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Scheduling concerns the allocation of limited resources for tasks over time. It is a process of 
making decisions that has, as a goal, the optimization of one or more objectives. Frequently, the 
main objective to be minimized is the completion time of the last job to abandon the system, which 
is called makespan. 

In many production systems a number of operations must be done on every job and often these 
operations have to be done in the same order on all jobs. This scheduling approach is known as the 
Flow Shop Scheduling Problem (FSSP). The present paper discusses the new multi-recombinative 
method and shows the performance of enhanced evolutionary approaches under permutation repre­
sentation combined with a successfull previous approach proposed by another researchers, the ex­
tended incest prevention (EIP), consist of maintaining information about ancestors within the chro­
mosome and modifying the selection for reproduction in order to impede mating of in di viduals be­
longing to the same "family", for a predefined number of generations. 

Results of the methods proposed here are contrasted with those obtained under previous evolu­
tionary approaches to the FSSP. 

KEYWORDS: Evolutionary algorithms, genetic diversity, premature convergence, incest pre­
vention. 
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l. INTRODLJCTION. 

Scheduling is not only present in most manufacturing and production systems but in most infor­
mation processing environments as well. lt also exists in transportation and distribution setting and 
in other types of service industries. In the scheduling problem resources and tasks may take many 
forms. Resources might be machines in a workshop, runways at an airport, processing units in a 
computing environment, and so on. Tasks might be operations in a production process, take-off and 
landings atan airport, stages in a construction project, execution of computer programs and so on. 

The flow-shop sequencing problem is generally described as follows: There are m machines and 
n jobs. Each job consists of 111 operations and each operation requires a different machine, so n jobs 
have to be processed in the same sequence on m machines. The processing time of each job in each 
machine is known. The objective is to find the sequence of jobs minimizing the maximum flow 
time which is called make.span [17]. The flow-shop problem has been proved to be NP-complete. 
Hence conventional and evolutionary heuristics have been developed by many researchers [2, 11 , 
13 , 14, 16, 18, 20] to provide a good and fast solution. This problem has been proved as NP-hard 
for even a very small number of resources. Conventional heuristics and evolutionary algorithms 
(EAs) ha ve been developed by many researchers [ 12, 13, 18,20] to sol ve flow-shop problems. 

Evolutionary Computation [12], as an emergent research field, which provides new heuristics to 
problem optimization where traditional approaches make the problem computationally intractable, 
it is continuously showing its own evolution and enhanced approaches include latest multi­
recombinative method involving multiple crossovers per couple (MCPC). lmportant research has 
been made in evolutionary computation, to maintain a good balance between exploration and ex­
ploitation of solutions while searching in a problem space. Extreme exploitation can lead to prema­
ture convergence (loss of population diversity before optimal or at least satisfactory values have 
been found) and intense exploration can make the search ineffective. [12]. Eshelman and Shaffer [5] 
attempted to maintain population diversity by using diverse strategies focusing on mating, recombi­
nation and replacement. One of their approaches, called incest prevention, avoided mating of pairs 
showing similarities based on the parent' s hamming distance. 

In this work deepening research reported in [3], is implemented with the extended approach of 
incest prevention proposed in [1]. 

2. EVOLUTIONARY ALGORITHMS IN SCHEDULING PROBLEMS. 

Evolutionary algorithms (EAs) have been successfully applied to solve flow-shop problems. 
Tsujimura et al [20] provided evidence of the performance of genetic algorithms (GAs) contrasted 
with conventional approaches using well known crossover operators such as partially-mapped 
crossover (PMX) [10], order crossover (OX) [4] and cycle crossover (CX), [15]. Because of the 
flow-shop problem is essentially a permutation schedule problem, a permutation can be used as the 
representation scheme of chromosomes, which is the natural one for a sequencing problem. For 
example, let the k1

h chromosome be: Yk = [10 12 9 11]. This means that the job sequence isj10,j12,h. 
j 11 . The permutation representation, also called order representation, may lead to illegal offspring if 
the traditional one-point crossover operator is used. Consequently, during the past decades, several 
crossover operators have been proposed for permutation representation, such as the above men­
tioned PMX, OX and CX. 
Reeves [1 8] proposed a hybrid approach, which inserts a chromosome as a seed in the initial popu­
lation generated by the NEH heuristic algorithm [14]. He suggested genetic operators in his imple-



mentation what he called one-cut-point crossover (OCPX). lt consist of choosing one-cut-point ran­
domly, and then taking the pre-cut section of the first parent and filling up the offspring by taking in 
the order they appear legitimate genes frorn the second parent. He tried two types of rnutation, one 
of them, an exchange mutation, which was a simple exchange of two genes of the chromosome, 
chosen at random. The other, a shift nuttation was a shifting of one gene (chosen randomly) to the 
right or left a random number of places. After a few experirnents, Reeves observed that shift muta­
tion seemed to be better than exchange. Reeves tested his GA on Taillard's benchmarks [19] and 
concluded that simulated annealing algorithms and GAs produce comparable results for the jlow­
shop sequencing problern for rnost sizes and types of problerns, but GAs perforrn relatively better 
for large problems and reach a near-optimal solution more quickly. 

3. A MULTI-RECOMBINATIVE APPROACH 

As we said extreme exploitation can lead to premature convergence and intense exploration can 
rnake the search ineffective. [ 12] The intuition behind the applicability of the crossover operator is 
information exchange between different potential solutions. In EAs the common approach is to op­
erate once on each mating pair after selection. Such procedure is known as the SCPC (Single 
Crossover Per Couple) approach. But in nature when the rnating process is carried out, crossover is 
applied many times and the consequence is a multiple and variable number of offspring. The ques­
tion to consider is; how would the performance of an evolutionary program be affected by the use 
of a rnultiple crossovers per couple operation?. Performance irnprovernent was observed when 
MCPC was implemented in [3]. Next subsections explain this multi-recombinative approach in 
more detail. 

3.1 THE MULTIPLE CROSSOVER PER COUPLE APPROACH (MCPC) 

Multiple crossover per couple (MCPC) [6] is a newly introduced crossover method. lt was applied 
to optimize classic testing functions and sorne harder (non-linear, non-separable) functions. For each 
rnating pair, MCPC allows a variable nurnber of children. It is possible to choose, for insertion in 
}the next generation, the best, a randomly selected or all of the created offspring. In those earlier 
works it was noticed that in sorne cases MCPC found better results than those provided by SCPC. 
Also a reduced running time resulted when the nurnber of crossovers per couple increased, and best 
quality results were obtained allowing between 2 and 4 crossover per couple. However, in sorne 
cases, the method increased the risk of premature convergence due to a loss of genetic diversity. To 
overcome this problern further successful approaches were undertaken by using self-adaptation of 
MCPC parameters, [9] and by combining MCPC with an alternative selection method;fitness pro­
portional couple selection (FPCS) [7], which first creates an intermediate population of couples 
where both individuals were chosen by proportional selection. Then a criterion is applied to estab­
lish the fitness of a couple and subsequently, couples are selected for crossing-over based on couple 
fitness. 

4. 1 NCEST PREVENTION 

In the case of rnultirnodal functions the problern space, also ca11ed thefitness landscape, provide 
multiple suboptimal points. Depending on the type of operators used and their frequency of appli­
cation, the convergence to these suboptimal points can arise. This effect, known as premature con­
vergence, is mainly derived from a loss of population diversity before optirnal, or at least satisfac­
tory values, have been found. 



A possible strategy to maintain population (genetic) diversity, attempting to avoid premature 
convergence is a mating strategy known as incest prevention. This approach was first used by 
Eshelman and Schaffer [5] who avoided mating of those pairs showing similarities. As a bit string 
representation was used for their experiments similarities were determined on the parent's hamming 
distance. An extended, representation-independent-approach of incest prevention: extended incest 
prevention (EIP) was proposed in [ 1] by maintaining information about ancestors within the chro­
mosome structure and modifying the selection for reproduction. In this way mating of individuals 
belonging to the same "family" is avoided for a predefined number of generations. As it is reported 
this novel approach was tested on a set of multimodal functions and showed evidence of better per­
formance when contrasted with traditional GA approaches on optimization of multimodal functions 
of varied difficulty. The optimal value was reached in many runs of each series and the mean value 
for the best individual throughout the series was always found earlier and was better than with a 
simple genetic algorithm (SGA). 

5. EXPERIMENTS AND RESUL TS 

According to Tsujimura's and Reeves's works we tested 8 different approaches contrasting the 
conventional (simple crossover per couple SePe), multiple crossover per couple (MePe) and 
variants of them including lncest prevention (1). They were: 

• 
• 
• 
• 
• 
• 

• 
• 

SCPC-T, Tsujimura's approach. Uses OX, ex or PMX . 
SCPC-R, Reeves's approach. Uses OePX and insertion of seeds in the initial population . 
SCPC-TI, Tsujimura's approach with incest prevention . 
SCPC-RI, Reeves's approach with incest prevention . 
MCPC-T, Multiple crossovers per couple using OX, ex or PMX . 
MCPC-R, Multiple crossovers per couple using OePX and insertion of seed in the initial 
population. 
MCPC-TI, Multiple crossovers per couple. Tsujimura's approach with incest prevention . 
MCPC-RI, Multiple crossovers per couple Reeves's approach with incest prevention . 

All approaches were tested for five Taillard 's benchmarks [19] for the flow shop problem. We 
selected the following problem sizes: 20x5, 20xl0, 20x20, 50x5, 50xl0. A total of 36 different ex­
periments were designed. For each instance a series of five runs was performed. Experiments con­
sisted of varying parameters such as the number of crossover n1, the number of offspring to be in­
serted in the next generation 113 , the number of seeds used in the initial population n4 , and the type 
of crossover used. The number of parents n2 ,was fixed at 2. Besides all the EAs used the following 
parameter settings: 

Population size 
erossover Probability 
Mutation Probability 
Maximum No. of Generations 
Elitism 

100 /120 (Incest Prevention) 
0.65 
0.01 
100 
Y es 

Asan indication of the performance of the algorithm the following relevant variables were chosen: 

Ebest : It is the percentile error of the best found individual when compared with the benchmark 
upper bound for the optimal makespan. It gives us a measure of how far we are from that upper 
bound. 



Epop : lt is the percentile error of the population mean fitness when compared with benchmark up­
per bound for the optimal makespan. It tells us how far the average individual is from that upper 
bound makespan benchmark. 
Gbest : Identifies the generation where the best valued individual (retained by elitism) was found. 

Tables 1, 2 and 3 show the results obtained for the considered performance variables in three dis­
tinct problem sizes under each approach. The values for parameters n1 to n4 shown here conform the 
best combination found during the trials. The optimal parameter configuration for the experiments 
was: number of crossover nl, between 3 and 5 (for the multirecombinative approach), the number 
of offspring to be inserted in the next generation n3 was fixed at 1; the number of seeds used in the 
initial population (Reeves's approach) was 4. 
In the next tables mean values for the performance variables from the corresponding selected in­
stances and experiments are indicated. Boldfaced values are the best achieved. 

Instances: 20 x 5 
Approach Parameters xover Performance variables 

TI¡ n2 n3 n4 method Ebest Epop Gbest 
SCPC-T 1 2 1 o PMX 2.1 2.7 35 
SCPC-R 1 2 1 1 OCPX 7.0 9.9 11.2 
SCPC-TI 1 2 1 o PMX 1.5 1.6 43.8 
SCPC-RI 1 2 1 1 OCPX 3.5 4.6 24.8 
MCPC-T 4 2 1 o PMX 4.8 10.2 13.3 
MCPC-R 3 2 1 4 OCPX 6.0 9.2 14.7 
MCPC-TI 4 2 1 o PMX 1.6 1.6 34.9 
MCPC-RI 3 2 1 4 OCPX 4.8 6.0 24.4 

Table l. Mean values of performance variables from four 20 x 5 instances 

Instances: 20 x 20 
Approach Parameters X o ver Performance variables 

TI¡ n2 n3 n4 method Ebest Epop Gbest 
SCPC-T 1 2 1 o PMX 3.4 3.6 75.8 
SCPC-R 1 2 1 4 OCPX 9.5 9.8 33.2 
SCPC-TI 1 2 1 o PMX 3.5 4.0 72.8 
SCPC-RI 1 2 1 4 OCPX 8.2 10.0 28.4 
MCPC-T 5 2 1 o PMX 2.5 2.5 52.8 
MCPC-R 4 2 1 4 OCPX 7.2 7.4 23.8 
MCPC-TI 5 2 1 o PMX 2.8 2.8 41.9 
MCPC-RI 4 2 1 4 OCPX 5.7 6.0 44.5 

Table 2. Mean values of performance variables from four 20 x 20 instances 

Instances: 50 x 5 
Approach Parameters X o ver Performance variables 

TI¡ n2 n3 n4 method Ebest Epop Gbest 
SCPC-T 1 2 1 o ox 2.5 12.2 76.6 
SCPC-R 1 2 1 1 OCPX 2.4 4.1 26.0 
SCPC-TI 1 2 1 o ox 2.9 12.9 80.8 
SCPC-RI 1 2 1 1 OCPX 2.0 4.5 13.0 
MCPC-T 5 2 1 o PMX 3.4 3.4 25.2 
MCPC-R 4 2 1 4 OCPX 1.4 2.1 88.6 
MCPC-TI 5 2 1 o PMX 1.5 7.7 65.6 
MCPC-RI 4 2 1 4 OCPX 0.8 0.9 29.2 

Table 3. Mean values of performance variables from four 50 x 5 instances 
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in different problem-size instances. 

As additional analysis of results not shown in this presentation indicate that On all approaches using 
Tsujimura proposal, PMX outperforms CX and OX. 

From table 1 ,2 and 3 we summarize: 

Problem size 
20X5 20X20 50x5 

1 SCPC-TI MCPC-T MCPC-RI 
2 MCPC-TI MCPC-TI MCPC-R 
3 SCPC-T SCPC-T MCPC-TI 
4 SCPC-RI SCPC-TI SCPC-RI 
5 MCPC-T MCPC-RI SCPC-R 
6 MCPC-RI MCPC-R SCPC-T 
7 MCPC-R SCPC-RI SCPC-TI 
8 SCPC-R SCPC-R MCPC-T 

Table 4. Mean Ebest values in decreasing order 

From table 4, we can conclude that for small problem sizes, (SCPC) with (EIP) was improved 
respect to (MCPC) for Tsujimura's approach, is not the same case for Reeves's approach but as 
long as the ratio n/m decreased, MCPC-1 is better than MCPC in all cases. 



Figures 1, 2 and 3, show the global results of this work. Here we can detect that: 

• 

• 

• 

• 

SCPC-R is the worst performer with mean Ebest values ranging from 2.4% to 14.4% but the 
methos is improved when incest prevention is applied under SCPC-Rl ranging now from 2.0% to 
13.8%. 

Best performers are MCPC-Rl and MCPC-R with mean Ebest values ranging from 0.8% to 8.7% 
and 1.4% to 8.4%, respectively. 

Regarding Epop, also MCPC-Rl and MCPC-R are the best performers with mean values ranging 
from 0.9% to 9.2% and 3.4% to 9.2%, respectively. This gives an indication of a final population 
more centred on the best found individual. 

Regarding Gbest, we conclude that as larger is the problem size, all methods require more gen­
erations to find the best individual. In the case of MCMP-R and MCMP-RI they require from 
14 to 89 and 24 to 81 generations , respectively. Independently of the problem size, due to 
augmented genetic diversity, the multirecombinative approach needs a greater number of gen­
erations to find the best individual. 

5. CONCLLJSIONS. 

This contribution introduces a multirecombinative approach, MCPC [6] combined with EIP 
(Extended incest prevention) [1] , applied to the Flow Shop Scheduling Problem. These novel vari­
ant was contrasted on a series of suitable experiments against previous successful approaches of 
Tsujimura and Reeves. Better results are achieved, on the selected set of instances, by means of a 
multirecombinative approach and by both multirecombination (MCPC) jointly applied with incest 
prevention (EIP). This implies higher quality of solutions found throughout the evolutionary proc­
ess, as well as an improved final population surrounding near optimal solutions. This later feature 
also provides a sort of fault tolerance, because if eventually the dynamics of the system impedes 
using the best solution found then a better set of alternative solutions are available. 
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