
Fuzzy Prolog with Default Knowledge

Claudio Vau
heret

Departamento de Cien
ias de la Computa
i�on -Fa.E.A.

Universidad Na
ional del Comahue

Buenos Aires 1400 - 8300 Neuqu�en - Argentina

Tel/Fax (54) (299) 4490312/3

e-mail: 
vau
her�un
oma.edu.ar

Abstra
t

In
omplete information is a problem in many aspe
ts of a
tual environments. Further-

more, in many s
enarios the knowledge is not represented in a 
risp way. It is 
ommon

to �nd fuzzy 
on
epts or problems with some level of un
ertainty. This work extends the

semanti
s and implementation of fuzzy prolog presented in [VGM02, GMV04℄ in order

to in
lude Default Knowledge 
apability. The new semanti
 allows non-uniform default

assumptions and has Closed World Assumption (CWA) and Open World Assumption

(OWA) as parti
ular 
ases.

1 Introdu
tion

In [VGM02, GMV04℄ we presented a de�nition of a Fuzzy Prolog Language that models

B([0; 1℄)-valued Fuzzy Logi
, and subsumes former approa
hes be
ause it uses a truth value

representation based on a union of sub-intervals on [0,1℄ and it is de�ned using general oper-

ators that 
an model di�erent logi
s. We also presented the implementation of an interpreter

for this 
on
eived language using Constraint Logi
 Programming over Real numbers CLP(R)).

It was straightforward to extend the implementation in order to in
lude Default Knowledge.

In this paper we adapt the formal semanti
s given in
luding Default Knowledge.

An assumption de�nes default knowledge to be used to 
omplete the available knowledge

provided by the fa
ts and rules of a program. For example, the Closed World Assumption

(CWA) asserts that any atom whose truth-value 
annot be inferred from the fa
ts and rules

is supposed to be false, on the other hand, the Open World Assumption (OWA) asserts that

every su
h atom is supposed to be unknown or unde�ned.

2 Language

The following de�nitions des
ribe the language presented in [VGM02℄. Membership fun
tions

assign to ea
h element of the universal set one element of the Borel Algebra over the interval



[0; 1℄. These sets are de�ned by fun
tions of the form A : X ! B([0; 1℄), where an element in

B([0; 1℄) is a 
ountable union of sub-intervals of [0; 1℄.

The truth value of a goal will depend on the truth value of the subgoals whi
h are in the body

of the 
lauses of its de�nition. We use aggregation operators [ET99℄ in order to propagate the

truth value by means of the fuzzy rules. Fuzzy sets aggregation is done using the appli
ation of a

numeri
 operator of the form f : [0; 1℄

n

! [0; 1℄. If it veri�es f(0; : : : ; 0) = 0 and f(1; : : : ; 1) = 1,

and in addition it is monotoni
 and 
ontinuous, then it is 
alled aggregation operator. If we

deal with the de�nition of fuzzy sets as intervals it is ne
essary to generalize from aggregation

operators of numbers to aggregation operators of intervals. Following the theorem proven by

Nguyen and Walker in [NW00℄ to extend T-norms and T-
onorms [KMP℄ to intervals.

De�nition 2.1 (interval-aggregation) Given an aggregation f : [0; 1℄

n

! [0; 1℄, an interval-

aggregation F : E([0; 1℄)

n

! E([0; 1℄) is de�ned as follows:

F ([x

l

1

; x

u

1

℄; :::; [x
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); f(x
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n

)℄:

A
tually, we work with union of intervals and propose the de�nition:

De�nition 2.2 (union-aggregation) Given an interval-aggregation F : E([0; 1℄)

n

! E([0; 1℄)

de�ned over intervals, a union-aggregation F : B([0; 1℄)

n

! B([0; 1℄) is de�ned over union of

intervals as follows:

F(B

1

; : : : ; B

n

) = [fF (E

1

; :::; E

n

) j E

i

2 B

i

g:

A 
onstraint is a �-formula where � is a signature that 
ontains the real numbers, the binary

fun
tion symbols + and �, and the binary predi
ate symbols =, < and �. If the 
onstraint


 has solution in the domain of real numbers in the interval [0; 1℄ then 
 is 
onsistent, and is

denoted as solvable(
).

The alphabet of our language 
onsists of the following kinds of symbols: variables, 
onstants,

fun
tion symbols and predi
ate symbols. A term is de�ned indu
tively as follows:

1. A variable is a term.

2. A 
onstant is a term.

3. if f is an n-ary fun
tion symbol and t

1

; : : : ; t

n

are terms, then f(t

1

; : : : ; t

n

) is a term.

If p is an n-ary predi
ate symbol, and t

1

; : : : ; t

n

are terms, then p(t

1

; : : : ; t

n

) is an atomi


formula or, more simply an atom.

A fuzzy program is a �nite set of fuzzy fa
ts, and fuzzy 
lauses and we obtain information

from the program through fuzzy queries. They are de�ned below:

De�nition 2.3 (fuzzy fa
t) If A is an atom,

A v

is a fuzzy fa
t, where v, a truth value, is an element in B([0; 1℄) expressed as 
onstraints over

the domain [0; 1℄.



De�nition 2.4 (fuzzy 
lause) Let A;B

1

; : : : ; B

n

be atoms,

A 

F

B

1

; : : : ; B

n

is a fuzzy 
lause where F is an interval-aggregation operator, whi
h indu
es a union-aggregation,

as by de�nition 2.2, F of truth values in B([0; 1℄) represented as 
onstraints over the domain

[0; 1℄.

De�nition 2.5 (fuzzy query) A fuzzy query is a tuple

v  A ?

where A is an atom, and v is a variable (possibly instantiated) that represents a truth value in

B([0; 1℄).

3 Semanti
s

3.1 Least Model Semanti
s

The Herbrand Universe U is the set of all ground terms, whi
h 
an be made up with the


onstants and fun
tion symbols of a program, and the Herbrand Base B is the set of all ground

atoms whi
h 
an be formed by using the predi
ate symbols of the program with ground terms

(of the Herbrand Universe) as arguments.

De�nition 3.1 (default value) We assume there is a fun
tion default whi
h implement the

Default Knowledge Assumptions. It assigns an element of B([0; 1℄) to ea
h element of the

Herbrand Base. If the Closed World Assumption is used, then default(A) = [0; 0℄ for all A in

Herbrand Base. If Open World Assumption is used instead, default(A) = [0; 1℄ for all A in

Herbrand Base.

De�nition 3.2 (interpretation) An interpretation I 
onsists of the following:

1. a subset B

I

of the Herbrand Base,

2. a mapping V

I

, to assign

(a) a truth value, in B([0; 1℄), to ea
h element of B

I

, or

(b) default(A), if A does not belong to B

I

.

The Borel Algebra B([0; 1℄) is a 
omplete latti
e under �

BI

, that denotes Borel in
lusion,

and the Herbrand Base is a 
omplete latti
e under �, that denotes set in
lusion, therefore a

set of all interpretations forms a 
omplete latti
e under the relation v de�ned as follows.

De�nition 3.3 (interval in
lusion �

II

) Given two intervals I

1

= [a; b℄, I

2

= [
; d℄ in E([0; 1℄),

I

1

�

II

I

2

if and only if 
 � a and b � d.



De�nition 3.4 (Borel in
lusion �

BI

) Given two unions of intervals U = I

1

[ : : : [ I

N

,

U

0

= I

0

1

[ : : : [ I

0

M

in B([0; 1℄), U �
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U

0

if and only if 8I

i

2 U , i 2 1::N , 9I

i1

; :::; I

iL

intervals

su
h that I

i1

[ :::[ I

iL

= I

i

; I

i1

\ :::\ I

iL

= ; and for all k 2 1::L; 9I

0

jk

2 U

0

: I

ik

�

II

I

0

jk

where

jk 2 1::M .

De�nition 3.5 (interpretation in
lusion v) I v I

0

if and only if B

I

� B

I

0

and for all

B 2 B

I

, V

I

(B) �

BI

V

I

0

(B), where I = hB

I

; V

I

i, I

0

= hB

I

0

; V

I

0

i are interpretations.

De�nition 3.6 (valuation) A valuation � of an atom A is an assignment of elements of U

to variables of A. So �(A) 2 B is a ground atom.

De�nition 3.7 (model) Given an interpretation I = hB

I

; V

I

i

� I is a model for a fuzzy fa
t A  v, if for all valuation �, �(A) 2 B

I

and v �

BI

V

I

(�(A)).

� I is a model for a 
lause A  

F

B

1

; : : : ; B

n

when the following holds: for all valuation

�, �(A) 2 B

I

and v �

BI

V

I

(�(A)), where v = F(V

I

(�(B

1

)); : : : ; V

I

(�(B

n

))) and F is the

union aggregation obtained from F .

� I is a model of a fuzzy program, if it is a model for the fa
ts and 
lauses of the program.

Every program has a least model whi
h is usually regarded as the intended interpretation of

the program sin
e it is the most 
onservative model. Let \ be the meet operator on the latti
e

of interpretations (I;v), then we 
an prove the following result.

Theorema 3.1 (model interse
tion property) Let I

1

= hB

I

1

; V

I

1

i,I

2

= hB

I

1

; V

I

1

i be mod-

els of a fuzzy program P . Then I

1

\ I

2

is a model of P .

Proof. Let M = hB

M

; V

M

i = I

1

\ I

2

. Sin
e I

1

and I

2

are models of P , they are models for

ea
h fa
t and 
lause of P . Then for all valuation � we have

� for all fa
t A v in P ,

{ �(A) � B

I

1

and �(A) 2 B

I

2

then �(A) 2 B

I

1

\B

I

2

= B

M

,

{ v �

BI

V

I

1

(�(A)) and v �

BI

V

I

2

(�(A)), then v �

BI

V

I

1

(�(A)) \ V

I

2

(�(A)) =

V

M

(�(A))

therefore M is a model for A v

� and for all 
lause A 

F

B

1

; : : : ; B

n

in P

{ sin
e �(A) 2 B

I

1

and �(A) 2 B

I

2

, then �(A) 2 B

I

1

\B

I

2
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.
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))), sin
e F is monotoni
, v �
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V
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and M is model of P .

Remark 3.1 (Least model semanti
) If we let M be the set of all models of a program P ,

the interse
tion of all of this models,

T

M, is a model and it is the least model of P . We denote

the least model of a program P by lm(P ).

Example 3.1 Let's see an example. Suppose we have the following program P :

tall(peter) [0:6; 0:7℄ _ 0:8

tall(john) 0:7

swift(john) [0:6; 0:8℄

good player(X) 

luka

tall(X); swift(X)

Here, we have two fa
ts, tall(john) and swift(john) whose truth values are the unitary in-

terval [0:7; 0:7℄ and the interval [0:6; 0:8℄, respe
tively, and a 
lause for the good player predi
ate

whose aggregation operator is the Lukasiewi
z T-norm.

The following interpretation I = hB; V i is a model for P , where

B = ftall(john); tall(peter); swift(john);

good player(john); good player(peter)g and

V (tall(john)) = [0:7; 1℄

V (swift(john)) = [0:5; 0:8℄

V (tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄

V (good player(john)) = [0:2; 0:9℄

V (good player(peter)) = [0:5; 0:9℄

note that for instan
e if V (good player(john)) = [0:2; 0:5℄ I = hB; V i 
annot be a model of P ,

the reason is that v = luka([0:7; 1℄; [0:5; 0:8℄) = [0:7+0:5�1; 1+0:8�1℄ = [0:2; 0:8℄ 6�

II

[0:2; 0:5℄.

The least model of P is the interse
tion of all models of P whi
h is M = hB

M

; V

M

i where

B

M

= ftall(john); tall(peter); swift(john);

good player(john)g and

V

M

(tall(john)) = [0:7; 0:7℄

V

M

(swift(john)) = [0:6; 0:8℄

V

M

(tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄

V

M

(good player(john)) = [0:3; 0:5℄

Now, suppose we add to P that default(swift(peter)) = [0:5; 1℄. In this 
ase V (swift(peter)) =

[0:5; 1℄ and I is not a model for P be
ause v = luka([0:6; 0:7℄ _ [0:8; 0:8℄; [0:5; 1℄) = [0:6 + 0:5�

1; 0:7 + 1� 1℄ _ [0:8 + 0:5� 1; 0:8 + 1� 1℄ = [0:1; 0:7℄ _ [0:3; 0:8℄ 6�

II

[0:5; 0:9℄.

If we add to P that default(swift(peter)) = [0:5; 1℄ then the least model of P is

M = hB

M

; V

M

i where

B

M

= ftall(john); tall(peter); swift(john);



good player(john); good player(peter)g and

V

M

(tall(john)) = [0:7; 0:7℄

V

M

(swift(john)) = [0:6; 0:8℄

V

M

(tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄

V

M

(good player(john)) = [0:3; 0:5℄

V

M

(good player(peter)) = [0:1; 0:7℄ _ [0:3; 0:8℄

3.2 Fixed-Point Semanti
s

The �xed-point semanti
s we present is based on a one-step 
onsequen
e operator T

P

. The

least �xed-point lfp(T

P

) = I (i.e. T

P

(I) = I) is the de
larative meaning of the program P , so

is equal to lm(P ).

Let P be a fuzzy program and B

P

the Herbrand base of P ; then the mapping T

P

over

interpretations is de�ned as follows:

Let I = hB

I

; V

I

i be a fuzzy interpretation, then T

P

(I) = I

0

, I

0

= hB

I

0

; V

I

0

i

B

I

0

= fA 2 B

P

j Condg

V

I

0

(A) =

[

fv 2 B([0; 1℄) j Condg

where Cond = (A v is a ground instan
e of a fa
t in P and solvable(v)) or

(A 

F

A

1

; : : : ; A

n

is a ground instan
e of a 
lause in P; and solvable(v); v = F(V

I

(A

1

); : : : ; V

I

(A

n

))):

Note that sin
e I

0

must be an interpretation, V

I

0

(A) = default(A) for all A =2 B

I

0

.

The set of interpretations forms a 
omplete latti
e so that, T

P

it is 
ontinuous. Re
all the

de�nition of the ordinal powers of a fun
tion G over a 
omplete latti
e X:

G " � =

8

>

>

<

>

>

:

S

fG " �

0

j �

0

< �g

if � is a limit ordinal,

G(G " (�� 1))

if � is a su

essor ordinal,

and dually,

G # � =

8

>

>

<

>

>

:

T

fG # �

0

j �

0

< �g

if � is a limit ordinal,

G(G # (�� 1))

if � is a su

essor ordinal,

Sin
e the �rst limit ordinal is 0, it follows that in parti
ular, G " 0 = ?

X

(the bottom

element of the latti
e X) and G # 0 = >

X

(the top element). From Kleene's �xed point

theorem we know that the least �xed-point of any 
ontinuous operator is rea
hed at the �rst

in�nite ordinal !. Hen
e lfp(T

P

) = T

P

" !.

Example 3.2 Consider the same program P of the example 3.1, with default(swift(peter)) =

[0:5; 1℄, the ordinal powers of T

P

are

T

P

" 0 = fg

T

P

" 1 = ftall(john); swift(john);

tall(peter)g and

V (tall(john)) = [0:7; 0:7℄

V (swift(john)) = [0:6; 0:8℄

V (tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄



Sin
e swift(peter) does not belong to B

T

P

"1

,

V

T

P

"1

(swift(peter) = default(swift(peter) = [0:5; 1℄ then

T

P

" 2 = ftall(john); swift(john); tall(peter);

good player(john); good player(peter)g and

V (tall(john)) = [0:7; 0:7℄

V (swift(john)) = [0:6; 0:8℄

V (tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄

V (good player(john)) = [0:3; 0:5℄

V

M

(good player(peter)) = [0:1; 0:7℄ _ [0:3; 0:8℄

T

P

" 3 = T

P

" 2.

Lemma 3.1 Let P a fuzzy program, M is a model of P if and only if M is a pre�xpoint of

T

P

, that is T

P

(M) vM .

Proof. Let M = hB

M

; V

M

i and T

P

(M) = hB

T

P

; V

T

P

i.

We �rst prove the \if" dire
tion. Let A be an element of Herbrand Base, if A 2 B

T

P

, then

by de�nition of T

P

there exists a ground instan
e of a fa
t of P , A v, or a ground instan
e of

a 
lause of P , A  

F

A

1

; : : : ; A

n

where fA

1

; : : : ; A

n

g � B

M

and v = F(V

M

(A

1

); : : : ; V

M

(A

n

)).

Sin
e M is a model of P , A 2 B

M

, and ea
h v �

BI

V

M

(A), then V

T

P

(A) �

BI

V

M

(A) and then

T

P

(M) vM . �. If A =2 B

T

P

then V

T

P

(A) = default(A) �

BI

V

M

(A).

Analogously, for the \only if" dire
tion, for ea
h ground instan
e v = F(V

M

(A

1

); : : : ; V

M

(A

n

)),

A 2 B

T

P

and v �

BI

V

T

P

(A), but as T

P

(M) � M , B

T

P

� B

M

and V

T

P

(A) �

BI

V

M

(A). Then

A 2 B

M

and v �

BI

V

M

(A) therefore M is a model of P . �

Given this relationship, it is straightforward to prove that the least model of a program P

is also the least �xed-point of T

P

.

Theorema 3.2 Let P be a fuzzy program, lm(P ) = lfp(T

P

).

Proof.

lm(P ) =

T

fM jM is a model of Pg

=

T

fM jM is a pre-�xpoint of Pg from lemma 3.1

= lfp(T

P

) by the Knaster-Tarski Fixpoint Theorem [Tar55℄�

3.3 Operational Semanti
s

The pro
edural semanti
s is interpreted as a sequen
e of transitions between di�erent states of

a system. We represent the state of a transition system in a 
omputation as a tuple hA; �; Si

where A is the goal, � is a substitution representing the instantiation of variables needed to get



to this state from the initial one and S is a 
onstraint that represents the truth value of the

goal at this state.

When 
omputation starts, A is the initial goal, � = ; and S is true (if there are neither

previous instantiations nor initial 
onstraints). When we get to a state where the �rst argument

is empty then we have �nished the 
omputation and the other two arguments represent the

answer.

A transition in the transition system is de�ned as:

1. hA [ a; �; Si ! hA�; � � �; S ^ �

a

= vi

if h  v is a fa
t of the program P , � is the mgu of a and h, �

a

is the truth value for a

and solvable(S ^ �

a

= v).

2. hA [ a; �; Si ! h(A [B)�; � � �; S ^ 
i

if h  

F

B is a rule of the program P , � is the mgu of a and h, 
 is the 
onstraint that

represents the truth value obtained applying the union-aggregation F to the truth values

of B, and solvable(S ^ 
).

3. hA [ a; �; Si ! hA; �; S ^ �

a

= vi

if none of the above are appli
able and solvable(S ^ �

a

= v) where �

a

= default(a).

The su

ess set SS(P ) 
olle
ts the answers to simple goals p(bx). It is de�ned as follows:

SS(P ) = hB; V i

where B = fp(bx)�jhp(bx); ;; truei !

�

h;; �; Sig is the set of elements of the Herbrand

Base that are instantiated and that have su

eeded; and V (p(bx)) = [fvjhp(bx); ;; truei !

�

h;; �; Si; and v is the solution of Sg is the set of truth values of the elements of B that is the

union (got by ba
ktra
king) of truth values that are obtained from the set of 
onstraints pro-

vided by the program P while query p(bx) is 
omputed.

Example 3.3 Let P be the program of example 3.1. Consider the fuzzy goal

� good player(X) ?

the �rst transition in the 
omputation is

hf(good player(X)g; �; truei !

hftall(X); swift(X)g; �;

� = max(0; �

tall

+ �

swift

� 1)i

unifying the goal with the 
lause and adding the 
onstraint 
orresponding to Lukasiewi
z T-

norm. The next transition leads to the state:

hfswift(X)g; fX = johng; � = max(0; �

tall

+ �

swift

� 1) ^ �

tall

= 0:7i



after unifying tall(X) with tall(john) and adding the 
onstraint regarding the truth value of the

fa
t. The 
omputation ends with:

hfg; fX = johng; � = max(0; �

tall

+ �

swift

� 1) ^ �

tall

= 0:7 ^ 0:6 � �

swift

^ �

swift

� 0:8i

As � = max(0; �

tall

+�

swift

�1)^�

tall

= 0:7^0:6 � �

swift

^�

swift

� 0:8 entails � 2 [0:3; 0:5℄,

the answer to the query good player(X) is X = john with truth value the interval [0:3; 0:5℄.

Other sequen
es of transitions are:

1. hf(good player(X)g; �; truei !

hftall(X); swift(X)g; �;

� = max(0; �

tall

+ �

swift

� 1)i !

hfswift(X)g; fX = peterg;

� = max(0; �

tall

+ �

swift

� 1) ^ 0:6 � �

tall

^ �

tall

� 0:7i !

hfswift(X)g; fX = peterg; � = max(0; �

tall

+ �

swift

� 1)^

0:6 � �

tall

^ �

tall

� 0:7 ^ 0:5 � �

swift

^ �

swift

� 1i

As � = max(0; �

tall

+ �

swift

� 1) ^ 0:6 � �

tall

^ �

tall

� 0:8 ^ 0:5 � �

swift

^ �

swift

� 1

entails � 2 [0:1; 0:7℄, the answer to the query good player(X) is X = peter with truth

value the interval [0:1; 0:7℄.

2. hf(good player(X)g; �; truei !

hftall(X); swift(X)g; �;

� = max(0; �

tall

+ �

swift

� 1)i !

hfswift(X)g; fX = peterg;

� = max(0; �

tall

+ �

swift

� 1) ^ �

tall

= 0:8i !

hfswift(X)g; fX = peterg; � = max(0; �

tall

+ �

swift

� 1)^

�

tall

= 0:8^ 0:5 � �

swift

^ �

swift

� 1i

As � = max(0; �

tall

+ �

swift

� 1) ^ �

tall

= 0:8 ^ 0:5 � �

swift

^ �

swift

� 1 entails � 2

[0:3; 0:8℄, the answer to the query good player(X) is X = peter with truth value the

interval [0:3; 0:8℄.

In order to prove the equivalen
e between operational semanti
 and �xed-point semanti
,

it is useful to introdu
e a type of 
anoni
al top-down evaluation strategy. In this strategy all

literals are redu
ed at ea
h step in a derivation. For obvious reasons, su
h a derivation is 
alled

breadth-�rst.

De�nition 3.8 (Breadth-�rst transition) Given the following set of valid transitions:

hffA

1

; : : : ; A

n

g; �; Si ! hffA

2

; : : : ; A

n

g [B

1

; � � �

1

; S ^ 


1

i

hffA

1

; : : : ; A

n

g; �; Si ! hffA

1

; A

3

: : : ; A

n

g [ B

2

; � � �

2

; S ^ 


2

i

.

.

.

hffA

1

; : : : ; A

n

g; �; Si ! hffA

1

; : : : ; A

n�1

g [ B

n

; � � �

n

; S ^ 


n

i



a breadth-�rst transition is de�ned as

hfA

1

; : : : ; A

n

g; �; Si !

BF

hB

1

[ : : : [B

n

; � � �

1

� : : : � �

n

; S ^ 


1

^ : : : ^ 


n

i

in whi
h all literals are redu
ed at one step.

Theorema 3.3 Given a ordinal number n and T

P

" n = hB

T

P

n

; V

T

P

n

i. there is a su

essful

breadth-�rst derivation of lengh less or equal to n+1 for a program P , hfA

1

; : : : ; A

k

g; �; S

1

i !

�

BF

h;; �; S

2

i i� A

i

� 2 B

T

P

n

and solvable(S ^ �

A

i

= v

i

) and v

i

�

BI

V

T

P

n

(A

i

�).

Proof. The proof is by indu
tion on n. For the base 
ase, all the literals are redu
ed using the

�rst type of transitions or the last one, that is, for ea
h literal A

i

, it exits a fa
t h

i

 v

i

su
h

that �

i

is the mgu of A

i

and h

i

, and �

A

i

is the truth variable for A

i

, and solvable(S

1

^�

A

i

= v

i

)

or �

A

i

= default(A

i

). By de�nition of T

P

, ea
h v

i

�

BI

V

T

P

1

(A

i

�) where hB

T

P

1

; V

T

P

1

i = T

P

" 1.

For the general 
ase, 
onsider the su

essful derivation,

hfA

1

; : : : ; A

k

g; �

1

; S

1

i !

BF

hB; �

2

; S

2

i !

BF

: : :!

BF

h;; �

n

; S

n

i

the transition hfA

1

; : : : ; A

k

g; �

1

; S

1

i !

BF

hB; �

2

; S

2

i

When a literal A

i

is redu
ed using a fa
t or there is not rule for A

i

the result is the same

as in the base 
ase, otherwise there is a 
lause h

i

 

F

B

1

i

; : : : ; B

m

i

in P su
h that �

i

is the

mgu of A

i

and h

i

2 B�

2

and B

j

i

�

i

2 B�

2

, by the indu
tion hypothesis B�

2

� B

T

P

n�1

and

solvable(S

2

^ �

B

j

i

= v

j

i

) and v

j

i

�

BI

V

T

P

n�1

(B

j

i

�

2

) then B

j

i

�

i

� B

T

P

n�1

and by de�nition of

T

P

, A

i

�

i

2 B

T

P

n

and solvable(S

1

^ �

A

i

= v

i

) and v

i

=�

BI

V

T

P

n

(A

i

�

1

). �

Theorema 3.4 For a program P there is a su

essful derivation

hp(bx); ;; truei !

�

h;; �; Si

i� p(bx)� 2 B and v is the solution of S and v �

BI

V (p(bx)�) where lfp(T

P

) = hB; V i

Proof. It follows from the fa
t that lfp(T

P

) = T

P

" ! and from the Theorem 3.3. �

Theorema 3.5 For a fuzzy program P the three semanti
s are equivalent, i.e.

SS(P ) = lfp(TP ) = lm(P )

Proof. the �rst equivalen
e follows from Theorem 3.4 and the se
ond from Theorem 3.2. �

4 Implementation and Syntax

4.1 CLP(R)

Constraint Logi
 Programming [JL87℄ began as a natural merging of two de
larative paradigms:


onstraint solving and logi
 programming. This 
ombination helps make CLP programs both

expressive and 
exible, and in some 
ases, more eÆ
ient than other kinds of logi
 programs.

CLP(R) [JMSY92℄ has linear arithmeti
 
onstraints and 
omputes over the real numbers.

Fuzzy Prolog was implemented in [GMV04℄ as a synta
ti
 extension of a CLP(R) system.

CLP(R) was in
orporated as a library [CH00℄ in the Ciao Prolog system [HBC

+

99℄.

The fuzzy library (or pa
kage in the Ciao Prolog terminology) whi
h implements the inter-

preter of our fuzzy Prolog language has been modi�ed to handle default reasoning.



4.2 Syntax

Ea
h fuzzy Prolog 
lause has an additional argument in the head whi
h represents its truth

value in terms of the truth values of the subgoals of the body of the 
lause. A fa
t A  v

is represented by a Fuzzy Prolog fa
t that des
ribes the range of values of v with a union of

intervals (that 
an be only an interval or even a real number in parti
ular 
ases). The following

examples illustrate the 
on
rete syntax of programs:

youth(45) youth(45) :

�

[0:2; 0:5℄

S

[0:8; 1℄ [0.2,0.5℄ v [0.8,1℄.

tall(john) 0:7 tall(john) :

�

0.7.

swift(john) tall(john) :

�

[0:6; 0:8℄ [0.6,0.8℄.

good player(X) 

min

good player(X) :

�

min

tall(X); tall(X),

swift(X) swift(X).

These 
lauses are expanded at 
ompilation time to 
onstrained 
lauses that are managed by

CLP(R) at run-time. Predi
ates : = :=2, : < :=2, : <= :=2, : > :=2 and : >= :=2 are the Ciao

CLP(R) operators for representing 
onstraint inequalities. For example the �rst fuzzy fa
t is

expanded to these Prolog 
lauses with 
onstraints

youth(45,V):- V .>=. 0.2,

V .<=. 0.5.

youth(45,V):- V .>=. 0.8,

V .<. 1.

And the fuzzy 
lause

:- default(good layer/1,[0.5,0.7℄).

good player(X) :

�

min tall(X),swift(X).

is expanded to

good_player(X,Vp) :-

tall(X,Vq),

swift(X,Vr),

minim([Vq,Vr℄,Vp),

Vp .>=. 0, Vp .=<. 1.

good_player(X,Vp) :-

Vp .>=. 0.5, Vp .=<.0.7.

The predi
ate minim/2 is in
luded as run-time 
ode by the library. Its fun
tion is adding


onstraints to the truth value variables in order to implement the T-norm min. We have

implemented several aggregation operators as prod, max, luka, et
. and in a similar way any

other operator 
an be added to the system without any e�ort. The system is extensible by the

user simply adding the 
ode for new aggregation operators to the library.



5 Con
lusion

We have presented di�erent semanti
s of our fuzzy language, and it is proved the equivalen
e

between them. These semanti
s support non-uniform default assumptions extending the for-

malization given in [GMV04℄. The Ciao system in
luding our Fuzzy Prolog implementation


an be downloaded from http://www.
lip.dia.�.upm.es/Software/Ciao.
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