Adapting SLP To Ad-Hoc Environment

Janne Pietidinen, Jussi Saarinen, Pekka Vuorela, and Tommi Mikkonen

Institute of Software Systems, Tampere University of Technology
P.O.Box 553, FIN-33101 Tampere, Finland
{pietiain,saarin24,pvuorela,tjm}@cs.tut.fi

Abstract

Ad-hoc networking, where network structure is created dynamically as
nodes enter and leave the network, has recently become an active reseach
subject. As majority of existing network protocols has been targeted to be
used in an environment, where a static network configuration and the option
of using registry repositories is enabled, they need tailoring for ad-hoc net-
working. In this paper, we discuss how Service Location Protocol (SLP) can
be modified for such a dynamic environment starting from the requirements of
applications that are to be run, and user’s intentions. The adaptations we have
implemented include passive service discovery where the amount of network
traffic needed for service discovery can be reduced, security related features
for improved privacy, gateway function that offers connectivity to external
networks, and service discovery proxies that assist in the discovery of services
between ad-hoc and fixed networks. The paper also addresses implementation
of these features.

1 Introduction

While a majority of application level protocols that are readily available for
networking are based on an assumption that a fixed structure exists, it is
often possible to augment the protocols with extensions that enable ad-hoc
networking. This approach is further supported with the option to use the
same protocol in both ad-hoc and infrastructure assisted network, e.g. the
Internet [8]. Furthermore, application requirements and the convenience of
the user should be the driving force for new features.

One crucial issue in ad-hoc networking is the ability to locate services in
the network. In this paper, we will use Service Location Protocol (SLP) [2]
as a vehicle for studying the modifications needed for ad-hoc networking in

2 Janne Pietidinen, Jussi Saarinen, Pekka Vuorela, and Tommi Mikkonen

a fashion that is adequate for applications and convenient for the user. The
extensions we have implemented to SLP for supporting operation in ad-hoc
network include the following:

Passive service discovery where network traffic can be reduced;

Security related features for improved privacy;

Gateway function that offers connectivity to external networks;

Service discovery proxy function that assists in the discovery of services
between ad-hoc and fixed networks.

The run-time environment of our implementation consists of laptop computers
with built-in WLAN connectivity and 2.6 Linux kernels.

The rest of this paper discusses these issues as follows. Section 2 introduces
SLP and its most relevant features from the viewpoint of ad-hoc networking.
Sections 3, 4, 5, and 6 discuss the above improvements we have implemented
using OpenSLP [9] as the baseline system. Then, Section 7 concludes the

paper.

2 Service Location Protocol v2

The goal of Service Location Protocol (SLP) version 2 is to enable effortless
autoconfiguration in fixed networks. In addition to discovering services of
a certain type SLP also allows discovery based on service attributes. SLP
also provides means for service browsing: a user may discover all available
service types, search for attributes associated with a certain service type, and
also issue a request for attributes of a single service. The use of DHCP and
multicast in the initialization of SLP framework enable it to scale from a single
local area network to an enterprise network. SLP supports also administrative
grouping of services with so-called scopes.

SLP has three types of entities: User Agents (UA), Service Agents (SA),
and Directory Agents (DA). UA represents a client that searches for services,
SA represents a service provider, and DA operates as a centralized service
repository. The most general operations and messages associated with them
are illustrated in Figure 1.

UAs issue three multi- or broadcast Service Request (SrvRqst) messages
during each discovery operation, to which SAs that have a matching service
in their local databases respond with unicast Service Reply (SrvRply) mes-
sage. If DAs are present SAs must register their services to them with unicast
Service Registration (SrvReg) messages that DAs respond to with unicast
Service Acknowledgement (SrvAck) messages. UAs are required to request
services from them with unicast SrvRqst messages that DAs respond to with
unicast SrvRply messages. UAs and SAs may actively search for DAs by is-
suing multi- or broadcast SrvRqst messages. DAs respond to these messages

Adapting SLP To Ad-Hoc Environment 3

with unicast DA Advertisement (DAAdvert) messages. DAs may also periodi-
cally send multi- or broadcast DAAdvert messages to enable UAs and SAs to
passively discover them.

UA

Multi- / Broadcast SrvRqst

SA

UA

Unicast SrvRqst

Unicast SrvReply

Unicast SrvReg

DA

Unicast SrvReply

SA

Unicast SrvAck

Multi- / Broadcast SrvRqst
____________ >

Unicast DAAdvert

<_ ___________

Multicast DAAdvert

UA or SA DA

Fig. 1. SLP agents and most common messages in the protocol.

SLP has a security scheme that enables UAs to verify authenticity of SAs.
It is aimed at preventing forged service information from being propagated
in the framework. The scheme relies on signatures generated with public key
cryptography. They are carried inside authentication blocks along with Secu-
rity Parameter Index (SPI) strings that indicate which public key can be used
to verify the signature. The signature is generated by forming a hash from
relevant fields of a message with SHA-1 [3] and then encrypting it with the
private DSA [4] key of the sender. These fields depend on the message type.
The authentication block structure is illustrated in Figure 2.

0 1 2 3
01234567890123456789012345678901

Fig. 2. The SLP Authentication Block.

4 Janne Pietidinen, Jussi Saarinen, Pekka Vuorela, and Tommi Mikkonen

We chose version 1.0.11 of OpenSLP C language implementation as the
basis for our Service Discovery (SD) module. OpenSLP is an open source im-
plementation of SLP version 2. It is divided to two main elements: libSLP
and SLPD. LibSLP implements Service Location API [6] and provides UA
functionality. SLPD is a daemon that implements both SA and DA function-
alities. The SD module consists of these elements and of a general SD API
that was developed to enable changing of the actual implementation protocol.
Due to the highly dynamic target environment, OpenSLP was decentralized
by modifying it to use broadcasting in service discovery instead of DAs. This
means that each node can advertise its locally registered services by itself.

3 Passive Discovery of Services

In a link-local ad-hoc network consisting of mobile devices, it is important
to minimize network transmissions and thus conserve power. Since the set of
available services in an ad-hoc network is constantly changing as nodes enter
and leave, a UA must repeat service discovery periodically to maintain an up
to date list of available services. As we discarded the use of SLP DAs as such
in the ad-hoc network, UAs can only discover new services by performing a
service discovery and waiting for replies from SAs. In a limited bandwidth
network with a large number of UAs, this may result in a significant constant
network traffic, since each SLP service request consists of three broadcast
messages from the UA and possibly a unicast service reply message from an
SA.

Passive Discovery (PD) is an extension to SLP that was designed to ease
the problem discussed above. It allows SAs to broadcast advertisements of
their services so that UAs can passively accumulate a list of services they
are interested in. A typical scenario for using PD would consist of a relatively
large number of UA nodes interested in a service offered by a relatively few SA
nodes. This new discovery method is intended to supplement SLP’s normal
“active” discovery. A UA can start discovering services by issuing an active
discovery to get a snapshot of currently available services, and then use pas-
sive discovery to stay informed when new services become available and old
services disappear. Unlike the active discovery in SLP, passive discovery is not
a blocking operation, so the application is free to perform other tasks while
passive discovery is running.

The implementation of passive discovery is divided between the SD module
and the SLP library (libSLP) which both reside within a PD enabled appli-
cation, and the SLP daemon (SLPD). LibSLP relays service registrations and
deregistrations from the application and SD module to SLPD, which in turn is
responsible for sending the actual outgoing service advertisements, receiving
incoming service advertisements, and relaying the advertisements for relevant
services back to the application via libSLP and SD module. LibSLP and lo-
cal SLPD communicate through a TCP connection on the loopback interface.

Adapting SLP To Ad-Hoc Environment 5

LibSLP sends to SLPD special control messages encapsulated in a custom
SLP message type (CtrlMsg) using SLPD’s existing messaging infrastructure.
SLPD communicates back to libSLP with similar control messages, but with-
out the SLP encapsulation. These communications are all initiated by 1ibSLP.
One of our goals was to minimize the necessary changes to OpenSLP during
the implementation process and furthermore, PD works very differently from
its design, therefore libSLP was not directly modified. Parts of PD that are
related to libSLP are implemented as a parallel system and compiled to the
same library as the original OpenSLP implementation. SLPD was modified
by adding a custom SLP message (SrvAdvert) for service advertisements and
a new subsystem, which manages service listener registrations from 1ibSLP,
processes the incoming service advertisements, and sends the outgoing ser-
vice advertisements as broadcast messages. The subsystem also contains two
databases, one for outgoing service advertisements, i.e. services registered by
local 1ibSLP instances, and another for the service types that local libSLP in-
stances are interested in so that received advertisements for matching services
can be relayed to them. A single process can initiate multiple simultaneous
passive discoveries, and multiple processes are able to utilize passive discovery
within one device. Despite the modifications, PD enhanced OpenSLP should
be able to interwork with other nodes running rfc2608 compliant SLPv2 im-
plementations.

[Application | [Sbmodule | [_Lbste_ | [__stpb__| [Ad-hoc netword
E Initialize service X E : : i
E Enable passive discovery

'+ for service X H Register service X for H
_— + Register service X for

H i_passive discovery ' > > H
: h 1 passive discovery H
' H H 7 Service Advertisement

' — H
! b — = — SUCCESS ! for service X (SrvAdvert) _:
-— - - SUCCESS _E -E E Service Advertisement

¢ for service X _(SrvAdvert) > E

E Service Advertisement :

for service X _(SrvAdvert) :
E .: :. :. Service Advertisement H
1 Disable passive discovery H MML'E
E for service X H H E Service Advertisement

\ Deregister service X + for service X_(SrvAdvert) .
—_— '

+ Deregister service X

i [control messages over| i |Broadcast SLP messages]| !
LibSLP Function calls| local TCP connection over WLAN H

SD API Function (allsbl '

Fig. 3. Registering and deregistering services with Passive Discovery.

When a PD enabled application proceeds to register a service for passive
discovery (Figure 3), it must first initialize a data structure representation of
the service and then advice the SD module to enable passive discovery for the
service. SD module relays the registration to libSLP which prepares a regis-
tration message, connects to SLPD, and transmits the message. It then waits

6 Janne Pietidinen, Jussi Saarinen, Pekka Vuorela, and Tommi Mikkonen

for a reply message containing an error code from SLPD, which is returned to
SD module and finally to the application. SLPD processes the service regis-
tration message, and, if all is in order, it stores the registration in a database
for outgoing service advertisements. Services in the database are advertised at
predefined intervals until either their lifetime expires or they are deregistered.

[Application | [SDmodule | [_Lbste | [__stpb | [Ad-hoc network]
Request services of type yE Register request for :
————————————— > service type "y" 1 Launch and register service
e .

B 1listener for service type "y" *
SUCCESS: T >

SrvAdvert for service Y

}

Notify SD module SrvAdvert for service Y

of service Y

Notify application Service Reply: Y «

of service Y

SrvAdvert for service Y

Notify SD module . Service Reply: Y 1"
— H
4—: < SrvAdvert for service X !
Notify SD module SrvAdvert for service Y |

N i Y e—
of service Y Service Reply: Y

End request of type "y"
—_—

E of service Y '

+ Unregister request for
1+ service type "y"

EUnregister listener for H
ervice type "y"

—_— 7 >
SUCCESS

SrvAdvert for service

Y
———————— X

SrvAdvert for service

' SrvAdvert for service Y
-—

Control messages over
local TCP connection

Broadcast SLP messages
over WLAN

SD API Function cal'LISLI LibSLP Function Cal'LSBI

Fig. 4. Service discovery with Passive Discovery.

When a UA initiates passive service discovery (Figure 4), libSLP launches
a service listener thread, which opens a TCP connection to SLPD, registers
the requested service type for filtering incoming service advertisements and
then remains waiting for results. Upon receiving the service request, SLPD
adds the information to a request database. When SLPD receives incoming
service advertisements, it compares them against active requests and relays
the matching advertisements to interested parties service listeners, which in
turn forwards them to applications’ SD modules. When SD module receives
a result to a request, it checks an internal list of known services to see if it has
already recently received an advertisement for the service. If it has not, then
the service information is passed on to SD module, and the service is added
to the list of known services. Subsequent advertisements for known services
are disregarded since the application is already aware of their existence. If no
advertisement for a known service has been received for a certain period of
time, SD module removes its information from the list of known services and
notifies the application that the service disappeared.

In our tests PD worked well. However, due to time and resource con-
straints, the implementation contains some restrictions. Actively and passively
advertised services are currently completely separate, i.e. two services can have
an identical name but different attributes, lifetime etc. if one is made available
for active discovery and the other for passive discovery. In a typical use sce-

Adapting SLP To Ad-Hoc Environment 7

nario for PD there would be a large number of UA nodes looking for a service,
such as a printer or a gateway, advertised by a relatively few SA nodes. Let us
assume that we have an ad-hoc network with 3 SA nodes offering a gateway
service, and 50 UA nodes interested in such services. If the nodes would try
to discover the services using active model once every 30 seconds, the tra-
ditional SLP solution would consist of each UA node broadcasting an SLP
service request message three times and SAs sending a unicast service reply
message to each UA which amounts to 300 sent messages per discovery cycle.
In contrast the same scenario with passive discovery, SA nodes advertising
every 30 seconds, results in 3 sent messages per discovery cycle. If we assume
that the sent messages are approximately 110 bytes in size per message, the
passive model generates only 1% of the messages and data to be sent in this
scenario in comparison to active model.

4 Secure Service Discovery

When compared to traditional fixed networks, an ad-hoc network imposes new
security requirements for service discovery protocols. It is highly dynamic,
more open and unsecure. Therefore protocols used in such environment need
to be augmented with effective security features. We enhanced OpenSLP by
enabling two security levels, “Authentication” and “Confidentiality”. This sys-
tem allows the whole scheme adapt to varying resource constraints of mobile
nodes.

The implementation uses Authentication and Authorization (AA) module
to store access control rules, certificates, and related keys. The AA module
is together with cryptographic helper module that utilizes OpenSSL library
0.9.7d or later [10], used to perform all required cryptographic operations. It is
described more thoroughly in [7]. To establish connection between each service
and required security properties, we use abstract part of the SLP service type
as a service ID. Due to this design choice, service browsing capabilities of SLP
were disabled.

Authentication level enables two-way role based access control, authen-
tication, and authorization between UA and SA. Furthermore, it protects
integrity of most fields in the SLP messages and uses a logical timestamping
system instead of the real-time system used by the original SLPv2 security
scheme described in Section 2. This level was enabled for both active and
passive discovery by adding SLP Extension blocks that carry modified SLP
Authentication blocks to the end of SrvRqst, SrvRply, AttrRgst, AttrRply
and SrvAdvert messages. Each modified SLP Authentication block contains
sender’s role dependent user ID. It is used together with the ID of the re-
quested service by the receiver to determine which keys and access control
rules should be used. The signature attached to the modified block is gener-
ated the same way as the signature in the original SLPv2 security scheme but
it covers all fields of the message excluding the message length. The logical

8 Janne Pietidinen, Jussi Saarinen, Pekka Vuorela, and Tommi Mikkonen

0 1 2 3
01234567890123456789012345678901
I N N N N O I I N N N T Y O I
LI S N I N Y N Y Y Y A LI N N O N I N Y O I Y A
Block Structure Descriptor Authentication Block Length
I T T T T T T T B I I T T T N T T T B I
LI S N O O I I O I Y A LI S N Y O I O I B A
Timestamp
I N N N T Y O I I N N O Y O
LI N O N B B LI N I N I N N B N
Sender ID's Length Sender's ID String
I T T T T T T T B I I T T T N T T T B I
LI S N O O I I O I Y A LI S N Y O I O I B A
Group member ID's Length Group member ID
I N N N T Y O I I T N O N Y O
LI N N N N B O LI N N B N B B
Signature Length Signature
| NN [I N N N Y N N N S A | | NN [I N N N Y N N [N N A |
Tt rrrr 1 rrrrrrrrr 1

Fig. 5. The Modified SLP Authentication Block.

Authentication Level: |:| Encrypted with Sequence D Not encrypted

Symmetric Secret Key

Original SLPv2
Message Body

Original SLPv2
Message Header

Extension Block &

Encrypted with Shared Symmetric
Authentication Block

Key or Receivers Public Key

Confidentiality Level:

Receiver's ID Receiver ID's

Length

Original SLPv2
Message Header

Extension Block &
Authentication Block

Sequence Symmetric
Secret Key

Original SLPv2
Message Body

Fig. 6. The Message Structures on Authentication and Confidentiality Security
Levels.

timestamping system uses positive integer valued timestamps that are in-
creased each time a message is sent. All user ID and timestamp value pairs of
each sent and received message are stored in a database for a limited lifetime.
Since the timestamp and the sender’s user ID are both signed this method
enables nodes to detect replayed messages without synchronized clocks. They
just need to compare user IDs and timestamps of received messages to the
ones stored previously in its database. The limited lifetimes of timestamps
also enable them to resolve situations in which one of them resets and thus
loses its timestamp database. The structure of the modified Authentication
block is illustrated in Figure 5.

Confidentiality level adds a partial message encryption on top of the fea-
tures of the Authentication level. It was enabled only for active discovery and
is therefore used with the same messages as the Authentication level exclud-
ing SrvAdverts. Message body and the Extension block are encrypted with a
symmetric AES [5] key that is different for each message exchange sequence

Adapting SLP To Ad-Hoc Environment 9

User | | SD API | |LibSLP (UA)| |LIBSLP_SESSI_SEC| |SESSI_SEC| |AA Module| |C0mm0n(UA)

SD_findServices(

rd

SESSI_SLPFindSrys()
> AA_getAuthorizedVprifiedUsers()

ProcessSrvRgst()

AA_getSecuritylLgvelDecision()

NetworkRqgstRply()

AA_getCertApplinfoList()

Get Sender's
user ID

Get Receiver's
user ID

AA_getOwnMemMerIDForUserGroupf)

LIBSLP_SESSI|SEC_addExtensionBlock()
7|LIBSLP_SESSI_SEC_addjuthenticationBlogk

SESSI_SEC_emcryptMessage()

\AJ

Fig. 7. The Secure Service Discovery Operation on UA Side Part 1.

consisting of one Request-Reply message pair. The symmetric key is then en-
crypted with the intended receiver’s asymmetric RSA [11] public key. This
lessens the computational load caused by the encryption process. Receiver’s
user 1D is finally added to the end of the message accompanied by its length
enabling receivers to identify messages intended for them and thus avoid un-
necessary decryption attempts. The SLP header is not encrypted because it
contains message length information that is required in message transmission
over TCP connections. Furthermore information in it was not regarded too
sensitive. The message structure is illustrated in Figure 6.

A detailed description of the Confidentiality level functionality on UA
is described in Figures 7, 8, and 9. The first diagram shows how user ini-
tiates service discovery by calling function SD_findServices. Then users

10 Janne Pietidinen, Jussi Saarinen, Pekka Vuorela, and Tommi Mikkonen

| user][soap] [Libstewa)| [usste_sessisec| | sessisec| [aamodue] [crypto Module | [common wa)l

SESSI_SEC_prgcessSESSIMessage()

UA receives SESSI_SEC_parseReceiverlD()
a Service

Reply

SESSI_SEC_checkReceiverID()

AA_isValidCerfApplinfo()

AA_getApplCeftificatesForCertApplinfo()

AA_isGetOwngrOfCertificate()

AA_getAAUse(Type()

SESSI_SEC_gefUserGroupMembariD()

AA_getOr IDForU: p()

<€
SESSI_SEC_decryptMessage()

AA_getAAServjcelD()

AA_getApplCeftificatesForCertAdplinfo()

AA_decryptWifhApplKey()

CM_decryptSymmMessage()

ProcessSrvRplyCallback()

[€' | ParseExtBIqck()

P | | | | ——
SESSI_SEC JverifySESSIMessage() |sess) Sec verifybignature()

AA_getAASenficelD()

AA_getApplCeftificatesForCertAgplinfo()

AA_verifySignatureWithAsymApgiKey ()

e mmm e 2

Fig. 8. The Secure Service Discovery Operation on UA Side Part 2.

who are authorized and verified are retrieved from AA module by call-
ing AA_getAuthorizedVerifiedUsers and for each of them a security
level is decided by calling for AA_getSecurityLevelDecision. Finally the
Extension block is added to the message, it is then encrypted and re-
ceiver’s user ID is attached to the end before transmission. The sec-
ond diagram shows how SESSI_SEC_processSESSIMessage is used to de-
termine the message security level and decrypt it. After this the sig-
nature of the message is verified with SESSI_SEC_verifySESSIMessage.
The final diagram shows how the message timestamp is verified with
LIBSLP_SESSI_SEC_verifyTimestamp, the sender’s authorization to pro-
vide the service is checked with SESSI_SEC_isAuthorizedForService, and

Adapting SLP To Ad-Hoc Environment 11

User | | SD API | |LibSLP (UA)l |LIBSLP_SESSI_SEC| | SESSI_SECl |AA Modulel |Crypto Modulel |Common (UAll

LIBSLP_SESSI_SEC_verifyTimestqmp()

SESSI_TimestampReqiest()

AA_getDefaultRole()

A

LIBSLP_SESSI_SEC_seffTimestamp()

SESSI_TimestampSet()

l€ - - 4

SESSI_SEC_parseServicelD()

extractServicelD(|

AR | ———

SESSI_SEC_isAuthorizedForServ[ce()

AA_getAAService{)

SESSI_SEC_getUserForCertApplinfo()

AA_getAAService()

AA_getApplCeftificatesForCertAgplinfo()

AA_isGetOwngrOfCertificate()

€
AA_isAuthorizedFprService()

AR | ———

SESSI_SHC_isMessageSecurityLavelOK()

AA_getAAServicd()

SESSI_SEC_getUderForCertApplinfo()

]

AA_getDefaultRo|e()

SESSI_SEC_getSgcurityLevelDecision(|

AA_getSecuritfLevelDecision()

2R

Callback()
Callback() €< - - - - - o

Fig. 9. The Secure Service Discovery Operation on UA Side Part 3.

SESSI_SEC_isMessageSecurityLevelOK is finally used to verify that the re-
ceived message’s security level is sufficient.

A detailed description of the Confidentiality level functionality on
SA is described in a similar manner in Figures 10, 11, and 12. The
first diagram shows what happens when SA receives a SLP message.

12 Janne Pietidinen, Jussi Saarinen, Pekka Vuorela, and Tommi Mikkonen

| SLPD | | SLPD_SESSI_SECl | SESSI_SECl |AA Modulel | Crypto Modulel | Common (SA)|

SLPDProc)

SESSI_SEC_processSESSIMessage()

SESSI_SEC_parseReceiverlD()

]

SESSI_SEC_checkReceiverID()

AA _isValidCertApplinfo()

AA_getApplCertificatesForCertApplinfo(

l
SESSI_SEC_decryptMessage()

AA_getAAService()

e« - — = = = = - - - - -4
AA_getApplCertificatesForCertApplinfp()
€ - — - - - - —— - - - - - 4
AA_decryptWithApplKey()
€ - — - - - - —— - - - - - 4
CM_decryptSymmMessage()
2y |
l
€« ——----4-=-—--—----4
ParseExtBlock()
U | |
SESSI_SEC_parsgReceiverlD()
extractServicelD()
i | |

SESSI_SEC_verifySignature()

]

Fig. 10. The Secure Service Discovery Operation on SA Side Part 1.

Function SESSI_SEC_processSESSIMessage is used in the same pur-
pose as in UA and the signature of the message is verified with
SESSI_SEC_verifySESSIMessage. The second diagram presents how the mes-
sage’s timestamp is verified with SLPD_SESSI_SEC_verifyTimestamp, the
message sender’s authorization to access the requested service is checked with
SESSI_SEC_isAuthorizedForService and the message security level is again
verified with SESSI_SEC_isMessageSecurityLevelOK. After these steps the
SA will check if the service is found in its database. The final diagram shows
how SLPD_SESSI_SEC_processOutgoingSESSIMessage is called to perform
necessary actions for the SA’s reply message before it is transmitted. It adds
the Extension block to the message, encrypts it, and adds the receiver’s user
ID to the end of the message.

Adapting SLP To Ad-Hoc Environment 13

SLPD | | SLPD_SESSI_SEC | | SESSI_SEC AA Module| | Timestamp DB

SLPD_SESSI_SEC| verifyTimestamp()
N
>

SESSI_SEC_DatabaseGetTifnestampForlD()

SESSI_SEC_isAuffhorizedForService()

A
>
>
@
o
3
>
wn
o}
<
a
o

SESSI_SEC_getUserForCertApplinfo()

AA_getAAService()

l

SESSI_SEC_isMessageSecurityLevelOK()

SESSI_SEC_getUserForCertApplinfo()

]

AA_getDefaultRole()

SESSI_SEC_getSecurityLevelDecision()

—| AA_getSecurityLevelDecision()

SA processes the SLP
message and returns
results for sending.

Fig. 11. The Secure Service Discovery Operation on SA Side Part 2.

Our implementation of the security extension achieves the goals we set and
has been identified to cooperate with other components of our framework i.e.
Passive Discovery and Gateway. It should also maintain interoperability with
nodes running rfc2608 compatible SLPv2 implementations when no security
features are used. On the downside the cryptographic operations can be fairly
heavy for mobile devices with limited resources. However, since their capa-
bilities are constantly expanding, this will most likely cease to be an issue in
the near future. Our security scheme relies on predistributed certificates and

14 Janne Pietidinen, Jussi Saarinen, Pekka Vuorela, and Tommi Mikkonen

SLPD | | SLPD_SESSI_SEC | | SESSI_SEC AA Module| | Crypto Module

SLPD_SESSI_SEC| processOutgoingSESSIMessage()
NG
>

SLPD_SESSI_SEC_addExtenkionBlock()

SLPD_SESSI_SEC_addAuthenticationBlock()

AA_getAAServicelD()

SESSI_SEC_getOwnCertApplinfo()
>
7| AA_getDefaultRole()

SESSI_SEC_getTimesgtamp()

SESSI_SEC_setTimegtamp()

]

AA_getApplCertificate$ForCertApplinfo()

€

SESSI_SEC_encryptMessagp(

Y

AA_getAAServicelD()

Fig. 12. The Secure Service Discovery Operation on SA Side Part 3.

keys due to the fact that use of distribution servers in ad-hoc network is not
feasible. This characteristic imposes some flexibility constraints on our system
that could be averted by relying on servers located in the fixed network. The
approximate average message sizes in a typical ad-hoc network with 15 nodes

Adapting SLP To Ad-Hoc Environment 15

are the following: 110 bytes when no security features are used, 300 bytes
on Authentication level, and 480 bytes on Confidentiality level. The SHA-
1 signature is 64 bytes long and represents almost half of the overhead on
Authentication level. The rest of the overhead on that level is due to the Ex-
tension block and Authentication block structures. The additional overhead
generated on the Confidentiality level is due to the AES encrypted data, the
RSA encrypted 16 bytes long AES key, and the 10 bytes long receiver’s 1D
that is added to the end with two byte length field.

Different approaches to create a secure service discovery infrastructure
have been presented in several papers. Many of them rely on servers located
in the fixed network which is an infeasible option in our target environment.
Czerwinski et al. [1] present a scheme that relies on servers that form a dy-
namic hierarchy. Use of external servers to distribute certificates and provide
access control information also suggests that all ad-hoc nodes should always
have connection to the fixed network. Zhu et al. [12] have developed a scheme
that supports also privacy protection and location dependent service discov-
ery. Their solution uses proxies to support the mobile nodes which therefore
must have a stable connection to the fixed network.

5 Gateway

Ad-hoc users may want to communicate with users in the fixed network or
use the services available there. To achieve this goal a network gateway is
needed. Due to the dynamic nature of ad-hoc environment, the gateway should
not be a static entity, but rather any node willing to provide the service to
others should be able to act as one. Therefore the gateway should itself be
a service, discoverable in the ad-hoc network, and the client nodes should be
able to easily start using it. The gateway should also be able to enforce access
control on users. Furthermore, the nodes that have not been authorized for
external connectivity should not be able steal it from authorized nodes. These
requirements were addressed in our design of the gateway service.

Our implementation consists of two main components. Gateway Manager
(GM) resides in the gateway node, and is responsible for initializing the gate-
way service along with negotiating and managing incoming client connections.
Gateway Client (GC) resides in an ad-hoc node that wants to use the gate-
way, and takes care of automating the steps necessary for locating a suitable
gateway, negotiating the connection parameters and configuring the node for
external connectivity via the gateway. An example of an ad-hoc network with
three gateways, one hosted by a mobile operator and the other two by nodes
in the ad-hoc network, and client nodes is presented in Figure 13.

The gateway is highly customizable. Its modular design makes it enabled
to launch and manage other related services, such as various proxy servers,
DNS server etc. The method in which the connection between GM and GCs is
established is defined as a gateway mode. GM can offer many different modes

16 Janne Pietidinen, Jussi Saarinen, Pekka Vuorela, and Tommi Mikkonen

Fixed network connection
------- Ad-hoc network connection

= ¢"—— .
Node 2
I . Operator

s
Gateway 1 gateway

de
Gateway Manager Gateway Client Gateway
Manager

Operator
network

Ad-hoc network

Gateway 2
Gateway Ma

Node 3
Gateway Client

..................................

Fig. 13. An example of the gateway service.

which are then listed as attributes of the registered service. GC chooses one
mode that it also supports, and begins the connection negotiations with GM.
We implemented two modes. The first mode, named “open”, is simply an open
gateway without any access control. Any ad-hoc node can be configured to
use the gateway operating in this mode. The second mode is named “secure”.
It implements a secure, encrypted tunnel from GC to GM, and requires users
to be authenticated and authorized. All security features are implemented
with the AA module. Gateways can be tagged with an operator string, which
can then be used to target the gateway discovery to those that belong to a
given operator. Commercial gateway services could authenticate and authorize
customers using the security features in AA module.

Both GM and GC are command line tools, implemented as C language
programs with shell script frontends. They both require an SLPD with our
modifications to be running on the node. The gateway service worked well in
our tests and supported other components, such as SD Proxy. It is also a good
example of a service implemented with our platform.

6 Service Discovery Proxy

Connectivity established with our gateway between ad-hoc and fixed infras-
tructure network, allows using services from the other network. This creates
a need to locate the services and therefore support from the service discovery
service is necessary. To enable searches across the networks, we introduced a
new entity called SD Proxy to the SLP network.

The first step in the implementation of searches between the networks
was separating the services using SLP scopes. One scope was specified for the

Adapting SLP To Ad-Hoc Environment 17

services that are globally available and another one for the services that are
available to the ad-hoc network.

The SD Proxy was based on the Directory Agent of the basic SLP, and
it resides on the gateway node. Ad-hoc nodes willing to use or offer services
to the fixed network can set the gateway node to be used as a DA for the
global SLP scope. DA Advertisement messages were not used because the
information on SD Proxy availability is obtained in the search for gateways.
Further, rogue nodes could advertise DA service for the ad-hoc scope and
unwary nodes would direct their ad-hoc searches to them. When a DA for
the global scope is set to be used by the UAs, queries using that scope will
be unicast to the DA, while queries using ad-hoc scope are still broad- or
multicast to the ad-hoc network. On the fixed network side it was assumed
that the nodes willing to access ad-hoc network or offer services to it are
configured with the address of the SD Proxy.

The use of an SD Proxy enables service registrations and searches to be
made from both ad-hoc and fixed networks. However, the address space of the
ad-hoc network is commonly link-local and non-routable. This means that
services cannot be offered to the fixed network using the ad-hoc addresses.
There are two solutions for this problem: giving nodes in the ad-hoc network
additional global addresses which can be used to register services, or using
Network Address Translation (NAT) for the services. Both of these solutions
can be used simultaneously. In our implementation global addresses can be
acquired from the gateway service when forming the connection to the fixed
network, but the focus was on the NAT support.

To enable NAT for the ad-hoc services the SD Proxy was modified to
create port forwards. This requires that the NATted service URLs include
both address and port number, i.e. <IP_address>:<port>. The port number
needs to be explicit so the SD Proxy knows where to forward the incoming
traffic. The services made available to the fixed network have their original
ad-hoc address replaced with the SD Proxy’s fixed network address and the
forwarded port number.

Separate scopes and the SD Proxy provided an elegant solution for service
discovery support in heterogenous environment. Also compatibility with basic
SLP was preserved from the fixed network side. A known problem with the
current network setup is the need to configure fixed network nodes to use the
SD Proxy. Also, the NAT support has limitations, e.g. services using multiple
ports are difficult to advertise.

7 Conclusions
Many research papers on ad-hoc networking have contributed to low-level

problems. However, the effect of ad-hoc environment on application level as-
pects and the convenience to user has been studied less. Further motivation

18 Janne Pietidinen, Jussi Saarinen, Pekka Vuorela, and Tommi Mikkonen

for our work is on the option to use the same protocols in ad-hoc and in-
frastructure organized networks, but with certain new functions that are of
crucial importance for ad-hoc networking. In this paper, we have addressed
service discovery from this viewpoint.

As the sample service discovery protocol, we used SLP. Furthermore, we
started with an assumption that link-local communication will be used to focus
the work to the actual service discovery. The extensions we have identified are:

e Passive service discovery in order to avoid excessive communication when
a group of nodes look for services;
Security considerations restrict the visibility and availability of services;
Connectivity to an external network via a node in the ad-hoc network;
Service discovery proxy function that can be used for locating services in
the ad-hoc network from some other network, and vice versa.

Furthermore, we discussed how we have implemented these features in an
open source SLP implementation.

Like in any research, there are a number of topics that could be further
studied. One option is how to enable the use of several nodes as a gateway
at the same time or in turns for improved bandwidth. This would then allow
the users to offer connectivity in turns to e.g. share the costs of the external
connectivity. Also the SD Proxy could be enhanced by making it more proxy-
like with a static DA in the fixed network. This would allow dynamic fixed
network addresses for SD Proxies and ease having several SD Proxies on the
network. No changes would be needed to the nodes in the ad-hoc network.
Another direction for future study is to widen the scope of the approach to
e.g. multihop networks.

References

1. S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz. An architecture for
a secure service discovery service. In Mobicom ’99, Seattle, Washington, USA,
August 1999. ACM.

2. Guttman E., Perkins C., Veizades J., and Day M. Service location protocol,
version 2. Technical report, The Internet Engineering Task Force, June 1999.

3. D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174,
The Internet Society, September 2001.

4. FIPS. Digital Signature Standard (DSS). Standard 186, National Institute of
Standards and Technology (NIST), May 1994.

5. FIPS. Advanced Encryption Standard (AES). Standard 197, National Institute
of Standards and Technology (NIST), November 2001.

6. Kempf J. and Guttman E. An API for service location. RFC 2614, The Internet
Engineering Task Force, June 1999.

7. L. Kéllstrém, J. Saarinen, and S. Liimatainen. Secure service discovery proto-
col implementation for wireless ad-hoc networks. In 1st International Wireless
Summit, Aalborg, 17-22 September, 2005.

12.

Adapting SLP To Ad-Hoc Environment 19

S. Leggio, S. Liimatainen, J. Manner, T. Mikkonen, J. Saarinen, and A. Yl1&-
Jaaski. Towards service interworking among ad-hoc networks and the inter-
net. In 1/th IST Mobile and Wireless Communications Summit, Dresden, 19-23
June, 2005.

. OpenSLP Project Group website. At http://www.openslp.org, April 2004.
10.
11.

The OpenSSL project. OpenSSL: The open source toolkit for SSL/TLS.

R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystem. Communications of the ACM, 21(2):120—
126, 1978.

F. Zhu, M. Mutka, and L. Ni. Splendor: A secure, private, and location-aware
service discovery protocol supporting mobile services. In First IEEE Interna-
tional Conference on Pervasive Computing and Communications (PerCom’03),
pages 235242, March 2003.

