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Abstract 

The back-propagation algorithm is one of the most widely used training algorithms for neural 
networks. The training phase of a multilayer perceptron by using this algorithm can take very long 
time making neural networks difficult to accept. One approach to solve this problem consists in the 
parallelization of the training algorithm. 

There exists many different approaches, however most of them are well adapted to specialized 
hardware. 

The idea to use a network of workstations as a general purpose parallel computer is widely ac­
cepted. However, the communication overhead imposes restrictions in the design of parallel algo­
rithms. 

In this work, we propose a parallel implementation of the back-propagation algorithm that is suit­
able to be applied to a network of workstations. The objective is twofold. The first goal is to increment 
the performance of the training phase of the algorithm with low communication overhead. The second 
goal is to provide a dynamic assignment of tasks to processors in order to make the best use of the 
computational resources. 
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1 lntroduction 

The back-propagation algorithm is one of the most widely used algorithm for training neural networks [1 ]. 
However, it makes an intensive use of computational resources and training times of days are not excep­
tional. For this reason, there is a considerable interest in parallel implementations of the back -propagation 
algorithm. 

Parallel implementation models fall in two categories: network based and training set based models. 
The network hased models partition the network components into the different processors. Each pro­

cessor usually keeps a set of units ancilor weights and it is responsible of the processing of these compo­
nents. The processors must synchronize in order to pass the output values of each component. Usually 
the training is done on-line. 

In the training set based models the training patterns are distributed into the different processors. 
Every processor processes only the patterns that are assigned to it. The synchronization is only necessary 
after all processors finish their forward processing cycle in order to update the weights. The training is 
usually done in batch mode which is not so efficient as the on-line mode. 

Most of the parallel implementations of the back-propagation algorithm are developed for special 
parallel hardware [6]. Efficient implementations have been developed for parallel systems with topolo­
gies based on mesh, hypercubes, torus, lattice, systolic arrays, and using processors like FPGAs, DSPs, 
transputers and digital neuro-computers. 

Very few implementations consider the use of interconnected workstations [7] [4] [3] , which have 
become widely accepted as a kind of parallel computer. Plenty of computing intensive experiments in 
the world are carried now with a network of workstations instead of expensive special parallel computers. 
Justas an example, astronomic data processing and high energy experiments have selected this approach 
to process data. The communication overhead has now to be considered more carefully, and also the 
background workload has to be taken into account. 

We propase a parallel implementation of the back-propagation algorithm specially designed to be 
used in a network of workstations where the communication overhead has to be reduced. Our proposal 
is a mixture of both network based parallelism and training set parallelism. The algorithm proposed is 
dynamic allowing a very fast and convenient reorganization of tasks between processors if it is necessary 
dueto changes in the background workload. 

The rest of this paper is organized as follows: section 2 presents a description of the back-propagation 
algorithm, section 3 reviews the most widely used parallel implementations, section 4 presents our pro­
posa! , section 5 discusses its advantages and section 6 presents our overall conclusions. 

2 The back-propagation algorithm 

A usual multilayer perceptron is shown in figure 1. The Ni input units are fully connected to the N 11 

hidden units , and the hidden units are fully connected to the N0 output units. This full connection pattern 
makes the partition of the components a difficult problem for parallel implementations. 

The back-propagation learning phase consists in the following steps: 

l. lnitialize the weights to small random values. 

2. Selecta training pattern and apply it to the input units. 

3. Calculate the outputs (forward propagation phase). 

4. Update the weights based on the error (backward propagation phase). 
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Figure 1 : A multi layer perceptron 

5. Repeat steps 2-4 for all training patterns. 

6. Repeat steps 2-5 till the error is acceptable. 

Let's define: 

• input patterns: X = x1, x2, ... , X Ni 

• output patterns: Y= Y1, Y2, ... , YNa 

• hidden weights: Wi~j where 1 ::::; i ::::; Nh, 1 ::::; j ::::; Ni 

• output weights: Wi~j where 1 ::::; i ::::; Na, 1 ::::; j ::::; Nh 

The algorithm can be summarized as follows: 

l. The activation of the hidden units (yf) and the activation of the output units (yf) is computed based 
on their inputs and the weights values: 

yf = 2::~ 1 Xj * wf,j, where 1 ::::; i ::::; Nh 

Yo = "'N.!:.l yh * W 0 . where 1 < i < Na 
Z ~]- J Z,J' - -

2. The error in the output units (c5f) and the error in the hidden units (c5f) that will be used to update 
the weights is computed as follows: 

c5f = Yi * (1 - yi) * (Yi- yi), where 1 ::::; i ::::; Na 

c5h = yh * (1- yh) * "'~ 1 c5° * wo. where 1 < i < Nh Z Z Z ~]- J ],P - -

3. The weights in the output layer (Wi~j) and the weights in the hidden layer (Wi~j) are updated: 

Wi~j = Wi~j + r¡c5j * Yi, where1 ::::; i ::::; Na, 1 ::::; j ::::; Nh 

wi~j = wi~j + r¡c5J * Xi, where 1 ::::; i ::::; Nh, 1 ::::; j ::::; Ni 

When a batch learning scheme is used, the errors are collected and the weights are updated at once 
when the whole set of P patterns have been presented: 

Wi~j = Wi~j + r¡ 2::=1 c5j(p) * Yi, where 1 ::::; i::::; Na, 1 ::::; j ::::; Nh 

wi~j = wi~j + r¡ L:=l c5J(p) * Xi, where 1 ::::; i::::; Nh, 1 ::::; j ::::; Ni 



There exists many variations on the back-propagation algorithm that have been proposed in order to 
get better performance in the training time of the algorithm. They are not considered here as they do not 
modify the essence of the algorithm. 

3 Parallel implementations 

The main parallel implementations of the back-propagation algorithm fall in two categories: the training 
set based model and the network based model. The two following subsections provides details on them. 

3.1 Training set model 

In the training set model the data is partitioned and not the program. Each processor gets a subset of the 
training data, and performs the forward and backward propagation steps without updating the weights. 
Figure 2 shows how the training set can be partitioned. The 5 values are collected, and when all processors 
finish the processing of their corresponding training data subset, values are globally collected and one 
weight update operation is done. 

Training Set 

Figure 2: The training set model 

Synchronization is necessary in order to update the weights in a global master processor. The data can 
be sent by using fixed size packets and they are only sent at the end of each training epoch. 

As a disadvantage, the update in batch mode is usually less efficient than the on-line update done at 
the end of each training cycle. 

3.2 Network based model 

In the network based models, the units and/or the weights are distributed between the different processors. 
The model receives different names based on the distribution pattern: 

• Pipeline model: The weights are distributed in such a way that one processor computes one layer 
(see figure 3). The processor that computes the lower layer has to finish before the other can start 
processing. However, it can process the next pattern when its output layer is been processed by the 
second processor. In this way, a pipeline parallelism is obtained. 

• Vertical slicing: All incoming weights to one hidden and output unit are mapped into one processor 
(see figure 4). Processing can be done in parallel, but the output of the hidden units must be com­
municated between the processors. The weights must be sent through messages also when they are 
updated. 



Figure 3: The pipeline m o del 

Figure 4: The vertical slicing model 

• Synapse parallelism: The weights are distributed in such a way that each processor can compute 
the partial sum of each output unit (see figure 5). These results have to be added and broadcasted to 
the other processors. The parallelism is more fine grained. 

Figure 5: The synapse parallelism model 

4 The proposed parallel algorithm 

The target computing system is a network of workstations. It is now a day considered as a very powerful 
environment for high performance computing, and is becoming more and more popular. Its main charac­
teristics are the difference in speed of the processors and the low speed communication channel between 
them. An algorithm to be applied in this system must match the difference in speed, reducing the idle time 
of sorne processors waiting for others. The usual practice of equal division of tasks between processors is 
inherently inefficient. 

Figure 6: The proposed model 

The algorithm proposed is a mixture of network based parallelism and training set parallelism (see 
figure 6). Each processor is responsible of the incoming and out-coming weights of a set of hidden units. 



Sorne processors computes the forward phase of the algorithm over different patterns of the training 
set, and others computes the backward phase updating weights (see figure 7). The communication is 
reduced because there is no synchronization between them, as no processors has to wait for others. The 
global communication is reduced and is controlled by a parameter. The whole assignment of tasks to 
processors can be changed dynamically. 

backward phase processors 

forward phase processors ----

----

----

----

----

network 

Figure 7: The task partition 

4.1 The forward phase 

The training set is divided in subsets by following a parallel training set model. The forward phase is 
implemented by a set of processors that has a copy of the network and computes the outputs and the 
output deltas for each pattern of the corresponding training set. The parallelism between these processors 
is absolute because no processor has to wait for others. The delta output and the output of the hidden 
nodes are sent through a packet to all processors doing the backward phase. Note that the number of 
values is small (if you compare with the number of weights for example), so data from a set of patterns 
can be collected into one message. 

4.2 The backward phase 

The vertical slicing approach assigns to each processor the incoming weights of sorne units (see figure 4). 
The synapse parallelism assigns to each processor the out-coming weights of sorne units (see figure 5). 
In our proposal, we assign to a processor a hidden unit ( or a set of hidden units) and its incoming and 
out-coming weights, as it is shown in figure 6. 

Each processor is responsible of these weights and it is the only processor that can modify them. 



Every time a packet is received from a forward phase processor, only the weights under its responsi­
bility are updated. They will be sent to the other processors only when the change in them is greater that 
a parameter f. Note that this parameter has a direct impact on the performance of the algorithm, because 
it will determine the degree of communication between the nades. See subsection 4.4 for a discussion on 
its values and their relation with the performance of the algorithm. 

4.3 The communication 

The forward phase processors send packets that contains the id of the pattern, the output deltas (6°) and 
hidden units outputs (yh). The backward phase processors can execute a complete update cycle basedjust 
on these values, computing the hidden deltas (6h) and the update of the weights under their responsibility. 

From the equations presented in section 2 it can be seen that each processor can update its weights 
based on this information in an absolute parallel way. 

The backward phase processors build packets containing the weights that have changed in more than 
E, and broadcast them to all processors. 

4.4 The E parameter 

As it was quoted befare, the selection of the value of the f parameter has a direct impact on the perfor­
mance of the algorithm. 

• If the value of E is too high, the parallelism level will be very high, because the processor will run 
with very few communication between them, but the performance of the training algorithm will be 
low, because most processors will be using outdated weight values. 

• lf the value off is too small, the performance of the algorithm will be near the on-line standard 
back-propagation algorithm, but the parallelism will be low because there will be a lot of messages 
going between the processors. 

Jt is clear that a compromise selection has to be taken. The figure 8 shows the effect of different values 
of the E parameter in a training session. The performance of the training algorithm depends on its value, 
but it can be seen that even with high values of E, the performance of the algorithm follows quite near the 
standard back-propagation approach. The error change in steps because it can be measured in different 
iterations with the same weights, however, the effect of the error is always computed but not immediately 
propagated. The error reduces abruptly when the weights are updated. 

The figure 9 shows the number of weights that are interchanged on average in each iteration with 
different values off in a standard network with 336 weights. When f is O (default backpropagation algo­
rithm) all the weights has to be interchanged every iteration. The communication between the processors 
is greatly reduced with higher values off that still produces very good training results (see figure 8). Jt can 
also be seen that the number of weights that have to be communicated changes in the different training 
stages of the algorithms. 

lt follows that the use of the f parameter can reduce greatly the communication between processors 
without reducing the quality of the training session. 

4.5 The dynamic approach 

The forward phase processors operate independently on a different set of patterns. The backward phase 
operate on their outputs. The backward phase takes four times more time than the forward phase. Jt 
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Figure 8: The effect of different values of E 
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follows that four backward processors are necessary in order to process the data generated by one forward 
processor 

This analysis does not consider communication overhead nor different workloads on the workstations. 
It is not direct to make a time diagram, like in a dedicated system or a parallel computer, to show the 
expected parallelism of the model. The different speed of the processors, and the different set of task 
involved suggest the necessity of a dynamic assignment of tasks to processors. 

We implement the parallel algorithm in such a way that each processor has the same program running 
on it, so it can make forward phase computation or backward phase update. All processors have all the 
weights that defines the neural network, so it is just a matter of selecting the kind of computation that has 
to take place on them. 

One of the processor acts like a master, and monitors the performance of the others. Two situations 
can anse: 

• If the forward phase processors are generating data at a higher speed than the speed in which the 
backward processors can process it, then a forward phase processor is switched to backward mode. 

• If the backward processors are idle sometime because they process the data at a higher speed than 
the speed in which the forward phase processor produces data, then a backward phase processor is 
switched to forward mode. 

Note that the task switch involves just doing another task with the same data, and no program down­
loading takes place. The performance monitoring process is based on the length of the message queues in 
the backward processors. 
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Figure 9: The effect of different values of E on the number of weights that has to be interchanged 

5 Discussion 

This approach is a mixture of network based parallelism and training data set parallelism. The last model 
can be implemented efficiently only with batch learning, where network based parallelism is usually im­
plemented with on-line learning. In training data set parallelism the communication overhead is produced 
at the end of a complete epoch of training. In network based parallelism, the communication overhead 
occurs for every pattern. In our approach, the communication overhead happens every time a forward 
processor processes a block of patterns, and when the weights has a major change. 

Even if the patterns are processed in blocks, the backward processors can do an on-line training strat­
egy, which is considered better than batch training. In order to reduce the communication overhead even 
more, the forward processors can send the summation of the errors and the backward processors can 
perform a block update rule, which is in between the on-line training and batch training. 

The usual approach of network based parallelism ( opposed to training set parallelism) would force an 
immediate interchange of weights, even if the values that has to be interchanged are almost the same as 
the originals. The E approach limits the communication, but could potentially increment the error, because 



sorne processors could use outdated values. The value of the f parameter determines the degree in which 
this could atfect the results. 

The figure 9 provides an argument that shows that message interchange would be necessary in the 
first steps of the algorithm, but very few messages has to be send ar rhe end. An algorirhm thar generares 
messages for every weight updare (rhe usual approach) would generare an enormous amount of messages 
carrying very small modification to the weights. The loss in performance of the back-propagation algo­
rithm due to the use of ourdated values is very small at the end, and the degree of parallelism is very high 
because very few messages are interchanged during mosr of the running time of the algorithm. 

The figure 9 shows how the change in the value off affects the performance of rhe back-propagation 
algorithm in different srages of the algorithm. It can be seen that rhe f approach can be quite effecrive 
reducing rhe communication between rhe processors, while keeping an adequate level of performance for 
rhe algorithm. 

The system is now being implemented on a network of Unix workstations by using the MPI (Message 
Passing Interface) [2] [5]. 

6 Conclusions 

We have proposed another parallel implementation of the back-propagation algorithm for neural networks 
traíníng suíted to be used on interconnected workstatíons. It ís well adapted to a system with processors 
wíth dífferent speeds, and wíth dynamíc changes in the workload. It implements both network parallelísm 
and training set parallelism, with a reduced communication overhead based on a pararneter that is used to 
determine when weights changes must be propagated. The fact that processors are responsible of sorne 
weighrs reduce communication, because only the modified weights must be transmitted. 
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