Fuzzy Prolog with Default Knowledge

Claudio Vaucheret
Departamento de Ciencias de la Computacién -Fa.E.A.
UNIVERSIDAD NACIONAL DEL COMAHUE
Buenos Aires 1400 - 8300 Neuquén - Argentina
TeL/Fax (54) (299) 4490312/3

e-mail: cvaucher@uncoma.edu.ar

Abstract

Incomplete information is a problem in many aspects of actual environments. Further-
more, in many scenarios the knowledge is not represented in a crisp way. It is common
to find fuzzy concepts or problems with some level of uncertainty. This work extends the
semantics and implementation of fuzzy prolog presented in [VGMO02, GMVO04] in order
to include Default Knowledge capability. The new semantic allows non-uniform default
assumptions and has Closed World Assumption (CWA) and Open World Assumption
(OWA) as particular cases.

1 Introduction

In [VGM02, GMV04] we presented a definition of a Fuzzy Prolog Language that models
B([0,1])-valued Fuzzy Logic, and subsumes former approaches because it uses a truth value
representation based on a union of sub-intervals on [0,1] and it is defined using general oper-
ators that can model different logics. We also presented the implementation of an interpreter
for this conceived language using Constraint Logic Programming over Real numbers CLP(R)).
It was straightforward to extend the implementation in order to include Default Knowledge.
In this paper we adapt the formal semantics given including Default Knowledge.

An assumption defines default knowledge to be used to complete the available knowledge
provided by the facts and rules of a program. For example, the Closed World Assumption
(CWA) asserts that any atom whose truth-value cannot be inferred from the facts and rules
is supposed to be false, on the other hand, the Open World Assumption (OWA) asserts that
every such atom is supposed to be unknown or undefined.

2 Language

The following definitions describe the language presented in [VGMO02]. Membership functions
assign to each element of the universal set one element of the Borel Algebra over the interval

[0,1]. These sets are defined by functions of the form A : X — B([0, 1]), where an element in
B([0,1]) is a countable union of sub-intervals of [0, 1].

The truth value of a goal will depend on the truth value of the subgoals which are in the body
of the clauses of its definition. We use aggregation operators [ET99] in order to propagate the
truth value by means of the fuzzy rules. Fuzzy sets aggregation is done using the application of a
numeric operator of the form f : [0,1]" — [0, 1]. If it verifies f(0,...,0) = 0and f(1,...,1) =1,
and in addition it is monotonic and continuous, then it is called aggregation operator. If we
deal with the definition of fuzzy sets as intervals it is necessary to generalize from aggregation
operators of numbers to aggregation operators of intervals. Following the theorem proven by
Nguyen and Walker in [NW00] to extend T-norms and T-conorms [KMP] to intervals.

Definition 2.1 (interval-aggregation) Given an aggregation f : [0,1]" — [0, 1], an interval-
aggregation F : £([0,1]))" — £([0, 1]) is defined as follows:

F(lay, @)y oo [ah, 2p]) = [f (@], s 27,), f(2, o 2p)].
Actually, we work with union of intervals and propose the definition:

Definition 2.2 (union-aggregation) Given an interval-aggregation F': £([0,1])" — £([0, 1])
defined over intervals, a union-aggregation F : B([0,1])™ — B([0,1]) is defined over union of
intervals as follows:

.7:(.31, .. ,Bn) = U{F(gl, ,gn) | (2 € Bz}

A constraint is a X-formula where X is a signature that contains the real numbers, the binary
function symbols + and *, and the binary predicate symbols =, < and <. If the constraint
¢ has solution in the domain of real numbers in the interval [0, 1] then ¢ is consistent, and is
denoted as solvable(c).

The alphabet of our language consists of the following kinds of symbols: variables, constants,
function symbols and predicate symbols. A term is defined inductively as follows:

1. A wvariable is a term.
2. A constant is a term.
3. if f is an n-ary function symbol and ti, ..., t, are terms, then f(ty,...,t,) is a term.

If p is an n-ary predicate symbol, and t,...,t, are terms, then p(ty,...,t,) is an atomic
formula or, more simply an atom.

A fuzzy program is a finite set of fuzzy facts, and fuzzy clauses and we obtain information
from the program through fuzzy queries. They are defined below:

Definition 2.3 (fuzzy fact) If A is an atom,
A+w

is a fuzzy fact, where v, a truth value, is an element in B([0,1]) ezpressed as constraints over
the domain [0, 1].

Definition 2.4 (fuzzy clause) Let A, By, ..., B, be atoms,
A+p B, ..., B,

15 a fuzzy clause where F' is an interval-aggregation operator, which induces a union-aggregation,
as by definition 2.2, F of truth values in B([0,1]) represented as constraints over the domain
[0,1].

Definition 2.5 (fuzzy query) A fuzzy query is a tuple
v A7

where A is an atom, and v is a variable (possibly instantiated) that represents a truth value in

B([0,1]).

3 Semantics

3.1 Least Model Semantics

The Herbrand Universe U is the set of all ground terms, which can be made up with the
constants and function symbols of a program, and the Herbrand Base B is the set of all ground
atoms which can be formed by using the predicate symbols of the program with ground terms
(of the Herbrand Universe) as arguments.

Definition 3.1 (default value) We assume there is a function default which implement the
Default Knowledge Assumptions. It assigns an element of B([0,1]) to each element of the
Herbrand Base. If the Closed World Assumption is used, then default(A) = [0,0] for all A in
Herbrand Base. If Open World Assumption is used instead, default(A) = [0,1] for all A in
Herbrand Base.

Definition 3.2 (interpretation) An interpretation I consists of the following:
1. a subset By of the Herbrand Base,
2. a mapping Vi, to assign
(a) a truth value, in B([0,1]), to each element of By, or
(b) default(A), if A does not belong to By.

The Borel Algebra B([0,1]) is a complete lattice under Cpy, that denotes Borel inclusion,
and the Herbrand Base is a complete lattice under C, that denotes set inclusion, therefore a
set of all interpretations forms a complete lattice under the relation C defined as follows.

Definition 3.3 (interval inclusion C;;) Given two intervals Iy = [a,b], Iy = [c,d] in E(][0, 1]),
I Cir Iy if and only if ¢ < a and b < d.

Definition 3.4 (Borel inclusion Cg;) Given two unions of intervals U = I, U ... U Iy,
U =I1U...Ul} in B([0,1)), U Cp; U" if and only if VI; € U, i € 1..N, 31, ..., I;1, intervals
such that In U..ULp =1, IyN..NLp =0 and for all k € 1..L, EII]’-k eU . L Cqr I]’-k where
jk € 1.M.

Definition 3.5 (interpretation inclusion C) I T I’ if and only if By C Byp and for all
B € By, Vi(B) Cpr Vi(B), where I = (B, Vi), I' = (Bp, Vi) are interpretations.

Definition 3.6 (valuation) A valuation o of an atom A is an assignment of elements of U
to variables of A. So 0(A) € B is a ground atom.

Definition 3.7 (model) Given an interpretation I = (B, V})

e [is a model for a fuzzy fact A <« v, if for all valuation o, o(A) € By and v Cpy
Vi(o(4)).

e [is a model for a clause A <—p By,..., B, when the following holds: for all valuation
o, 0(A) € By and v Cp; Vi(o(A)), where v=F(Vi(o(By1)),...,Vi(o(By))) and F is the
unton aggregation obtained from F.

e [is a model of a fuzzy program, if it is a model for the facts and clauses of the program.

Every program has a least model which is usually regarded as the intended interpretation of
the program since it is the most conservative model. Let N be the meet operator on the lattice
of interpretations (/,C), then we can prove the following result.

Theorema 3.1 (model intersection property) Let I} = (By,,V;,),Is = (B, V1,) be mod-
els of a fuzzy program P. Then I, N Iy is a model of P.

Proof. Let M = (B, Vi) = I N 1. Since I; and I, are models of P, they are models for
each fact and clause of PP. Then for all valuation o we have

e for all fact A <~ v in P,

— O'(A) g BIl and O'(A) € B[2 then O'(A) c BIl N B[2 = BM,

—v Cpr Vi(0(A)) and v Cpr Vi,(0(4)), then v Cpr Vi (0(A)) NV, (0(A) =
Vi(o(A4))

therefore M is a model for A <+ v
e and for all clause A < By,...,B, in P

— since 0(A) € By, and o(A) € By,, then o(A) € By, N By, = Byy.

— it v = F(Vi(o(By)),...,Vu(o(By))), since F is monotonic, v Cp; Vi, (0(A)) and
v Cpr Vi,(0(A)), then v Sy Vi, (0(A)) N Vi, (0(A)) = Vir(o(A4))

therefore M is a model for A < By,..., B,

and M is model of P.

Remark 3.1 (Least model semantic) If we let M be the set of all models of a program P,
the intersection of all of this models, (\ M, is a model and it is the least model of P. We denote
the least model of a program P by lm(P).

Example 3.1 Let’s see an example. Suppose we have the following program P:

tall(peter) < [0.6,0.7] vV 0.8

tall(john) < 0.7

swift(john) < [0.6,0.8]

good_player(X) —jupq tall(X), swift(X)

Here, we have two facts, tall(john) and swift(john) whose truth values are the unitary in-
terval [0.7,0.7] and the interval [0.6, 0.8], respectively, and a clause for the good_player predicate
whose aggregation operator is the Lukasiewicz T-norm.

The following interpretation I = (B, V) is a model for P, where

B = {tall(john), tall(peter), swift(john),
good_player(john), good_player(peter)} and

V(tall(john)) = [0.7,1]
V(swift(john)) = 10.5,0.8]
V (tall(peter)) = [0.6,0.7] Vv [0.8,0.8]
V(good_player(john)) = [0.2,0.9]
V (good_player(peter)) = 1[0.5,0.9]

note that for instance if V(good_player(john)) =1[0.2,0.5] I = (B, V) cannot be a model of P,

the reason is that v = luka(]0.7,1],[0.5,0.8]) = [0.74+0.5—1,140.8—1] = [0.2,0.8] Z,; [0.2,0.5].
The least model of P is the intersection of all models of P which is M = (B, V) where

By = {tall(john), tall(peter), swift(john),

good_player(john)} and

Vi (tall(john)) = [0.7,0.7]
Vu(swift(john)) = [0.6,0.8]

Vi (tall(peter)) = [0.6,0.7] v [0.8,0.8]
Vi (good_player(john)) = [0.3,0.5]

Now, suppose we add to P that de fault(swift(peter)) = [0.5,1]. In this case V (swift(peter)) =

[0.5,1] and I is not a model for P because v = luka([0.6,0.7] v [0.8,0.8],[0.5,1]) = [0.6 + 0.5 —
1,0.74+1—-1]V[0.84+05—1,08+1— 1] =[0.1,0.7] v [0.3,0.8] ;1 [0.5,0.9].

If we add to P that default(swift(peter)) = [0.5,1] then the least model of P is

M = (B, Vi) where
By = {tall(john), tall(peter), swift(john),

good_player(john), good_player(peter)} and

Vi (tall(john)) = 10.7,0.7]
Vi (swift(john)) = 10.6,0.8]
Vi (tall(peter)) = [0.6,0.7] Vv [0.8,0.8]
Viar(good_player(john)) [0.3,0.5]
Viar(good_player(peter)) = [0.1,0.7] v [0.3,0.8]

3.2 Fixed-Point Semantics

The fixed-point semantics we present is based on a one-step consequence operator Tp. The
least fixed-point {fp(Tp) = I (i.e. Tp(I) = I) is the declarative meaning of the program P, so
is equal to Im(P).

Let P be a fuzzy program and Bp the Herbrand base of P; then the mapping Tp over
interpretations is defined as follows:

Let I = (By, V) be a fuzzy interpretation, then Tp(I) = I', I' = (Bp, Vi)

By = {A € Bp | C’ond}
Vir(4) = |tv € B(0,1)) | Cond)

where Cond = (A < v is a ground instance of a fact in P and solvable(v)) or
(A<F Ay,..., A, is a ground instance of a clause in P, and solvable(v),v = F(Vi(Ay),...,Vi(An))).
Note that since I’ must be an interpretation, V. (A) = default(A) for all A ¢ By.

The set of interpretations forms a complete lattice so that, T it is continuous. Recall the
definition of the ordinal powers of a function G over a complete lattice X:

U{G 1 | <a} MG ld | <a}
B if v is a limit ordinaland dually, _ if v is a limit ordinal,
“Te= GGt e-) “reTy GG L)
if a is a successor ordinal, if v is a successor ordinal,

Since the first limit ordinal is 0, it follows that in particular, G 1 0 = Lx (the bottom
element of the lattice X) and G | 0 = Tx (the top element). From Kleene’s fixed point
theorem we know that the least fixed-point of any continuous operator is reached at the first
infinite ordinal w. Hence [fp(Tp) = Tp 1T w.

Example 3.2 Consider the same program P of the example 3.1, with de fault(swift(peter)) =
[0.5,1], the ordinal powers of Tp are
Tp 1 0={}
Tp 1 1= {tall(john), swift(john),
tall(peter)} and
V(tall(john)) = [0.7,0.7]
V(swift(john)) = [0.6,0.8]
V(tall(peter)) = 10.6,0.7] vV [0.8,0.8]

Since swift(peter) does not belong to Brpt1,
Ve (swift(peter) = default(swift(peter) = [0.5,1] then

Tp 12 ={tall(john), swift(john),tall(peter),
good_player(john), good_player(peter)} and

V(tall(john)) = [0.7,0.7]
V(swift(john)) = [0.6,0.8]
V (tall(peter)) = [0.6,0.7] Vv [0.8,0.8]
V(good_player(john)) = %0.3, 0.5]

Viar(good_player(peter)) = [0.1,0.7] v [0.3,0.8]

Tp13=Tp*2.

Lemma 3.1 Let P a fuzzy program, M is a model of P if and only if M s a prefixpoint of
Tp, that s TP(M) E M.

P’f’OOf. Let M = <BM,VM> and TP(M) = <BTP7VTP>-

We first prove the “if” direction. Let A be an element of Herbrand Base, if A € By, then
by definition of T there exists a ground instance of a fact of P, A <— v, or a ground instance of
a clause of P, A <—p Ay,..., A, where {A},...;A,} € By and v = F(Vy(Ay), ..., Var(An)).
Since M is a model of P, A € By, and each v Cp; Vi (A), then Vi, (A) Cpr Vir(A) and then
TP(M) E M. OIfA ¢ BTP then VTP(A) == default(A) gB[VM(A)

Analogously, for the “only if” direction, for each ground instance v = F(Vy, (A1), ..., Vu(4,)),
A€ BTp and v Cpy VTp(A); but as TP(M) C M, BTP C By and VTp(A) Chr VM(A) Then
A € By and v Cpr Vi (A) therefore M is a model of P. O

Given this relationship, it is straightforward to prove that the least model of a program P
is also the least fixed-point of Tp.

Theorema 3.2 Let P be a fuzzy program, Im(P) = fp(Tp).

Proof.

Im(P) = ({M | M is a model of P}
= ({M | M is a pre-fixpoint of P} from lemma 3.1
= Ifp(Tp) by the Knaster-Tarski Fixpoint Theorem [Tar55|]

3.3 Operational Semantics

The procedural semantics is interpreted as a sequence of transitions between different states of
a system. We represent the state of a transition system in a computation as a tuple (A, o, S)
where A is the goal, o is a substitution representing the instantiation of variables needed to get

to this state from the initial one and S is a constraint that represents the truth value of the
goal at this state.

When computation starts, A is the initial goal, o = () and S is true (if there are neither
previous instantiations nor initial constraints). When we get to a state where the first argument
is empty then we have finished the computation and the other two arguments represent the
answer.

A transition in the transition system is defined as:

1. (AUa,0,5) — (40,0 -0, 5 A g = v)

if h <— v is a fact of the program P, 6 is the mgu of a and h, p, is the truth value for a
and solvable(S A pg = v).

2. (AUa,0,5) = (AUB)#,0-6,5S Nc)

if h <—p B is a rule of the program P, # is the mgu of a and A, ¢ is the constraint that
represents the truth value obtained applying the union-aggregation F to the truth values
of B, and solvable(S A c).

3. (AUa,0,8) = (A, 0,5 N pig = v)
if none of the above are applicable and solvable(S A p, = v) where u, = default(a).
The success set SS(P) collects the answers to simple goals p(Z). It is defined as follows:
S5(P)=(B,V)

where B = {p(Z)o|(p(Z), 0, true) —* (0,0,5)} is the set of elements of the Herbrand
Base that are instantiated and that have succeeded; and V(p(7)) = U{v|(p(Z), 0, true) —*
(D, 0,S),and v is the solution of S} is the set of truth values of the elements of B that is the
union (got by backtracking) of truth values that are obtained from the set of constraints pro-
vided by the program P while query p(7) is computed.

Example 3.3 Let P be the program of ezample 3.1. Consider the fuzzy goal
p < good_player(X) 7
the first transition in the computation is

({(good_player(X)}, e, true) —
({tall(X), swift(X)},e,
K= max(O, Hiall + Hswift — 1)>

unifying the goal with the clause and adding the constraint corresponding to Lukasiewicz T-
norm. The next transition leads to the state:

({swift(X)}, {X = john}, p = max(0, pran + tswire — 1) A ptran = 0.7)

after unifying tall(X) with tall(john) and adding the constraint regarding the truth value of the
fact. The computation ends with:

<{}7 {X - john}, H = max(O, Htall + ll'swift - 1) A Htall = 0.7N0.6 S ll'swift/\ ll'swift S 08>

As po=max(0, pan+rswift— 1) A g = 0.TA0.6 < i pe A ftswise < 0.8 entails p € [0.3,0.5],
the answer to the query good_player(X) is X = john with truth value the interval [0.3,0.5].
Other sequences of transitions are:

1. {{(good_player(X)},e, true) —
({tall(X), swift(X)},e,
p = max(0, fay + Pswise — 1)) —
{swift(X)},{X = peter},
= maz (0, pau + Hswise — 1) A 0.6 < puau pran < 0.7) —

({S’LUth(X)}, {X = peter}: n= max(oa Hiall + stift - 1)/\
0.6 S /utall/\ Htall S 0.7N0.5 S /uswift/\ Hswift S]->

As p = max(0, puau + fswise — 1) AN 0.6 < frgan A prrar < 0.8 A 0.5 < prowife N frswise < 1
entails p € [0.1,0.7], the answer to the query good_player(X) is X = peter with truth
value the interval [0.1,0.7].

2. ({(good_player(X)}, €, truey —
({tall(X), swift(X)},e,
1= maz(0, pan + fswifr — 1)) —
({swift(X)}, {X = peter},
p=max(0, ey + fswift — 1) A g = 0.8) —
({swift(X)},{X = peter}, p = max(0, fran + fswise — 1)A
[t = 0.8A 0.5 < fswife A Hswise < 1)

As = max(0, fan + fswise — 1) A pign = 0.8 AN 0.5 < figuize N pswise < 1 entails p €
[0.3,0.8], the answer to the query good_player(X) is X = peter with truth value the
interval [0.3,0.8].

In order to prove the equivalence between operational semantic and fixed-point semantic,
it is useful to introduce a type of canonical top-down evaluation strategy. In this strategy all
literals are reduced at each step in a derivation. For obvious reasons, such a derivation is called
breadth-first.

Definition 3.8 (Breadth-first transition) Given the following set of valid transitions:

<{{A1, .. .,An},O', S> — <{{A2, .. ;An} U Bl,O' . 91, SA Cl>
WAL A, 0,5) = {{ A1, Ag. .., A} U By, o - 05, S A)

AL .., A0, 8) = ({{Ar, ..., Ay YU By, 0+ 00, S A cy)

a breadth-first transition s defined as
<{A1,...,An},U,S> —BF <Blu...UBn,O"91 -...-9n,5’Acl/\.../\cn>
wn which all literals are reduced at one step.

Theorema 3.3 Given a ordinal number n and Tp 1+ n = (Br, ,Vr,). there is a successful
breadth-first derivation of lengh less or equal to n+1 for a program P, ({Ay,..., Ag},0,51) =5p
(0,0, 8,) iff Aif € By, and solvable(S A pa, = v;) and v; Cpp Vi, (Aib).

Proof. The proof is by induction on n. For the base case, all the literals are reduced using the
first type of transitions or the last one, that is, for each literal A;, it exits a fact h; < v; such
that 6; is the mgu of A; and h;, and 4, is the truth variable for A;, and solvable(Sy A pa, = v;)
or s, = default(A;). By definition of Tp, each v; Cp Vg, (A;0) where (BTP1 , VTP1> =Tp T 1.

For the general case, consider the successful derivation,

({Al, cey Ak}, o1, Sl> —BF (B, 09, SQ> —BF ... —7BF <®, On, Sn>
the transition ({Ai,..., Ax},01,51) =pr (B, 09, 52)

When a literal A; is reduced using a fact or there is not rule for A; the result is the same
as in the base case, otherwise there is a clause h; <—p By,,..., By, in P such that 6; is the
mgu of A; and h; € Boy, and B;,0; € Bo,, by the induction hypothesis Boy, C BTPTH1 and
solvable(Sy A s, = v;,) and v;, CTpy VTPn_l(BjiO-Z) then B;,0; C By, and by definition of
Tp, Ai; € Br, and solvable(Sy A pa, = v;) and v; =Cpr Vg, (A;01). O

Theorema 3.4 For a program P there is a successful derivation
(p(7),0, truey —* (0,0, 5)
iff p(X)o € B and v is the solution of S and v Cpy V(p(Z)o) where lfp(Tp) = (B,V)
Proof. 1t follows from the fact that {fp(Tp) = Tp T w and from the Theorem 3.3. OJ
Theorema 3.5 For a fuzzy program P the three semantics are equivalent, i.e.
SS(P)=1fp(TP)=Im(P)

Proof. the first equivalence follows from Theorem 3.4 and the second from Theorem 3.2. [

4 Implementation and Syntax

4.1 CLP(R)

Constraint Logic Programming [JL87] began as a natural merging of two declarative paradigms:
constraint solving and logic programming. This combination helps make CLP programs both
expressive and flexible, and in some cases, more efficient than other kinds of logic programs.
CLP(R) [JMSY92| has linear arithmetic constraints and computes over the real numbers.

Fuzzy Prolog was implemented in [GMVO04] as a syntactic extension of a CLP(R) system.
CLP(R) was incorporated as a library [CHO0] in the Ciao Prolog system [HBC'99].

The fuzzy library (or package in the Ciao Prolog terminology) which implements the inter-
preter of our fuzzy Prolog language has been modified to handle default reasoning.

4.2 Syntax

Each fuzzy Prolog clause has an additional argument in the head which represents its truth
value in terms of the truth values of the subgoals of the body of the clause. A fact A < v
is represented by a Fuzzy Prolog fact that describes the range of values of v with a union of
intervals (that can be only an interval or even a real number in particular cases). The following
examples illustrate the concrete syntax of programs:

youth(45) < youth(45) :~

0.2,0.5] U [0.8,1] [0.2,0.5] v [0.8,1].
tall(john) < 0.7 tall(john) :~ 0.7.
swift(john) < tall(john) :~

[0.6,0.8] [0.6,0.8] .
good_player(X) <—min good player(X) :~ min

tall(X), tall(X),

swift(X) swift(X) .

These clauses are expanded at compilation time to constrained clauses that are managed by
CLP(R) at run-time. Predicates . =./2,.< ./2,.<=./2,.>./2 and . >= ./2 are the Ciao
CLP(R) operators for representing constraint inequalities. For example the first fuzzy fact is
expanded to these Prolog clauses with constraints

youth(45,V):- V .>=. 0.2,
V .<=. 0.5.

youth(45,V):- V .>=. 0.8,
vV .<. 1.

And the fuzzy clause

:— default(good_layer/1,[0.5,0.7]).
good_player (X) :~ min tall(X),swift(X).

is expanded to

good_player(X,Vp) :-
tall(X,Vq),
swift (X,Vr),
minim([Vq,Vr],Vp),
Vp .>=. 0, Vp .=<. 1.
good_player(X,Vp) :-
Vp .>=. 0.5, Vp .=<.0.7.

The predicate minim/2 is included as run-time code by the library. Its function is adding
constraints to the truth value variables in order to implement the T-norm min. We have
implemented several aggregation operators as prod, max, luka, etc. and in a similar way any
other operator can be added to the system without any effort. The system is extensible by the
user simply adding the code for new aggregation operators to the library.

5 Conclusion

We have presented different semantics of our fuzzy language, and it is proved the equivalence
between them. These semantics support non-uniform default assumptions extending the for-
malization given in [GMV04]. The Ciao system including our Fuzzy Prolog implementation
can be downloaded from http://www.clip.dia.fi.upm.es/Software/Ciao.

References

[CHO0]

[ET99]

[GMV04]

[HBCT99]

[JL87]

[IMSY92]

[KMP]

[INW00]

[Tar55)

[VGMO02]

D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In CL2000,
number 1861 in LNAI, pages 131-148. Springer-Verlag, July 2000.

S. Cubillo E. Trillas, A. Pradera. A mathematical model for fuzzy connectives and
its application to operators behavioural study, volume 516, chapter 4, pages 307-318.
Kluwer Academic Publishers (Series: The Kluwer International Series in Engineering
and Computer Sciences), 1999.

S. Guadarrama, S. Muoz, and C. Vaucheret. Fuzzy prolog: A new approach using
soft constraints propagation. Fuzzy Sets and Systems, FSS, 144(1):127-150, 2004.
ISSN 0165-0114.

M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garcia de la Banda, P. Lopez-
Garcia, and G. Puebla. The CIAO Multi-Dialect Compiler and System: An Ex-
perimentation Workbench for Future (C)LP Systems. In Parallelism and Imple-
mentation of Logic and Constraint Logic Programming, pages 65-85. Nova Science,

Commack, NY, USA, April 1999.

J. Jaffar and J. L. Lassez. Constraint Logic Programming. In ACM Symp. Principles
of Programming Languages, pages 111-119. ACM, 1987.

J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The clp(r) language and
system. ACM Transactions on Programming Languages and Systems, 14(3):339-395,
1992.

E.P. Klement, R. Mesiar, and E. Pap. Triangular norms. Kluwer Academic Pub-
lishers.

H. T. Nguyen and E. A. Walker. A first Course in Fuzzy Logic. Chapman &
Hall/Crc, 2000.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5:285-309, 1955.

C. Vaucheret, S. Guadarrama, and S. Muoz. Fuzzy prolog: A simple general imple-
mentation using c¢lp(r). In M. Baaz and A. Voronkov, editors, Logic for Program-
ming, Artificial Intelligence, and Reasoning, LPAR 2002, number 2514 in LNAI,
pages 450-463, Thilisi, Georgia, October 2002. Springer.

