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Abstract

The Projected Aggregation Methods (PAM) for solving linear systems of equali-
ties and/or inequalities, generate a new iterate xk+1 by projecting the current point
x
k onto a separating hyperplane generated by a given linear combination of the

original hyperplanes and/or halfspaces. In [9, 16, 17, 18] we introduced acceleration
schemes for solving linear systems within a PAM like framework. The basic idea
was to force the next iterate to belong to the convex region de�ned by the new
separating/or aggregated hyperplane computed in the previous iteration. In this
paper we extend the above mentioned methods to the problem of �nding the least
squares solution to inconsistent systems. In the new algorithm we used a scheme
of incomplete alternate projections for minimizing the proximity function, similar
to the one of Csisz�ar y Tusn�ady described in [4] which uses exact projections. The
parallel simultaneous projection ACCIM algorithm in [16] is very eÆcient for ob-
taining approximations with suitable properties, and is the basis for calculating the
incomplete intermediate projections. We discuss the convergence properties of the
new algorithm and also present numerical experiences obtained by applying it to
image reconstruction problems using the SNARK93 system [3].

Key words. Projected Aggregation Methods, Incomplete Projections, Incon-
sistent System.
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1 Introduction

Large and sparse systems of linear equations arise in many important applications [7, 13],
as image reconstruction from projections, radiation therapy treatments planning, and in
other image processing problems. A common approach to such problems is to use pro-
jection algorithms, see, e.g. Bauschke and Borwein [1], which employ projections onto
convex sets in various ways, using either sequential or simultaneous schemes. In order
to solve very large non-symmetric systems of linear equations, the Projected Aggregation
Methods (PAM), introduced by Householder and Bauer in [14], are more eÆcient than
those of the Cimmino or Kaczmarz type [5, 10]. They project, in every iteration, the
current point onto an \aggregated" hyperplane which consists of a linear combination of
the constraints of the original system. Obviously, their eÆciency depends upon the way
those combinations are de�ned, although in the consistent case the solution x� belongs
to that aggregated hyperplane. This property implies that if the current iterate xk is
projected onto that hyperplane generating xk+1, then the optimal direction d = x��xk+1

also belongs to it. We have developed acceleration schemes [16, 17, 18] for these sort of
algorithms, based on projecting the search directions onto the aggregated hyperplanes.
This idea has been applied to a variety of methods, proving that the acceleration tech-
niques can be successfully used in conjunction with other well known algorithmic schemes.
It has also been extended to the convex feasibility problem in [9] with excellent results.

Problems of image reconstruction from projections, after a suitable discretization, can
be represented by a system of linear equations

Ax = b; (1.1)

where A is an m� n matrix, m is the number of equations, n the size of the (unknown)
image vector and b is the vector of readings. In practice, those systems are often in-
consistent, and one usually seeks a point x� 2 <n which minimizes a certain proximity
function.

In this paper we extend the above mentioned algorithms [16, 18] in order to compute
the least squares solution of inconsistent systems. We derive a new simultaneous projec-
tion method, that uses a scheme of incomplete alternating projections onto convex sets
for minimizing the proximity function. The ACCIM algorithm presented in our paper
[16], which uses simultaneous projections in parallel, is highly eÆcient for obtaining the
solution of consistent systems, and in particular for computing approximate projections
with some desirable properties. The new algorithm can be easily parallelized and imple-
mented for dealing with blocks of constraints. We analyze the convergence properties of
the new algorithm. In the inconsistent case, it converges to the least squares solution.
When the system is normalized, it converges to the minimum of the proximity function
consisting of the sum of the squares of the distances to each hyperplane from the current
point. We compared our algorithm with ART [5], and CAV [6], using a problem of image
reconstruction from projections. The implementations were done within SNARK93 [3], a
software package for testing and evaluating algorithms for image reconstruction problems.

This abridged version of the paper is organized as follows: In Section 2 we brie
y
review some properties of the fully simultaneous ACCIM algorithm. In section 3 the
new projection ALACCIM algorithm is presented, together with the related convergence
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theory. In Section 4 the numerical experiences carried out within the SNARK93 are
described, together with some preliminary conclusions.

2 The fully simultaneous ACCIM algorithm

Assume that the system to be solved is Ax = b, A 2 <m�n, m � n, b 2 <n, is compatible.
From hereafter kxk denotes 2-norm of x 2 <n, and we suppose that each row ai of A

is normalized.
We denote by x� any solution of Ax = b, and In the identity matrix in <n�n.
We have introduced in [16] two new algorithms ACCIM and ACCAV that accelerate,

in the case of consistent problems, the rates of convergence of the PPAM method in
Garc��a-Palomares [10] and the CAV algorithm [6].

The version ACCIM in [16], where each block is composed by a row of the matrix, has
weights wi such that

Pm
i=1wi = 1 and 0 � wi � 1 is described by :

Algorithm 1 (ACCIM)

� Initialization: Given x0, 0 < � < 1, k 0

� Iterative Step: Given xk, and Qk the orthogonal projector onto the orthogonal
subspace of the previous direction ~dk�1, k � 1 (else Q0 = In),

Do for i = 1; : : : ; m in parallel

Compute rki = bi � (ai)
Txk:

De�ne dki = rki ai.

Compute ~dki = Qk(d
k
i ).

End do.

De�ne ~dk =
Pm

i=1wi
~dki , and

xk+1 = xk + �k ~d
k, computing �k as given by

�k = argmin�kx
k + � ~dk � x�k22: (2.2)

Remark 1 In [16], the value of ( 2.2) is given by �k =
Pm

i=1
wikd

k
i k

2

2

k ~dkk2
2

.

2.1 Properties of ACCIM

With the aim of using the ACCIM algorithm as a base for de�ning the iterative procedure
of a new method for inconsistent systems, we recall some results from [16] which will be
needed:

Lemma 1 Given x� any solution of Ax = b. The sequence fxkg generated by ACCIM
satis�es
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(i) kxk+1 � x�k22 = kx
k � x�k22 � ~�k, where

~�k = (�k)
2k ~dkk22 = kx

k+1 � xkk22 with ~�k > �k; (2.3)

being �k the value given by PPAM method in [10] for the same weights wi used by
the ACCIM algorithm.

(ii) Given the initial point x0, for any solution x�, it follows that

kxk+1 � x�k22 = kx
0 � x�k22 � Sk, where

Sk =
Pj=k

j=1 ~�j =
Pj=k

j=0 kx
j+1 � xjk22.

(iii) Given x0 initial, the sequence fxkg of ACCIM converges to

x�min = argminfkx� � x0k2; x� 2 <n : Ax� = bg: (2.4)

Proof: The results correspond to the theory developed in [16], Lemmas 2.7- 2.9, and are
characteristic of the PAM methodology except in the di�erences between the value of ~�k
and the value given by the more general PPAM method described in [10]. 2

The version ACCAV in [16], where each block is composed by a row of the matrix, is
identical to ACCIM except by the weights wi > 0, which are taken as equal to those of
the CAV algorithm [6]. Denoting by sj the number of non zero elements in the j � th
column of the matrix A, and by aij the element j of row i, the weights are calculated as
wi =

1Pn

j=1
sj(aij )

2
.

Remark 2 The new weights wi are constant with respect to k as those considered in the
hypotheses of Lemma 2.7 given in [16]. In that paper a result was proved showing that the
sequence generated by the ACCAV speeds up the convergence of the algorithm CAV, when
the system Ax = b is consistent.

3 Inconsistent case.

It is known that there are some applications [5, 7, 13] which need to solve a possibly
inconsistent system Ax = b , A 2 <m�n, b 2 <m, m > n. So, it is necessary to consider
the standard problem:

min
x2<n
kb� Axk2W (3.5)

whose solution coincides with the one of the problem:

ATWAx = ATWb:

We will assume that rank(A) = n and the diagonal matrix of weights W is nonsingular.
Hence, ATA and ATWA are nonsingular matrices.

The particular acceleration scheme described in [16], for the ACCIM and ACCAV
algorithms, can be extended to the inconsistent case if in the computation of �k, the
2-norm is replaced by k::kATWA, considering

�k = argmin�kx
k + � ~dk � x�k2ATWA; (3.6)
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dk =
Pm

i=1 r
k
i ai, like in ACCIM, and ~dk = Pv?(d

k), with v = ATWA ~dk�1.
In this paper we replace the use of the above mentioned weighted norm by the Eu-

clidean norm within an appropriate context.

3.1 The Alternating Minimization Algorithm

Our idea was to apply an alternate scheme, similar to the Csisz�ar and Tusn�ady method [8],
for deriving a new method for solving the problem (3.5) based on ACCIM for obtaining
incomplete projections onto a convex set.

The simpli�ed version of the Csisz�ar and Tusn�ady algorithm described in [4] considers,
P and Q, which are two convex sets in the n-dimensional Euclidean space <n. Let �(p; q)
be a real-valued function de�ned for all p 2 P and q 2 Q:

Algorithm 2

Iterative step : Given qk, �nd pk+1 as:

pk+1 = argminf�(p; qk)jp 2 Pg

then calculate qk+1 by solving

qk+1 = argminf�(pk+1; q) j q 2 Qg:

End.

Remark 3 In [4] it is proved that �(pk; qk) is a decreasing sequence. In order to use the
general function �(p; q), for proving convergence to the points p� and q� which minimize
�(p; q) for all p and q of P and Q respectively, it is necessary to impose some conditions.
In particular, when �(p; q) = kp� qk2 the convergence of the Algorithm 2 is proved.

Our proposal is to replace the projection onto the �rst set by either an approximate or an
incomplete one. For the second set, we keep the idea of using an exact projection without
increasing the computational cost.

3.2 Incomplete Alternating Projections Algorithm

Given Ax = b, A 2 <m�n, b 2 <m, m � n, rank(A) = n, we consider the augmented
system

Ax� r = b; r 2 <m; x 2 <n: (3.7)

Denoting by (x�; r�), x� 2 <n, r� 2 <m, the solution of

minfkrk2 : r = Ax� b; x 2 <ng: (3.8)

We de�ne, as in Algorithm 2, two convex sets in the (n+m)-dimensional Euclidean space
<n+m

P = f(x; r) 2 <n+m : x 2 <n; r 2 <m; Ax� r = bg

and
Q = f(x; 0) : x 2 <n; 0 2 <mg
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adopting �(p; q) = kp� qk2, for all p and q of P and Q respectively.
Given pk 2 P, and its projection qk onto Q, we denote pmin(q

k) the solution of the
problem

minfkp� qkk : p 2 Pg: (3.9)

In particular, if we denote p� = (x�; r�), and q� = (x�; 0), by de�nition of (x�; r�) in
(3.8), we get p� = pmin(q

�).
In the new algorithm, given qk 2 Q instead of de�ning pk+1 = pmin(q

k) as it was done
in Algorithm 2, we use pk+1 = pk+1a , where pk+1a 2 P, is a point obtained by means of the
incomplete resolution of the problem (3.9). We now formulate the de�nition of pk+1a .

Aiming at obtaining properties of the sequence fpkg generated by the new algorithm
which guarantees convergence to the solution of (3.8) we establish an \acceptance condi-
tion" which an approximation �p = (z; �) of pmin(q

k) must satisfy.

De�nition 1 An approximation �p = (z; �) of pmin(q
k) is acceptable if

k�p� pmin(q
k)k22 � 
k�p� pkk22; with 0 < 
 < 1: (3.10)

Remark 4 If pmin(q
k) 6= pk, there exists �p = qk + �(pmin(q

k)� qk) such that
k�p� pmin(q

k)k22 � 
2kp
k � pmin(q

k)k22, for a particular 0 < 
2 < 1. Those �p also satisfy
k�p � pkk22 = k�p � pmin(q

k)k22 + kp
k � pmin(q

k)k22, therefore k�p � pkk22 � (1 + 1=
2)k�p �
pmin(q

k)k22. Then, �p exists satisfying condition ( 3.10), k�p� pmin(q
k)k22 � 
2=(1 + 
2)k�p�

pkk22, for 
 = 
2=(1 + 
2). Furthermore, if pmin(q
k) = pk, the unique �p which satis�es

( 3.10) is pmin(q
k).

Since (3.10) is not practical because we do not know pmin(q
k), we consider the following

de�nition.

De�nition 2 Given an approximation �p = (z; �), z 2 <n, � 2 <m, of pmin(q
k), we

denote by P (�p) = (z; �+ s), the solution of the system Ax� r = b which satis�es �+ s =
Az � b.

Now we can establish the sort of condition we were looking for:
Practical condition: An approximation �p = (z; �) of pmin(q

k) is acceptable if it
satis�es

k�p� P (�p)k22 � 
k�p� pkk22; with 0 < 
 < 1: (3.11)

Remark 5 In particular, �p = pmin(q
k) satis�es the practical condition. In order to see

that it is feasible to �nd an approximation �p of pmin(q
k), by an iterative algorithm, satis-

fying ( 3.11) it is necessary to consider its convergence properties.
We will use the ACCIM algorithm and, taking into account its convergence properties,

we will prove ( 3.11).

The eÆciency for obtaining �p, satisfying (3.11), depends on the algorithm used for
solving (3.9).
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Lemma 2 Given pk = (xk; rk), qk = (xk; 0). Under the assumptions of Lemma 1, if the
sequence f(zj; �j)g generated by an iterative algorithm, with (z0; �0) = qk, converges to
pmin(q

k), then

(i) If pmin(q
k) 6= pk, an index ~j exists such that (z

~j; �
~j) satis�es ( 3.11).

(ii) If pmin(q
k) = pk, then the unique solution of ( 3.11) is pk.

Proof: Assuming that kpk � pmin(q
k)k 6= 0, and if for all j � 0 the approximation �p =

(zj ; �j) does not satisfy (3.11), then

k�p� P (�p)k22 > 
k�p� pkk22; for all j � 0: (3.12)

If we denote sj = Azj��j�b, due to our hypothesis, �p goes to pmin(q
k) and also we know

that ksjk goes to 0. Furthermore, from the de�nition P (�p) we get that k�p�P (�p)k22 = ks
jk2,

and by (iii) of Lemma 1 the successive �p satisfy k�p�pkk22 = k�p�pmin(q
k)k22+kp

k
min�p

kk22.
Therefore, to assume that the inequality (3.12) leads to ksjk22 > 
kpmin(q

k) � pkk22, for
all j � 0. Since sj tends to zero, we get kpmin(q

k) � pkk22 = 0. Therefore, since the

hypothesis kpmin(q
k)� pkk22 6= 0, an index ~j must exists for which �p = (z

~j; �
~j), satisfying

the condition (3.11).
When pmin(q

k) = pk, as a consequence of (iii) of Lemma 1, we get that k�p � pkk22 �
k�p � P (�p)k22, for all �p = (zj; �j). Therefore, el unique vector satisfying (3.11) is �p =
pmin(q

k) = pk. 2

Remark 6 In the second case of the previous Lemma, if we use ACCIM for computing
the sequence f(zj; �j)g, with (z0; �0) = qk, then (z1; �1) = pk = pmin(q

k), as a consequence
of the iterative step.

In the new algorithm we de�ne pk+1 = pk+1a = P (�p), if �p satis�es (3.11).
Then as in Algorithm 2, once pk+1 = pk+1a is de�ned, the second step of the new

alternate projection algorithm computes

qk+1 = argminfkpk+1 � qk : q 2 Qg:

It follows immediately that this second step does not require additional computations due
to the particular de�nition of the set Q.

Therefore, the scheme iterative of the new algorithm is the following:

Algorithm 3

Iterative step : Given pk = (xk; rk) 2 P, and qk = (xk; 0) 2 Q, xk 2 <n, rk 2 <m,

� �nd pk+1 2 P, pk+1 = (xk+1; rk+1) such that xk+1 = z, rk+1 = �+s, being �p = (z; �)
an approximation of solution of ( 3.9) satisfying the condition ( 3.11), and P (�p) =
(z; �+ s), then

� de�ne qk+1

qk+1 = (xk+1; 0).

End.
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We describe in the following a practical algorithm which uses ACCIM for obtaining
�p � pmin(q

k) satisfying (3.11).

Algorithm 4 (ALACCIM)

� Initialization: Given p0 = (x0; r0), r0 = Ax0 � b, 0 < 
 < 1.

Let q0 = (x0; 0) be, k  0.

� Iterative Step: Given pk = (xk; rk) and qk = (xk; 0).

Calculate �p, approximation of pmin(q
k) satisfying (3.11), applying ACCIM

as follows:

De�ne y0 = (z0; �0) = qk the initial point. For solving Ax� r = b, iterate until

�nding yj = (zj; �j) such that sj = Azj � �j � b satis�es ( 3.11), that is

ksjk2 � 
(krkk2 � Sj); with Sj =
jX

i=1

kyi � yi�1k2:

De�ne pk+1 = (zj ; �j + sj).

De�ne qk+1 = (zj ; 0).

k  k + 1.

Lemma 3 Let p� = (x�; r�) and q� = (x�; 0) be the points which minimize kp� qk for all
p 2 P and q 2 Q. If fpkg = f(xk; rk)g is generated by the Algorithm 4, then

(i) krk+1k2 � krkk2 � (1� 
)kpk � pmin(q
k)k2, being pmin(q

k) de�ned in ( 3.9).

(ii) The sequence fkrkkg is decreasing and bounded by kr�k, therefore it converges.

(iii) The sequence fkpk � pmin(q
k)k2g goes to zero.

(iv) The sequence fkpk+1 � pmin(q
k)k2g goes to zero.

(v) The sequence fkpk+1 � pkk2g goes to zero.

(vi) The sequence fkqk+1 � qkk2g goes to zero.

(vii) The sequence fkATrkkg tends to zero.

Furthermore, assuming that rank(A) = n,

(viii) fpkg = f(xk; rk)g converges to p�, and fqkg = f(xk; 0)g converges to q�.

Proof: We get, as a consequence of the de�nition of qk+1, that krk+1k2 � kpk+1 � qkk2.
Furthermore, due to (iii) of Lemma 1, kqk � pk+1k2 = k�p � pk+1k2 + Sj. Due to the
de�nition of �p, kqk � pk+1k2 � 
k�p � pkk2 + Sj. Since Sj= kr

kk2 � k�p � pkk2, we get
kqk�pk+1k2 � 
k�p�pkk2+krkk2�k�p�pkk2. Then kqk�pk+1k2 � krkk2�(1�
)k�p�pkk2.
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Considering k�p � pkk2 = k�p � pmin(q
k)k2 + kpmin(q

k) � pkk2, we get krk+1k2 � krkk2 �
(1� 
)kpk � pmin(q

k)k2.
We obtain (ii) as a consequence of (i) and the de�nition of r�. Also (iii) follows from

(ii).
To prove (iv), since kpk � �pk2 � 1=
k�p � pk+1k2, considering that k�p � pk+1k2 =

k�p� pmin(q
k)k2+ kpk+1� pmin(q

k)k2, and kpk� �pk2 = k�p� pmin(q
k)k2+ kpk� pmin(q

k)k2,
then kpk� �pk2 � 1=
(k�p�pmin(q

k)k2+kpk+1�pmin(q
k)k2). Therefore, kpk�pmin(q

k)k2 �
(1�
)


k�p�pmin(q

k)k2+1=
kpk+1�pmin(q
k)k2. It follows from (iii) kpk+1�pmin(q

k)k2 tends
to zero.

Since kpk+1�pkk � kpk+1�pmin(q
k)k+kpmin(q

k)�pkk and the right-hand sum tends
to zero because of (iii) and(iv), then (v) follows. Also (vi) is a consequence of (v).

From (iii), we know that fkpk � pmin(q
k)k2g goes to zero. Using the de�nition of

pmin(q
k), (vii) follows.

Finally, taking into account the hypothesis that rank(A) = n, the previous results,
and applying Theorem 14.1.4 in J.M. Ortega and W. C. Rheinboldt [15], we prove (viii).
2

If in the Algorithm 4 we replace for obtaining �p, the algorithm ACCIM by ACCAV
[16] which uses wi of CAV, we get the version ALACCAV.

4 Experimental Results on an Image Reconstruction

Problem from Projections

We compared our algorithm using an image reconstruction problem from projections.
The main algorithms for comparison were ART [5] and CAV [6]. All methods were im-
plemented sequentially. The implementations were done within SNARK93, a software
package for testing and evaluating algorithms for image reconstruction [3]. The experi-
ences were run on a PC Pentium III, 800MHz, with 256 Mb Ram and 128 Mb Swap.
The algorithms were compared on the basis of their qualitative and quantitative behav-
ior. We show the performance of the algorithms on the reconstruction of the Herman
head phantom (Herman [12]), de�ned by a set of ellipses, with a speci�c attenuation
value attached to each original elliptical regions. The systems (see Censor et al. [6] for
a more complete description) are basically inconsistent, because in the fully discretized
model each line integral of the attenuation along the i-th ray is approximated by a �nite
sum. This matches the real-life situation where the right-hand-side (b0is) of the systems
are actual X-ray readings through an object but the region of interest is discretized. The
performance of the new ALACCIM algorithm is compared with CAV and ART. We use
the term iteration (Iter) to mean a single whole sweep through all equations of the system.
In the ALACCIM algorithm the de�nition of a new iterate (major iteration) requires one
or more of the above mentioned Iter, two as an average at the beginning, and four or
�ve when close to the solution. After running ALACCIM we run all other algorithms,
extracting and comparing the results corresponding to the same number of iterations. All
our experiments were initiated with x0 = 0.
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Equations Variables Image Size Projections Rays
case 1 13137 13225 115� 115 151 87
case 2 26425 13225 115� 115 151 175
case 3 126655 119025 345� 345 365 347
case 4 232275 119025 345� 345 475 489

Table 4.1 : Test cases

4.1 Comparisons

Four di�erent test cases, using the Herman head phantom, were run. Those tests are the
same appearing in [6], which arise from considering a di�erent number of projections and
number of rays per projection, leading in such a way to systems with a di�erent number
of variables and equations, as shown in Table 4.1.

As an example of numerical experiences we show graphs that compare the three algo-
rithms in the cases 1-3. We can observe a very eÆcient behaviour of ALACCIM because
in a few iterations it reaches the minimum error with regard to the seeked image.

CACIC 2003 - RedUNCI 1612



4.2 Conclusions

The acceleration scheme applied in the ACCIM algorithm is the basis for extending its
applicability to other class of algorithms suitable for parallel processing. In particular,
we used the same approach in the more general ALACCIM, for computing incomplete
projections. This algorithm can be easily implemented in parallel as the CAV method,
and can be extended for considering blocks of equalities in a similar way as it was done
for the ACIPA algorithm in [9] for linear inequalities. That extension will be presented in
a forthcoming paper, together with the results of its application to image reconstruction
problems.

The general acceleration scheme within the PAM framework adapted for dealing with
inconsistent systems presented in this paper, turned out to be very eÆcient when applied
to di�erent projection algorithms. The practical consequences of the new technique are
far reaching for real-world reconstruction problems in which iterative algorithms are used,
and in other �elds where there is a need to solve large and sparse unstructured systems
of linear equations.
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