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ABSTRACT

The Open Shop Scheduling Problem (OSSP) is one of the modt interesting, complexes and not
frequently approached scheduling problems. Due to its intractability with other techniques, in this
work we present an evolutionary approach to provide approximate solutions.

One of the mog important points in an Evolutionary Algorithm is to determine how to represent
individuals of the evolving population and then to decide suitable genetic operators. In this work,
we use permutations as chromosomes. Deding with permutations requires appropriate crossover
operators to ensure feasible offspring. Usua operators are partially-mapped, order, cycle and one-
cut-point crossover. The goa is to determine which is the most adequate for facing the OSSP with a
ample evolutionary dgorithm. Severd known instances have been consdered for testing in order to
evauate the dgorithm behavior.
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1. Introduction

Evolutionary dgorithms (EAs) can be used as techniques to solve problems ingpired in naurd
evolution [4]. In an EA, a data dtructure, representing a feasible solution to a problem, is defined.
Each posshble data st admissible for that structure would be a potentia solution to the problem. An
EA behave as a search method, where the solutions to the problem are able to reproduce between
them, combining characteristics and generating new solutions.

EAs have proved therr ability to solve difficult scheduling problems. One of the most frequent
models taken from red life is known as open shop. An Open Shop Scheduling Problem (OSSP)
involves a collection of m machines and a collection of » jobs. Jobs can follow routes, which are
open and arbitrarily decided by the scheduler. Each job consists of a set of operations, sometimes
cdled tasks [8, 6]. Each machine can process & most one operation a a time and each job can be
processed by a most one machine a any given time. The order in which the jobs are processed on
the machine, can be chosen arbitrarily; but two or more tasks from the same job cannot be
processed on the same machine. The objective in our OSSP is to determine a feasible combination
of the machine and job orders, a schedule, which minimizes the overdl finishing time, dso known
as the makespan. The makespan cannot be less than the maximum workload of each machine or
the total processing time needed of # jobs.

Congder an OSSP where there are two machines and »n jobs, denoted as 02||Cmax [6]. The
makespan has to be minimized. Job j may be processed first on machine 1 and then on machine 2 or
vice versa, the decison maker may determine the routes. With only two jobs, it can be easly
verified that there are only two possible schedules and both have the same makespan. If » > 3 the
problem belongs to the class of NP-hard problems.

The OSSP has many applications, specidly in the manufecturing world and in industry. The
common example is that of an automotive repair shop [10]. In such a shop, a typicad job might
involve the operations “spray-pant’, and “change-tyres’ to be peformed on the same vehicle.
These operations cannot usudly be performed concurrently (especidly if the Stations & which these
operations are performed are in different places, for ingance), but can be performed in any order.
Also it is usudly true that different gations (i.e. “machines’) can concurrently process operations
from different jobs (eg. involving different vehicles). If the operations in a job must be performed
in some fixed order, then this becomes a Job Shop Scheduling Problem (ISSP).

In this work, we dudy the peformance of evolutionary dgorithms using different crossover
operators, which are suitable for permutation representation.

The work is organized as follows. Section 2 presents a detailed problem description. Sections 3 and
4 describe the adopted representation and the crossovers methods implemented. Section 5 gives
detals on the experiments and section 6 discusses the results reached. Findly, conclusons and
future works are presented.

2. The Open Shop Scheduling Problem

The OSSP consgts of m machines M1, M.,..., M» and n jobs Ji, Jb,..., J.. Each job J; congstsof m
operations Oy, The processing times are giving inan m x n marix P where p;; indicates the duration
of the operation O;; for the job j on the machine i, without preemption.

Operations for a job can be processad in any order, but only one a any giving time. We assume that
each machine can process at most one operation at a time and each job can be processed by at most
one machine a any given time. The order, in which the job is processed by the machines, can be
chosen ahitrarily. The objective function to be minimized is the maximum time that is necessary to
complete al jobs, or makespan.

An example follows. Table 1 describes a possble ingtance for the problem with 4 machines and 4
jobs. Table 2 shows a possble dlocation of operations on the machines, and the corresponding
Gantt diagram is showed in figure 1.



Machine | JobJ0O | JobJI | JobJ2 | Job J3
Mo 34 15 38 95
Ml 2 89 19 7
M2 4 70 28 A
M3 61 9 87 29

Table 1. A 4x4 benchmark problem for the OSSP.

Machine | Job | Operation Operation Start time End time
Length

M3 J1 03, 9 0 9
MO J1 Op; 15 9 24
M2 J3 03 A 0 A
Ml J3 O3 7 A 41
Ml J2 [F) 19 0 19
M2 J1 0, 70 A 104
M3 JO O3y 61 9 70
Ml JO Op 2 70 72
MO J2 Oy, 38 24 62
MO J3 Op; 95 62 157
M2 JO (o)) 4 104 158
MO JO Oy A 157 191
Ml J1 O 104 193
M3 J2 O;, 87 70 157
M3 J3 Os; 29 157 186
M2 J2 0>, 28 158 186

Table 2. A schedule for the benchmark problem in table 1 with the makespan value of 193

Machine
mo| [[Oo7 ] 0oz
M1] 012 [od [O10 [ 011 |
w20z 021 [ 020 [ 02z ]
m3|031] 030 | 032 [ o1 ]
Time
25 50 75 100 125 150 175 193

1
[ vob Jo ] Job J1 [ Job 2 ] ob s

Figure 1. A schedule for the benchmark problem, OSSP 4x4, with minimum makespan.

3. Chromosome Representation

In this work we are usng permutations for the chromosome representation: to each operation of a
job is given a unique number. We first enumerate the operations of job J;, then the operations of job
J>, and so on. Thus, for a problem with 4 jobs and 4 machines, the first operation of job J; will be
given number O, and the last operation of job J, will be given number 15. For individud
chromosomes of the EA, we use gdrings of length p, where p is the totd number of operaions
involved. A scheduling of the operations is represented by using an integer Sring, yi, y2,..., Vp,
where the vaue of y; represents the operation to be scheduled next. Thus, if we have 4 jobs and 4

meachines, the following gtri ng (figure 2) repr@ents apossible schedule of the sixteen operations.
1 2 4 6 7 8 9 10 11 12 13 14 15

|4|5|13|14|9|7|2|3|8|12|O|1|6|11|15|10|

Figure 2. A chromosome representation for a4x4 instance of OSSP.




This representation is interpreted as follows. Firdt, it schedules the operation that has number 4 (the
first operation of J;), then, the operation with number 5 (the second operation of .J;), and so on.

The procedure for cdculaing makespan condsts in scheduling the operations with the god of
finishing an operation at the earliest possble time. This is not as obvious as it might seem. Consder
the following scenario (see Figure 3): we want to schedule operation O, from job J. of length ¢ on
machine M;. Our agorithm scans the operations that have been dready scheduled on M;. In case a
“gap’ exists between two consecutive operations, O, and Oy, such that y — x >= ¢ (where x isthe
completion time of O, and y is the dat time of O,,) then the dgorithm checks if the operation O.
can be scheduled between x and y. This is done, only if no other operation from job J. is currently
being processed on some other machine between timesx and y.

If no such gap exigts, then operation O, is scheduled sometime after the last operation that was
processed on machine M;.

Machine M a b
w X y z
Figure 3. Scheduling operation ¢ between operations aand b on machine ;.

4. Crossover Operators

For this work we select the permutation representation and then in order to obtain feasible schedules

after each recombination, adequate genetic operators are needed. They are:
partial-mapped crossover (PMX). PMX was proposed by Goldberg and Lingle [2] and can be
viewed as an extenson of two-point crossover for binary string to permutation representation.
It uses a specid reparing procedure to resolve the illegitimacy caused by the smple two-point
crossover. Thus the essentids of PMX ae a dmple two-point crossover plus a repairing
procedure.
order crossover (OX). OX was proposed by Davis [1]. It can be viewed as a variation of PMX
with a different repairing procedure.
cycle crossover (CX). CX was proposed by Oliver, Smith and Holland [5]. Essentidly it can be
viewed as a cdass of uniform crossover to permutation representation together with a repairing
procedure. It takes some dlees from one of the parents and sdects others from the other parent.
Alldes of the fird parent are sdected in order to define a cycle according to the postions
between the parents.
one-cut-point crossover (OCPX). OCPX was proposed by Reeves [7]. It is a kind of one-point
crossover for permutation representation. It defines a cut point, and then takes al the dldes
from the firs parent until that postion and completes the offspring with the dleles according to
their occurrence in the other parent.

5. Experiments

The agorithms were tested for a set of selected instances of the Open Shop Scheduling Problem
that are well known in the literature [9], Talllard gives the pseudocode to generate the individua
problem ingtances. We implemented, in Borland C, Taillard's dgorithm and executed it to generate
40 benchmark problems. The generator takes as input: time seed, machine seed and the problem
sze, which are specified in P]. We have worked with dl the instances for smal size problems (4x4
and 5x5) and the medium size problems (7x7 and 10x10). For each ingtance, a series of fifty runs
were performed for each crossover operator (OCPX, OX, CX, PMX). The EA used proportiona
sdection for mating. For mutetion, a smple interchange operator, which randomly exchanges
genes of the chromosome, was designed. The population Sze was fixed a 100 individuds for dl
ingances. The maximum number of generations was fixed & 1000 and probabilities for crossover



and mutation were set a 0.8 and 0.1, respectively. These vaues were determined as the best

combination of probabilities after many initid trids.

The following rdlevant performance variables were chosen:

» Ebest = (Abs(opt_val - best vdue)lopt val)100
It is the percentile error of the best found individua when compared with the known, or estimated,
optimum value opt_val. It gives us ameasure of how far the best individud isfrom that opt_val.

» Epop = (Abs(opt_val- pop mean fitness)lopt val)100
It is the percentile error of the population mean fitness when compared with opt val. It tdl us
how far the mean fitnessisfrom thet opt val.

» #Opt = It indicates the number of times that the known, or estimated, optimum vaue is obtained
during severa experiments made.

» MEbest and MEpop indicate the mean vaues for Ebest and Epop, respectively.

6. Results

Tables 3 and 4 report the results of the adgorithm usng different crossover methods on the 4x4
indances. In dl of them, the optimum vaue for each indance was reached, independently of the
crossover type; the exception was in the insance Mat43 under the CX, but the Ebest vdue (0.8) is
very close to the optimum. Andyzing #Opt, OX obtained the biggest number of occurrences in
most cases, followed by PMX, OCPX and finaly CX. Now consdering mean Ebest, best results are
obtained with OX, followed by PMX, OCPX and CX.

Instance OCPX PMX (0).¢ CX

#opt | ebest [mebest|#opt | ebest Imebest| #opt | ebest [mebest| #opt [ ebest [mebest
Mat40 11 0.0000| 1.7824 | 6 |[0.0000| 1.0259 | 10 | 0.0000| 0.9326 | 8 | 0.0000| 1.8549
Mat41 2 0.0000| 1.6186 | 9 |[0.0000| 1.4915| 12 (0.0000| 1.2373 | 6 |[0.0000| 2.4746
Mat42 7 0.0000| 0.3838 | 20 | 0.0000| 0.2214 | 24 | 0.0000| 0.1919 2 0.0000 | 0.8044
Mat43 3 0.0000 | 1.2320 6 0.0000 | 1.3760 3 0.0000| 1.1440 0 0.8000 | 2.1200
Mat44 6 0.0000| 2.0339 | 12 | 0.0000| 1.6881 | 12 | 0.0000| 1.6949 4 0.0000 | 3.0102
Mat45 27 0.0000| 1.3439 | 20 | 0.0000| 1.2275 | 19 | 0.0000| 1.8624 6 0.0000 | 3.1534
Mat46 16 0.0000 | 0.9055 | 11 | 0.0000| 1.0547 | 3 |[0.0000| 1.1244 | 3 |[0.0000| 1.8806
Mat47 18 0.0000| 1.0783 | 5 |[0.0000| 1.7880 | 26 |[0.0000| 0.7650 | 4 | 0.0000| 1.8525
Mat48 11 0.0000 | 2.2605 8 0.0000| 2.2912 | 17 | 0.0000( 1.6322 9 0.0000 | 3.0421
Mat49 9 0.0000| 2.3963 | 36 | 0.0000| 0.3779 | 36 | 0.0000| 0.5714 6 0.0000 | 2.4516

Table 3. ebest results for 4x4 instances.
OCPX PMX oX CX

Instance

epop | mepop | epop | mepop | epop [mepop| epop |mepop
Matd0 [23.4109( 36.0747 [47.9888| 56.2099 |40.7619(53.4364 | 5.9358 |11.4604
Mat41 [18.9086| 36.8223 [47.6049| 53.3789 |40.3621|50.6051 | 5.9629 |12.6370
Mat42 [18.1065| 30.8318 (43.5274| 47.8076 |38.6551(45.4717 {13.8400|10.4499
Mat43 (20.0173| 37.6874 |46.8763| 53.5512 |46.6567(51.7476| 5.5634 |11.5779
Matd44 [20.8616( 39.0704 (49.8481| 54.2613 |43.9801(51.7308 | 4.5784 |12.3258
Mat45 8.2756 | 37.8797 [53.4804| 61.3702 |44.8413(59.3113| 6.4487 (13.9492
Mat46 9.4037 | 34.2632 |45.6479| 53.4267 |32.9484|49.8518| 3.6633 |11.5271
Mat47 6.0330 | 30.6541 |37.8355( 62.3665 |46.2057(61.2375| 5.1697 |10.8525
Mat48 [13.5176| 34.8459 [53.4773| 59.2208 |51.4398|57.8281 | 5.8659 |13.2079

Mat49 |16.5270| 33.1802 |46.1708| 50.5378 [42.8912|50.2298| 2.7374 [12.0814
Table 4. epop results for 4x4 instances.

Table 4 details Epop reaults. Lower values were found with CX, varying between 2.7 and 13.8%;
this indicates that the population is fairly centred on the best-found vaue (as we saw previoudy, in



only one ingtance the optimum vaue was not reached). Then, it is followed by OCPX, which shows
an eror ranging between 6 and 23%. Higher Epop vaues are observed with the application of OX
and PM X, whose vaues are dmost twice as much those showed by other methods.

Although OX obtained the best Ebest results, the population behaves better with CX in average.

Table 5 exhibits results on the 55 ingtances. Here, only both Mat50 instance under CX and Matb1
under OX reached the optimum vaue. Best results were achieved by OCPX, CX and OX, but no
one brings out the other. Analyzing MEbest values, OCPX presents good results, followed for CX,
OX and PMX.

Epop vdues on the 5x5 ingtances are described in table 6. The lowest levels of Epop were found
with CX, whose vaues go from 6.2 to 11.21%; OCPX follows it with an error ranging between 32.4
and 44.3%. Remaining crossover methods exhibit Epop vaues al over 50%, but results reached for
PMX are the worst ones.

Evduding results obtaned on 7x7 ingtance (table 7), a crossover ranking can be established
congdering Ebest results CX, OCPX, OX and findly PMX. The latest two show remarkable higher
errors. The same ranking can be observed for mean Ebest vaues.

Andyzing Epop vaues (table 8) the same crossover ranking is preserved here. Moreover it matches
the same ranking presented on previous 4x4 and 5x5 instances

Tables 9y 10 introduce results corresponding to 10x10 instances. Here, the same behaviour on both
Ebest and Epop vauesis observed: CX inthefirgt place, then OCPX, OX and findly PMX.

OCPX PMX OoX CX
Instance #opt | ebest [mebest|#opt | ebest Imebest| #opt | Ebest [mebest| #opt [ ebest [ mebest
Mat50 0 1.6667| 57800 | O |[1.0000| 7.9000 [ O |0.3333[ 6.8000 [ 1 |0.0000 | 6.5467
Mat51 0 1.5267 | 6.0229 0 3.4351 | 8.3282 1 0.0000| 6.3740 0 1.5267 | 6.3130
Mat52 0 3.7152 | 8.3529 0 6.1920111.3870( O 4,9536(11.1022( O 3.0960 | 8.3653
Mat53 0 2.5806 | 8.2839 0 3.8710] 12.6000( O 1.9355(10.8516| O 5.4839 | 9.4323
Mat54 0 27607 7.8344 | 0 [24540[11.2699| 0 |[4.9080|10.5153| 0 |[2.7607| 8.1595
Mat55 0 2.5641 | 7.7436 0 2.8846111.11541 O 3.8462| 8.8846 0 2.5641 | 7.2756
Mat56 0 2.9703 | 7.9274 0 3.3003 ] 10.5215( O 2.3102| 9.3663 0 1.3201 | 7.7624
Mat57 0 1.3333 | 6.3267 0 3.6667 | 9.8133 0 2.6667| 8.0067 0 1.6667 | 6.5533
Mat58 0 1.1331 | 7.0765 0 1.1331 | 9.9377 0 1.6997 | 8.7989 0 2.2663 | 7.5184
Mat59 0 1.8405 | 7.5706 0 3.0675]10.5583( O 4.6012| 9.9755 0 3.0675| 7.2822
Table 5. ebest results for 5x5 instancias.
Instance OCPX PMX OX CX

Epop |mepop| epop [mepop| epop |mepop| epop |[mepop
Mat50 |35.7890 [48.0589|56.4269|62.2417 |53.6392(59.5873 | 6.8393 |18.4225
Mat51 [34.8742|49.0347 [56.7402|64.8935 |54.7649(61.0515| 6.2199 [17.7527
Mat52 [44.2850(52.2842|61.4160|66.6979 (58.8878|64.2265| 9.8863 |19.6888
Mat53 [39.3764 (54.0097 |65.5028|69.4677 [58.1226|66.6563 |11.2184(20.7248
Mat54 |32.4003(50.7764|62.7619|66.6487 |56.6426(65.0553 | 8.2019 |19.7695
Mat55 |42.1066 [51.6408|62.2816|67.2295 |59.4266(64.1871(11.2184|18.9530
Mat56 (41.2108|52.6391 (60.2320|66.1630 (58.5800(65.0227 | 9.6134 [19.4897
Mat57 (35.6116|48.3666 |58.5249(64.5336|53.8045(62.0988 | 8.4083 |16.7813
Mat58 [36.0607 (50.0923|60.8160|64.5034 (54.9705|62.6435| 8.0242 |18.7984
Mat59 |39.2151 [51.5956 |62.2325|65.5376 |56.3927(63.6676 [10.1430|18.6864
Tabla6. epop values for 5x5 instances.




Instance OCPX PMX OoX CX
#opt | ebest [mebest|#opt | ebest Imebest| #opt | ebest [mebest| #opt [ ebest [mebest
Mat70 0 9.5890 [ 14.8721| 0 [12.1005|18.5936| 0 [9.3607|16.6438| 0 |[3.8813]10.3333
Mat71 0 7.1269115.8396| 0 |12.9176|20.8018( O |13.1403(18.2539| O 4.6771]11.1581
Mat72 0 9.6033118.0835| 0 |11.2735|22.6347| O |14.6138(20.7641| O 5.8455 | 13.0939
Mat73 0 7.4946114.9422| 0 ]11.9914|20.1456( O |12.4197(18.4154| O 5.5675 | 11.0707
Mat74 0 10.2625( 16.6205| 0 ([12.1718|20.6444| O |14.5585 19.7566| O 5.7279 | 11.7327
Mat75 0 9.5652 [ 17.5783| 0 ([13.9130|23.1957| 0 (11.5217/20.8217| 0O |[4.5652]13.2391
Mat76 0 9.885117.2368| 0O ([14.9425/22.9379| 0 ([13.3333/21.0069| 0 |[4.8276]13.3149
Mat77 0 9.6244114.5728| 0 |11.2676|19.0141| O |11.0329(16.9812| O 5.1643 | 10.9624
Mat78 0 6.5217 1 15.5043| 0 ]13.2609|20.1304( O |11.7391f17.0957| O 4.1304 | 11.1261
Mat79 0 10.7500( 17.8300| 0O [13.2500|21.7050| O |13.7500) 20.3650( O 6.5000 | 11.9200
Table 7. ebest valuesfor 7x7 instances.
Instance OCPX PMX OX CX
epop [mepop| epop |mepop| epop [mepop| epop |mepop
Mat70 (43.3194(54.8069 |61.7965|67.1995 [57.3683(63.8090|10.1774]22.7061
Mat71 (46.3777(57.7936|67.0472|69.778761.1039(67.4021 (14.9775|24.1770
Mat72 (47.0279(58.9272|67.7334|70.8012 (64.2437(68.2968 | 16.5996|26.8816
Mat73 (38.9990(54.0460 |63.5970|67.2085 [58.7923(63.9556 |13.5723|24.2843
Mat74 (45.6723|57.6537|65.9494|69.7041 [62.1950|66.9763|13.9652|24.6742
Mat75 (49.7233|58.8904 |68.0571|72.1303 (63.1417|68.8114 |16.2404|25.7376
Mat76 (50.2511(59.4891|67.1649|71.9833(60.5037(69.3969 |15.3238|26.7919
Mat77 (43.9033(54.2849|63.0676|67.5670 (59.2106(64.7806 |13.4904|23.6322
Mat78 (37.8769(55.0435|63.4307|67.3368 [58.8338(63.8739|15.4853|25.2915
Mat79 (47.8212(59.7214169.2195(|73.2935(63.0734|69.5887 |16.8440(25.3123
Table 8. epop valuesfor 7x7 instances.
Instance OCPX PMX OX cX
#opt | ebest [mebest|#opt | ebest Imebest| #opt | ebest [mebest| #opt [ ebest [ mebest
Mat100 24.3411(29.1039| 0 [24.4961| 33.4636 22.0155| 31.0078 17.3643 22.8155
Mat101 0 17.8571| 26.5816| 0 [26.3605|31.6565|( O |20.5782(29.3639| O |13.9456(20.1122
Mat102 0 18.3306| 26.3175| 0 [25.6956(31.8069 O |21.9313|28.4550( O |12.7660| 20.5565
Mat103 0 21.4905( 26.5858| 0 ([26.6898]|31.1612| O |19.0641 28.4125( O |14.3847(20.9324
Mat104 0 18.8768( 26.8736| 0 ([24.6490|32.1154| 0O |23.7129 29.7910( O |15.1326(21.7129
Mat105 0 22.3048( 29.5093| 0 [28.6245]|34.6357| 0O ]21.1896|32.1636( O |16.9145|23.6022
Mat106 0 18.6196( 26.0289| 0 (24.0770|30.7352| 0O |22.4719 28.4045( O |10.1124(19.1974
Mat107 0 20.1342| 26.5973| 0 [23.1544(31.4228( 0 |17.2819|28.1275| 0 |13.2550(20.0839
Mat108 0 19.6639| 27.9462| 0 [26.3866(33.3580( O |23.1933|30.8605| O |15.4622(22.8269
Mat109 0 17.9402| 25.4120| 0 [21.7608[30.3887| 0 |22.0930|27.6346| 0 |12.2924(19.3621
Table 9. ebest results for 10x10 instances.
Instance OCPX PMX [0) CcX
epop | Mepop | epop | mepop | epop | mepop | epop | mepop
Mat100 |55.7180| 62.4777 |71.5070| 73.8312 (67.4040| 71.4458 |27.5660| 37.5863
Mat101 |50.3510| 60.5000 |69.6992| 72.8551 (65.8009| 70.5147 |22.7332| 34.0526
Mat102 |50.4205| 60.1335 |68.2775| 71.6965 [62.1060| 68.6121 (20.8567( 34.5906
Mat103 |52.5470| 60.7264 |67.2913| 71.8538 (63.8804| 69.3153 (27.6176| 35.7719
Mat104 |51.7378| 61.2430 |69.2007| 72.5177 (66.5922| 70.5284 (27.3043| 36.8116
Mat105 |55.2660| 63.9792 |72.6298| 76.9366 (70.3335| 74.1149 |27.6176| 38.6999
Mat106 |52.5901| 60.4353 |67.6839| 70.7704 (62.7713| 68.5515 |21.1674| 33.8335
Mat107 |52.8072| 60.7251 |69.6044| 72.9874 (65.6795| 70.1579 (22.7785( 34.3411
Mat108 |54.2745| 62.4257 |70.7354| 74.3941 (67.3351| 72.0496 (28.3389( 37.1650
Mat109 |49.3047| 58.6597 |66.5349| 70.8761 (64.5970| 68.8694 (21.4699( 33.8517

Table 10. epop resultsfor 10x10 instances.




Graphics 1 to 4 show the evolution over the generations of both the best individud (lower curves)
and the mean population makespan (higher curves). X axis represents the number of generaions
and the Y axis the makespan values. A representative matrix instance was selected for each problem
gze according to the complexity leve. The curves are obtained by averaging the results from the
fifty experiments made for each instance. Mat40 instance was the one sdected from 4x4 set
(grephic 1). A superpodition for dl the crossover methods is observed among curves representing
the progress of the best vdue in paticular with CX, the mean vaue curve is very near to the best
vaue. In dl ingances, the mean population makespan remains congtant and quite high through the
generations with PMX and OX. Using CX and ariving to generation 200, an approaching to the
best makespan found is observed, such a process of improvement continues in a notorious way as
soon as the complexity of the problems is increased. Now, with OCPX the biggest approach to the
best vaue found is detected between generations 100 and 150, from this point on the mean
population error does not vary so much.

In Mat40 ingtance (graphic 1), the evolution of the best individua is independent of the crossover
method. In Mat51 (graphic 2), changes produced in the best individud are smilar in CX, OX and
OCPX, but in PMX the reaults are not so good as those showed by other crossover methods. In
Mat79 and Mat101 instances, graphics 3 and 4 respectively, the curve representing the evolution of
the best individud for CX is benesth others.
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7. Conclusions
In this work we presented a smple evolutionary agorithm as an dterndive technique to solve the
open shop scheduling problem. The representation of solutions sdected is a permutation of



operations. For that it was necessary to consder well-desgned crossover and mutation operators in
order to obtain feasble offspring after each mating action. Particularly, the crossover operators
sdected and contrasted were those proposed for the traveling salesman problem (TSP): partid-
mepped, order, cycle and one-cut point crossover. Some problem ingtances with different
complexity level were used to evduae the behaviour of our dgorithm. Results from the gpplication
of different crossover methods were contrasted. Some observations and suggestions about the use of
these agorithms were given.

Andyzing results obtained for indances with lessr complexity, we can remark that, regarding
quaity of resultss OX provides better results than other crossover methods. When the instance
complexity is increased, the dgorithm usng CX is the one tha reaches solutions closer to the
optimum vaue.

Independently of the instance complexity, we concluded that usng CX operator levels of error in
the population lower than employing the others crossover methods, were reached. However when
that complexity isincreased higher errors were shown.

Next steps will be oriented to develop more refined agorithms consdering other representations,
incorporating multiplicity characteristics that were applied to other scheduling problems.
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