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Abstract

Clustering techniques can be used as a basis for classification systems in which clusters
can be classified into two categories: positive and negative. Given a new instance enew,
the classification algorithm is applied to determine to which cluster ci it belongs and the
label of the cluster is checked. In such a setting clusters can overlap, and a new instance
(or example) can be assigned to more than one cluster. In many cases, determining to
which cluster this new instance actually belongs requires a qualitative analysis rather than
a numerical one.

In this paper we present a novel approach to solve this problem by combining defeasible
argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory
neural network model. The proposed approach takes as input a clustering algorithm and
a background theory. Given a previously unseen instance enew, it will be classified using
the clustering algorithm. If a conflicting situation arises, argumentation will be used in
order to consider the user’s preference criteria for classifying examples.

1 Introduction

Clustering techniques can be used as a basis for classification systems in which clusters can
be classified into two categories: positive and negative. Most clustering techniques consider
first a database of training examples {e1, e2, . . . en } as an input for a classification algorithm,
determining a number of clusters c1, . . . cm which are labelled as either positive or negative.
Given a new instance enew, the classification algorithm is applied to determine to which cluster
ci it belongs and the label of the cluster is checked. Should the cluster ci be labelled as positive
(negative), then the instance enew is regarded as positive (negative). This approach has been
exploited in the web document filtering agent Querando! [GL01a, GL01b] and in the counter-
propagation neural network model [FS93, Ska96, RR95, Was89]. It must be remarked that
in such classification algorithms we adopt the usual approach in machine learning [Mit97] by
distinguishing between training examples (training data that has a label provided by the user)
and instances (data that does not have such a label).

Given a collection of training examples describing some concept in function of time, a
clustering algorithm can be used to classify these examples into clusters (defined in terms of
some similarity metrics). Each one of these clusters is assigned a label provided by the user
(either positive or negative). The label positive indicates that the examples in the cluster belong
to the concept whereas the label negative indicates that the examples in the cluster do not belong
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to the concept. Since clusters can overlap, a new instance (or example) can be assigned to more
than one cluster. When such clusters containing the instance are contradictory (i.e., some of
them are labelled as positive, whereas others are negative), an undesirable situation occurs. So
the problem to be solved consists of determining to which clusters this new instance actually
belongs.

In this article we show a novel approach to solve the above problem by combining defeasible
argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory
neural network model. The proposed approach takes as input a clustering algorithm and an
underlying background theory T , formalized in terms of defeasible logic programming [GS02].
Given a previously unseen instance or training example, it is classified using the clustering
algorithm, modifying the cluster structure accordingly. If a conflicting situation arises, the
background theory T will be used in order to consider the user’s preference criteria for classifying
examples. The ultimate outcome involves determining whether the new instance is positive,
negative or unknown.

The article is structured as follows. First in Section 2 the fundamentals of the theory of
defeasible argumentation are introduced. Then in Section 3 we present a particular learning
algorithm for neural networks, called Fuzzy Adaptive Resonance Theory (ART). In Section 4 we
show how to model clustering in terms of Fuzzy ART learning and defeasible argumentation,
characterizing the users preference criteria in terms of a defeasible logic program. Section 5
summarizes previous work related to combining argumentation with other machine learning
techniques. Finally Section 6 discusses the main conclusions that have been obtained and
outlines some future research work.

2 Defeasible Argumentation

Artificial Intelligence has long dealt with the issue of finding a suitable formalization for com-
monsense reasoning. Defeasible argumentation [SL92, CML00, PV99] has proven to be a suc-
cessful approach in many respects, since it naturally resembles many aspects of human com-
monsense reasoning. The growing success of argumentation-based approaches has caused a rich
crossbreeding with other disciplines, providing interesting results in different areas such as legal
reasoning, medical diagnosis, and decision support systems. As pointed out in [CRL00], most
argument-based frameworks share a number of common notions, namely:

1. Knowledge Base. Underlying logical language: Most argument-based frameworks
involve a knowledge base K = (Π, ∆) which provides background knowledge for an intel-
ligent agent formalized in a first-order logical language L. This background knowledge
typically involves a set Π of strict rules and facts as well as a set ∆ of defeasible rules.

2. Argument: An argument is a defeasible proof obtained from the knowledge base K
by applying suitable (defeasible) inference rules associated with the underlying logical
language L.

3. Dialectical reasoning: Given two arguments A and B, conflict (or attack) among
arguments arises whenever A and B cannot be simultaneously accepted (typically because
of some kind of logical contradiction). Many argument systems provide a preference
criterion which defines a partial order among arguments, allowing to determine whether
A should be preferred over B. This defines a defeat relationship. Given the set Args
of arguments obtained from a knowledge base K, it holds that attacks ⊆ Args × Args,
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and defeats ⊆ attacks. In order to determine whether a given argument A is ultimately
undefeated (or warranted), a dialectical process is recursively carried out, where defeaters
for A, defeaters for these defeaters, and so on, are taken into account.

Defeasible logic programming (DeLP) is a particular formalization of defeasible argumenta-
tion based on logic programming [GS02]. A defeasible logic program Prog is a set K = (Π, ∆)
of Horn-like clauses, in which defeasible and strict rules can be distinguished. Deriving literals
in DeLP results in the construction of arguments. Since arguments may be in conflict, a dialec-
tical analysis is needed. Given a DeLP program Prog and a query q, the final answer to q wrt
Prog takes such dialectical analysis into account. An in-depth treatment of DeLP is outside
the scope of this paper. For details we refer the reader to [GS02].

Argumentation provides mostly a non-numerical, qualitative setting for commonsense rea-
soning, which does not seem adequate for modelling the pattern classification problem described
in the previous section. Clearly, pattern classification relies on quantitative aspects of the data
involved (such as numeric attributes or probabilities). As we will see in the next sections, our
final goal is to develop a hybrid approach in which both quantitative and qualitative features
required for pattern classification are combined. Qualitative aspects will be captured in terms
of defeasible argumentation using DeLP, whereas quantitative ones will be captured by using
the so-called Fuzzy Adaptive Resonance Theory, described in the next section.

3 Fuzzy Adaptive Resonance Learning

Adaptive Resonance Theory (ART) [FS93, RR95] is a class of neurally inspired models of how
the brain performs clustering and classification of sensory data, and associations between the
data and representation of concepts. Fuzzy ART performs unsupervised learning of categories
under continuous presentation of inputs, through a process of ‘adaptive resonance’ in which the
learned patterns adapt only to relevant inputs, but remain stable under irrelevant or insignificant
ones. Thus the ART models solve the so-called stability-plasticity dilemma where new patterns
are learned without forgetting those learned previously.

The Fuzzy Adaptive Resonance Theory neural network model is a kind of ART neural
network that accepts analog inputs (in the real interval [0, 1]) [LCS99, LC99]. Familiar inputs
activate the category, whereas unfamiliar inputs trigger either adaptive learning by an existing
category or a commitment of a new category. The behaviour of Fuzzy ARTs lends itself well to
simple geometrical interpretation of category prototypes as hyperrectangles in the input space.
These rectangles are allowed to overlap each other. Although Fuzzy ART always responds the
same way to a familiar input —it recalls the smallest hyperrectangle containing this input—,
the overlaps are inconvenient if categories are mutually exclusive.

Next we present a synthetized version of the Fuzzy ART algorithm as well as the geometrical
interpretation of its fast learning rule. For further details we refer the reader to [LCS99].

3.1 Learning Algorithm

The Fuzzy ART learns a categorization or clustering of a sequence of examples presented to
the network. Its learning algorithm is as follows [LCS99]:

Category initialization: Each category j is represented by an 2M -dimensional vector wj =
(wj1, . . . , wj2M) of adaptive weights. Before any input presentation occurs, each category
is initially uncommited, and its weights are initialized to one.
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Complement coding: To avoid a category proliferation problem, the input is normalized by
complement coding. Let a be an M -dimensional vector (a1, . . . , aM), where 0 ≤ ai ≤ 1.
The complement coded input I is obtained as:

I = (a1, . . . , aM , 1− a1, . . . , 1− aM) = (a, ac) (1)

Category choice: Upon presentation of an input I, a choice function Tj is computed for each
category j:

Tj =
|I ∧ wj|
α + |wj|

(2)

The norm operator | · | is defined as |x| =
∑2M

i=1 |xi|, the symbol ∧ denotes the fuzzy
AND operator, i.e, x ∧ y = (min(x1, y1), . . . ,min(x2M , y2M)), and α is a user-defined
parameter, α > 0. The category J for which the choice function TJ is maximal is chosen
for the vigilance test.

Vigilance test: The similarity between wJ and I is compared to a parameter ρ called vigilance,
0 ≤ ρ ≤ 1, in the following test:

|I ∧ wJ |
|I|

≤ ρ. (3)

If the test is passed, then resonance occurs and learning takes place. If the test is failed,
then mismatch reset occurs: the value of Tj is set to -1 for the duration of the current input
presentation, another category is chosen and the vigilance test is repeated. Categories
are searched until one that meets Eq. 3 is found. This category is said to be selected for
I. It is either already committed or uncommitted, in which case it becomes committed
during resonance.

Resonance: During resonance, the weight vector wJ of the selected category is updated ac-
cording to:

wJ(t + 1) = β(I ∧ wJ(t)) + (1− β)wJ(t) (4)

where β is a learning rate parameter, 0 < β ≤ 1. When β = 1, this special case is called
fast learning. Once resonance is finished, a new input may be presented and the last three
steps repeated.

3.2 Geometrical Interpretation of Learning

The Fuzzy ART has a very well known geometrical interpretation [LCS99]. Each weight vector
wj may be written in the form wj = (uj, v

c
j) where uj and vj are M -dimensional vectors

corresponding to the two opposite corners of a hyperrectangle Rj. With fast learning Eq. 4
reduces to wJ(t + 1) = I ∧ wJ(t) and the corners of Rj are updated by uJ(t + 1) = a ∧
uJ(t) and vJ(t + 1) = a ∨ vJ(t), where ∨ denotes the fuzzy OR operator, that is, x ∨ y =
(max(x1, y1), . . . ,max(xM , yM)). When a committed category is selected, RJ expands to the
minimum hyperrectanlge containing both RJ and the input a. If a lies inside of RJ , then RJ is
unchanged. Thus when a category j is committed, its size can only grow or remain the same.
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3.3 Fuzzy ART as a Basis for Supervised Learning

As explained above, the Fuzzy ART neural network learns a clustering of the input space. If
we choose to label each one of these clusters either as positive or negative depending on a label
assigned to training examples, the Fuzzy ART can be used as a basis for supervised learning.

Given one particular cluster c, it should be noted that both positive and negative examples
could be present in c, leading to an inconsistent situation. A preference criterion is required
to solve such a situation. Some possible preference criteria could be as follows: (1) a cluster
is labelled as positive if the count of positive training examples is greater than the count of
negative training examples; (2) the cluster label is the label of the example that triggered the
cluster creation, or, (3) the cluster label is the label of the last example belonging to the cluster.

4 Modelling Clustering with Fuzzy ART Learning and DeLP

In this section we will describe the main aspects concerning how to model clustering in terms
of Fuzzy ART learning and defeasible argumentation. First, in section 4.1 we will consider how
to represent user-provided examples as a number of facts of a defeasible logic program. Then
in section 4.2 we analyze how to solve the conflict among conflicting clusters by incorporating
preference criteria modelled in terms of strict and defeasible rules. Finally, in section 4.3 we
show how the inference procedure of DeLP allows us to determine whether a particular cluster
labelling is ultimately to be preferred by performing a dialectical analysis.

4.1 Building a Knowledge Base with Training Examples

As discussed in the introduction, the usual methodology when performing clustering in our
context is as follows: the user will provide a number of points separated in two classes: (1)
training examples (labelled as positive or negative) or (2) instances (unlabelled points). As
new labelled points are provided by the user, the underlying neural network is fed with this
information, modifying the cluster structure learnt so far. At the same time, a DeLP program
consisting of facts based on this information is generated.

Example 1 Suppose that the user provides as an input some particular points p1, p2, p3, p4,
and p5 labelled as positive, negative, positive, negative, and positive, resp., as well as some
other sample points. Finally, an instance pn is provided at time tn. This would result in a
cluster structure learnt by the neural network based on the Fuzzy ART approach, which would
remain hidden for the user. At the same time, a DeLP program Prog as the one shown below
will be generated:

example(p1, positive, t1)← triggeredCreation(p1, c1, t1)←
example(p2, negative, t2)← t1 < t2 ←
triggeredCreation(p2, c2, t2)← example(p3, positive, t3)←
t1 < t3 ← t2 < t3 ←
triggeredCreation(p3, c3, t3)← example(p4, negative, t4)←
triggeredCreation(p4, c4, t4)← t1 < t4 ←
t2 < t4 ← t3 < t4 ←
example(p5, positive, t5)← triggeredCreation(p5, c5, t5)←
t1 < t5 ← . . . t4 < t5 ←
. . . instance(pn, tn)←
t1 < tn ← . . . tn−1 < tn ←
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Note that every new example corresponding to a point P labelled as L at time T causes a
new fact example(P, L, T ) to be added to the program Prog. When the dynamics of the neural
network determines that a new cluster is to be created, a new fact triggeredCreation(P, C, T )
is added to the program Prog. This fact stands for “a new cluster C was created at time T
because of occurrence of point P”. Note that the time sequence in which points are provided
by the user is automatically traced by adding literals of the form ti < tj.

1 Finally, the predicate
instance(P, T ) denotes that a new (unlabelled) instance point P was presented to the system
at time T . The cluster associated with this point P is still undetermined.

4.2 Modelling Attack and Defeat in Fuzzy ART Classification

In the Fuzzy ART setting, conflict appears when an instance never seen before is classified
by more than one cluster with different labels. Suppose for instance that a new pattern x is
presented to the Fuzzy ART neural network and it determines that x belongs to both cluster
i and j, and cluster i is labelled as positive while cluster j is labelled as negative. In the
literature[LCS99, LC99], the above situation is solved nondeterministically by making a random
choice.

We think that the above situation can be modelled as a special kind of “attack between
clusters”. In defeasible argumentation, the notion of attack is defined as a conflict (usually
captured in terms of some kind of logical contradiction) between two arguments. In the Fuzzy
ART setting, given a point belonging to several overlapping clusters, conflict appears whenever
two (or more) overlapping clusters are labelled differently. Following the same line of reasoning,
the notion of attack in defeasible argumentation is refined as a defeat relationship [SL92] by
adding a preference criterion among arguments (e.g. specificity). When deciding among over-
lapping clusters, several preference criteria can be defined to solve conflicts in the Fuzzy ART
setting, namely:

• The cluster with newer information wins. In this case we use a novelty approach: newer
examples are used to solve the conflict as they are considered more accurate than pre-
viously seen examples. In this way both incremental learning and changes in the user
insterest can be better modeled.

• The cluster that subsumes more examples wins. In this case we a use a kind of support
criterion: the more examples are subsumed by a cluster prototype, the more veritable the
cluster label is.

• The smallest cluster wins. In this case we use an specificity-based approach: the smaller
a cluster is, the more specific it is assumed to be.

It must be noted that the above criteria could be provided by the user in terms of rules
corresponding to a defeasible logic program. The following example extends Example 1 by
providing some rules for modelling preference between conflicting clusters.

Example 2 Consider the strict and defeasible rules presented in Figure 1. Such rules model
preference criteria among conflicting clusters. Next we will explain briefly the meaning of
such rules and their associated predicates. Predicate activatesNonDeterm stands for “point

1We use this notation for clarity purposes instead of the usual prefix notation lessThan(ti, tj). Note that
only facts relating the time stamps of the last two points pn and pn+1 are required, as other relationships
between time stamps can be easily derived by transitivity from those facts.
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opposite(positive, negative) ← (5)

opposite(X, Y ) ← opposite(Y, X). (6)

∼ is(L1, P, T ) ← is(L2, P, T ), opposite(L1, L2). (7)

labelledAs(L, C, T ) −−≺ example(P, L, T0),

triggeredCreation(P, C, T0), T0 < T. (8)

is(L, P, T ) −−≺ belongsTo(P, C, T ), labelledAs(L, C, T ). (9)

∼ labelledAs(L1, C1, T1) −−≺ intersects(C1, C2, T ), labelledAs(L2, C2, T2),

T1 < T2, opposite(L1, L2). (10)

∼ is(L2, P, T ) −−≺ isInstance(P, T ), belongsTo(P, C1, T ),

labelledAs(L, C1, T ), belongsTo(P, C2, T ),

labelledAs(L2, C2, T ), opposite(L1, L2),

N = count(C1, T ), M = count(C2, T ),

N ≥M. (11)

activatesNonDeterm(C, P, T ) ← Fuzzy ART inner workings. . . (12)

intersects(C1, C2, T ) ← Fuzzy ART inner workings. . . (13)

belongsTo(P, C, T ) −−≺ activatesNonDeterm(C, P, T ) (14)

Figure 1: Modelling preference criteria between overlapping clusters in DeLP.

P activates nondeterministically cluster unit C at time T”. Rules 5 and 6 say that positive
and negative labels for a cluster oppose each other, representing opposite concepts. Rule 7 says
that a cluster is not positive at time T if it is negative at time T and viceversa. Rule 8 says
that a label L of a cluster C at time T agrees with the label assigned by the user to point P
when such point triggered the creation of a such a cluster at time T0. Rule 9 says that the label
L of a point P is the label of the cluster C containing it. Rule 10 says that when a cluster
intersects another cluster with opposite label and the latter was labelled later than the former,
then the newer cluster wins for deciding the resulting labelling. Rule 11 says that when a point
P belongs to two clusters C1 and C2 with opposing labels L1 and L2, the cluster with subsumes
more examples is the winner. Rules 12 and 13 model the inner behavior of the Fuzzy ART
neural networks. Rule 12 denotes the nondeterministic activation of cluster unit C by point P
at time T . Rule 13 denotes that clusters C1 and C2 have non empty intersection at time T .
Finally, rule 14 stands for the fact that a point P typically belongs to cluster C at time T if it
activates non deterministically cluster unit C at time T .

Usually, the Fuzzy ART approach to clustering for classifying a previously unseen instance
(represented in our case as a new point pn) is as follows. The point pn is presented to the
Fuzzy ART neural net. The network gives as an answer a cluster unit that codifies the point
(modifying the cluster structure computed so far accordingly). After that the cluster unit
label is determined. As stated before, when clusters are overlapping, a point may belong to
several clusters simultaneously. If the cluster labels are distinct, an undesirable situation occurs
because the answer has to be chosen nondeterministically.

A DeLP program as the one detailed in the previous examples can provide additional,
qualitative information for making such a decision. For the sake of example, suppose that the
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cluster structure built so far is that of Figure 2: there are five overlapping clusters, and there is
a new instance pn lying in the intersection of clusters c1, c2, and c4 that needs to be classified.

Instead of choosing the answer randomly2, arguments can be built that support what deci-
sion is to be made. Next we show two arguments A1 and A2. The first supports the conclusion
that the point pn is positive, as it belongs to cluster c1 and cluster c1 is labelled as positive.
The second supports the opposite claim, point pn is negative, since it belongs to cluster c2 and
cluster c2 is labelled as negative. Formally:

A1 : 〈{is(positive, pn , tn) −−≺ belongs(pn , c1 , tn), labelledAs(positive, c1 , tn).},
is(positive, pn, tn)〉

A2 : 〈{∼ is(positive, pn , tn) −−≺ isInstance(pn , tn), belongs(pn , c2 , tn),
labelledAs(negative, c2, tn).}, is(negative, pn, tn)〉

Both arguments were derived from the information provided by the program Prog given
in the previous examples. Both arguments cannot be accepted, as they lead to conflicting
conclusions. Next we will outline how such a conflict is solved.

4.3 Deciding Clustering Labels in Terms of a Dialectical Analysis

Defeasible argumentation frameworks allow to perform a dialectical analysis for arguments in
conflict. Given an argument A for a hypothesis h, all possible counterarguments B1, . . . , Bk that
defeat A are considered. This analysis is performed recursively on those counterarguments, by
considering all counter-counterarguments that defeat every Bi, and so on. This results in a tree-
like structure T rooted in 〈A, h〉, where every node (argument) can be labelled as D (defeated)
or U (undefeated). A given argument B in T is a U -node iff it has no defeaters, or every
children of B is a D-node. A given argument B in T is a D-node iff it has at least one children
node labelled as U -node. If the root of the tree T is labelled as a U -node, such an argument is
said to be warranted, i.e. ultimately accepted. It must be remarked that DeLP performs such
a dialectical analysis automatically when answering a given query.3

In our case, the above analysis is started in DeLP by analyzing whether there exists a war-
ranted argument supporting that an new unlabelled instance pn has to be labelled as positive.
If this is not the case, the same analysis is performed, by considering the label “negative”.

Example 3 Suppose that the cluster structure built so far by the Fuzzy ART is the one of
Figure 2, and a new point pn is to be classified, assuming a DeLP program as the one described
before as a background knowledge. As clusters overlap when analyzing the labelling for pn, the
DeLP inference engine will try to find a warranted argument supporting the fact that pn is to
be labelled as positive. The argument A1 previously shown is found:

A1 : 〈{is(positive, pn , t) −−≺ belongs(pn , c1 , tn), labelledAs(positive, c1 , tn).},
is(positive, pn, tn)〉

DeLP will start the search for defeaters in a depth-first fashion. An argument A2 which attacks
and defeats A1 will be found, namely:

A2 : 〈{∼ is(positive, pn , tn) −−≺ isInstance(pn , tn), belongs(pn , c2 , tn),
labelledAs(negative, c2, tn).}, is(negative, pn, tn)〉
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c1
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c2

c3

c5

rpn

Figure 2: Nondeterministic classification of point pn by cluster units c1, c2, and c4.

Nevertheless, a new argument A3 can be used in turn to defeat argument A2: “Cluster c2

should not be labelled as negative because clusters c2 and c3 have examples in common and
cluster c3 is labelled as positive and cluster c3 is composed of newer examples.” Formally:

A3 : 〈{∼ labelledAs(negative, c2 , tn) −−≺ intersects(c2 , c3 , tn), labelledAs(positive, c2 , tn).},
∼ labelledAs(negative, c2, tn)〉

In this point, DeLP will find a new argument A4 that defeats argument A1: “The point pn is
not positive because it belongs to cluster c4, cluster c4 is labelled as negative, and cluster c4

subsumes more examples than c1 does.” Formally:

A4 : 〈{∼ is(positive, pn , tn) −−≺ isInstance(pn , tn), belongsTo(pn , c4 , tn),
labelledAs(negative, c4, tn), belongsTo(pn, c1, tn), labelledAs(positive, c1, tn),

opposite(negative, positive), n4 = count(c4, tn),
n1 = count(c1, tn), n4 ≥ n1.},∼ is(positive, pn, tn)〉

But argument A4 will be defeated by another argument A5 —having the same spirit of argument
A3— regarding the non-null intersection of the positively labelled cluster c5 with the negatively
labelled cluster c4:

A5 : 〈{∼ labelledAs(negative, c4 , tn) −−≺ intersects(c4 , c5 , tn), labelledAs(positive, c5 , tn).},
∼ labelledAs(negative, c4, tn)〉

The above analysis results in the dialectical tree depicted in Figure 3, where nodes are argu-
ments, arrows stand for a defeat relationship, and markings D and U stand for defeated and
undefeated, resp. The root node turns out to be a U -node, and hence it is warranted.

4.4 Combining DeLP and Fuzzy ART: Discussion

Figure 4 shows a sketch of an algorithm that combines the use of DeLP and the Fuzzy ART for
determining the classification of an instance P presented at time T wrt a concept represented
as a set of labeled clusters {c1, . . . , cm}. The algorithm takes as input a Fuzzy ART neural
network, a background theory Prog in DeLP (characterizing a set of examples and preference

2Under certain special conditions, the Fuzzy ART will answer with the smallest hyperrectangle containing
its input [LCS99].

3See [GS02] for details.
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Figure 3: Dialectical analysis yielding the conclusion that point pn is a positive instance.

criteria), and the data corresponding to a new unlabelled instance P . Such an instance P is
first classified using the Fuzzy ART neural network (modifying the cluster structure accordingly
if needed). In case such a classification cannot be successfully performed by the network, then
the underlying program Prog is used for determining whether the instance is either positive
or negative or unknown according to: (1) positive if an argument 〈Aci

, is(positive, P, T )〉 is
warranted from Prog; (2) negative wrt 〈Aci

, is(negative, P, T )〉, and, (3) unknown if neither
(1) nor (2) can be proven.

It must be noted that there exists a theorem [GS02] that ensures that if some argument
〈A, h〉 is warranted, then it does not exists a warranted argument for the opposite conclusion,
i.e, 〈B,∼ h〉. As a consequence, when analyzing the label associated with a new instance P ,
it cannot be the case that the underlying background theory allows us to conclude that P is
warranted to be positive and negative simultaneously.

5 Related Work

The combination of machine learning and argumentation is a recent development. In a recent
paper [GC03], we explored the combination of machine learning techniques and argumentation
systems. To the best of our knowledge, there have been no similar approaches in this direction.

There are many texts that explore the field of neural network applications [FS93, LCS99,
RR95, Ska96, Was89]. The area of clustering algorithms have a wide range of applications which
include image processing [MGA94], information retrieval [Ras92] and text filtering [Hon97,
GL01a, GL01b, MMLP97], and robot control [ZSS97]. Although all of these works solve effec-
tively the problem of clustering, none of them uses argumentation as described in this paper.
In particular, the pitfalls of Fuzzy ART are exploited as an advantage for doing multiple cate-
gorization in [LCS99], proposing a variation on the Fuzzy ART model.

Shavlik and Towel use a rule set to initialize a backpropagation neural network training
algorithm [Mit97, pp. 340–363]. In that case, rules are used for initializing the neural network
weights, while we use defeasible rules for revising a neural network classification a posteriori.
In [JG03] an algorithm is proposed for inducing a defeasible theory from a set of training exam-
ples. In [IK97], the authors develop a method to generate non-monotonic rules with exceptions
from positive/negative examples and background knowledge in Inductive Logic Programming.
While these works induce a defeasible theory from examples, the proposed approach uses a de-
feasible theory for improving an incremental categorization. Other hybrid approaches include
the an agent collaboration protocol for database initialization of a memory based reasoning
algorithm in the context of an e-mail filtering system [LMM97]. This work also uses rules for
improving learning speed. In contrast, the proposal presented in this paper is aimed to improve
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ALGORITHM ClassifyNewInstance
INPUT: Fuzzy ART Net F , DeLP Prog, Point P , Timestamp T
OUTPUT: positive, negative, unknown { Classification of point P . }
BEGIN

Propagate Point P with timestamp T through Net F
WinnerUnitSet := GetWinnerUnitSet( F )
{ WinnerUnitSet is the set of clusters that contain point P . }
IF All unit labels in WinnerUnitSet are positive OR

All unit labels in WinnerUnitSet are negative THEN
RETURN Label of any unit in WinnerUnitSet

ELSE
Perform dialectical analysis to determine if there exists an argument A

such that 〈A, is(positive, P, T )〉 is warranted.
IF 〈A, is(positive, P, T )〉 is warranted THEN RETURN Label=positive
ELSE

Perform dialectical analysis to determine if there exists an argument A
such that 〈A, is(negative, P, T )〉 is warranted.

IF 〈A, is(negative, P, T )〉 is warranted
THEN RETURN Label=negative
ELSE RETURN Label=unknown

END
END

END

Figure 4: An algorithm for relating an argument-based framework with the Fuzzy ART model.

learning precision.

6 Conclusions and Future Work

The growing success of argumentation-based approaches has caused a rich cross-breeding with
other disciplines, providing interesting results in different areas such as legal reasoning, medical
diagnosis and decision support systems.

We contend that existing frameworks for defeasible argumentation can be enriched by in-
tegrating them with machine learning techniques, as the one discussed in this paper, making
them more attractive and suitable for other several application areas. Following this research
line, in this paper we have introduced an approach that integrates a machine learning technique
(such as the Fuzzy ART neural networks) with an argumentation framework.

Part of our current research work involves the development of a more refined version of the
algorithm presented in this paper in order to test it with respect to some benchmark standard
collections4.
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