actions() method,. If the condition c12 is met, it should
schedule a new instance of Run (v2) class at the current time.
This class should invoke any method required to perform
modifications at S. If the edge conditions c23 or c24 are valid it
should schedule an instance of End (v3) or Preempt (v4).

End class will invoke Scheduler.finishTask() method
while Preempt will invoke Scheduler.preemptTasks(). This
way the scheduler logic is decoupled from the event logic. If
the edge condition c32 is met, End class must schedule a new
Run class instance for the current time. The Simulator class
from SSJ provides methods that help to verify the different
edge conditions.

VI. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a discrete event model

for the simulation of a RTS, based on the analysis of a RTS as
dynamic, discrete, non-linear and deterministic system. The
event graph technique was used as modeling tool due to its
simplicity and ease of implementation. This model brings a
framework in which simulation software can be developed
using one of the many DES packages or libraries available.
Also, this work serves as basis for future developments that
extends the presented model; for example, for simulating
heterogeneous RTS.

VII. REFERENCES
[1] N. C. Audsley, A. Burns, M. F. Richardson, and A. J.

Wellings, "STRESS: A simulator for hard real-time systems,"
Software: Practice and Experience, vol. 24, pp. 543-564, 1994.

[2] J. W. S. Liu, J. L. Redondo, Z. Deng, T. S. Tia, R. Bettati, A.
Silberman, M. Storch, R. Ha, and W. K. Shih, "PERTS: A
prototyping environment for real-time systems," in Real-Time
Systems Symposium, 1993., Proceedings., 1993, pp. 184-188.

JCS&T Vol. 12 No. 3 October 2012

102

[3] F. Golatowski, J. Hildebrandt, J. Blumenthal, and D.
Timmermann, "Framework for validation, test and analysis of
real-time scheduling algorithms and scheduler
implementations," in Rapid System Prototyping, 2002.
Proceedings. 13th IEEE International Workshop on, 2002, pp.
146-152.

[4] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, "Cheddar: a
flexible real time scheduling framework," Ada Lett., vol.
XXIV, pp. 1-8, 2004.

[5] A. Diaz, R. Batista, and O. Castro, "Realtss: a real-time
scheduling simulator," in Electrical and Electronics
Engineering, 2007. ICEEE 2007. 4th International Conference
on, 2007, pp. 165-168.

[6] S. d. Vroey, J. Goossens, and C. Hernalsteen, "A Generic
Simulator of Real-Time Scheduling Algorithms," presented at
the Proceedings of the 29th Annual Simulation Symposium
(SS '96), 1996.

[7] M. Gonzalez Harbour, J. J. Gutierrez Garcia, J. C. Palencia
Gutierrez, and J. M. Drake Moyano, "MAST: Modeling and
analysis suite for real time applications," in Real-Time Systems,
13th Euromicro Conference on, 2001., 2001, pp. 125-134.

[8] T. Kramp, M. Adrian, and R. Koster, "An Open Framework for
Real-Time Scheduling Simulation," in Proceedings of the 15
IPDPS 2000 Workshops on Parallel and Distributed
Processing, 2000, pp. 766-772.

[9] J. Teich, L. Thiele, and E. A. Lee, "Modeling and simulation of
heterogeneous real-time systems based on a deterministic
discrete event model," in System Synthesis, 1995., Proceedings
of the Eighth International Symposium on, 1995, pp. 156-161.

[10] E. A. Lee, "Modeling concurrent real-time processes using
discrete events," Ann. Softw. Eng., vol. 7, pp. 25-45, 1999.

[11] J. A. Stankovic, "Misconceptions About Real-Time
Computing: A Serius Problem for Next-Generations Systems,"
IEEE Computer, vol. Octubre, pp. 10-19, 1988.

[12] C. L. Liu and J. W. Layland, "Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,"
Journal of the ACM, vol. 20, pp. 46-61, 1973.

[13] N. C. Audsley, A. Burns, M. F. Richarson, and A. J. Wellings,
"Hard Real-Time Scheduling: The Deadline Monotonic
Approach," in Proceedings 8th IEEE Workshop on Real-Time
Operating Systems and Software, Atlanta, GA, USA 1991.

[14] J. M. Urriza, R. Cayssials, and J. D. Orozco, "Modelado de
Sistemas de Tiempo Real Planificados por RM o DM:
Caracterización y Análisis," in XXXIV Conferencia
Latinoamericana de Informática, CLEI 2008, Santa Fe,
Argentina, 2008, pp. 1435-1444.

[15] M. Joseph and P. Pandya, "Finding Response Times in Real-
Time System," The Computer Journal (British Computer
Society), vol. 29, pp. 390-395, 1986.

[16] A. M. Law and W. D. Keaton, Simulation Modelling and
Analysis, 2nd ed.: McGraw-Hill Higher Education, 1997.

[17] L. Schruben, "Simulation modeling with event graphs,"
Commun. ACM, vol. 26, pp. 957-963, 1983.

[18] E. L. Savage, L. W. Schruben, and E. Yücesan, "On the
Generality of Event-Graph Models," INFORMS J. on
Computing, vol. 17, pp. 3-9, 2005.

[19] P. L'Ecuyer and E. Buist, "Simulation in Java with SSJ," in
Simulation Conference, 2005 Proceedings of the Winter, 2005,
p. 10 pp.

JCS&T Vol. 12 No. 3 October 2012

103

