
Implementation of Boolean-íN'eural'
N etworks on Parallel Comp'uters

Andre Carlos Ponce de Leon Ferreira de Carvalho
Laboratório de Inteligencia Computacional
-qepartamento de Ciencias da Computac;ao

Instituto de Ciencias Matemáticas de Sao Carlos
Universidade de Sao Paulo

Sao Carlos, SP, Brasil

Michael C. Fairhurst
David L. Bisset

Electronic Engineering Laboratories
University of Kent at Canterbury

Canterbury, Kent, UK

Abstract

This paper analyses the parallel implementation using networks of transputers of a neu­
ral structure belonging to a particular class of neural architectures known as GSN neural
networks. These architectures, belonging to the general clasa of RAM-based networks and
composed 01 digitally specified processing nodes, have been implemented using different pro­
cessing topologies, and performance in relatíon to both training and testing efficiency in a
practical pattern recognition task has been evaluated.

133
2do. Congreso Argentino de Ciencias de la Computación

1 Introduction
"-- ' .

Neural network approa.che,s to pattern recognition have becoIl1e increasing1y widespread in
recent iears, b~t have often been somewhat unsatisfactory for many pracÚcal applications
because of the constraints imposed on processing speeds attainable, particularly in the imple­
mentation of appropriate training algorithms, and on their complex hardware implementation.
As a result oí the real-time requirements in many pattern recognition applications, a great deal
oí research effort has been devoted to the issue oí implementing pattern recognition algorithms
on parallel machines [1, 2, 3, 4, 5, 6, 7].

Boolean neural networks, due to their strong resemblance to Random Access Memory de­
vices, offer an alternative approach to neural network design by being easier both to simulate
on parallel computers and to implement in hardware. Goal seeking neural networks (GSN)
are a family oí Boolean neural networks which have been proposed to solve sorne problems
íaced by earIy Boolean models. This paper investigates the performance oí GSN íeedíorward
architectures (GSN 1) when implemented on several networks oí transputers. Transputer tech­
nology [8] provides a very suitable environment íor the implementation oí paralIel systems, since
Transputer hardware makes it possihle to connect any number oí processors in several different
topologies without the need for rigid synchronisation. The implementations considered here
have used different number of processors and different topological structures.

2 Boolean neural networks

Boolean neural networks were developed as an engineering tool íor pattern recognition appli­
cations, and thus they offer a different approach to neural network designo The effectiveness oí
Boolean neural networks for image processing applications has been demonstrated in a number
oí experiments [9, 10, 11, 12]. Boolean neural models usually receive and generate only binary
values. Although it can be argued that this restricts their range oí applications, there are a
large number oí neural network applications which involve only binary input and output values.
Furthermore, their digital specification makes their hardware implementation potentially very
simple and e:fficient. A further advantage of Boolean neural networks is that they can gener­
ally use fast (often single shot) learning algorithms, while the high íunctionality of individual
Boolean neurons offers a large degree oí processing flexibility [12].

A large number ofBoolean neural network configurations have been designed, each config­
uration having its own individualcharacteristics. These architectures can be divided broadly
in two groups. The first group comprises architectures whose constituent neurons are based
on memory units or universallogic gates and can be easily implemented by Random Access
Memory devices, which is why they are often called RAM-based models. A RAM-based neuron
can be implemented in hardware by using Random Access Memory devices and uses the input
values presented to its input terminals to access one of its 2N memory contents, where N is
the number of input terminals. The second group consists of architectures which restrict the
functions represented by their units to a reduced number of Boolean functions [13, 14] or use
binary weights [15, 16]. The first Boolean model of this type to be proposed was the N-tuple
processor, developed by Bledsoe and Browning [17].

Many different algorithms have been proposed to train Boolean neural networks. The ma­
jority of these algorithms work through updating the logical function of the neurons. These
updates occur either through one-shot learning, as is the case, for example, in GSN 1 networks
[18], through gradient descent, as with the ALN [13] or by using simulated annealing, which is
the case with random Boolean networks r191. Tff¡e have also been attempts to train Boolean

2do. Congreso Argentino de Ciencias de la C~mputación

S d

1 ¡
t

11...1 C[2 - 1] --
• •
• •
• •
- 00",1 e [1]

00",0 e [O]

dt I '" 1,
d

where: t - connectivity (number of inputtenninals)

x, - input terminal to receive
1 ,

mputpattem

c[i] - memory content

o - output terminal to transmit
o the neuron output

- d - input terminal lO receive
desired output

d, - output terminal lO transmit
1 desired output lO a neuron in

the previous layer

s • leaming strategy

Figure 1: GSN neuron

Mural networks by changing the connections instead of the values stored in the memory con­
tents using simulated annealing [20, 21], with encouraging results.

3 GSN f Architecture

A Goal Seeking Neuron, GSN, is a Boolean neuron which, llnlike previous Boolean neurons,
CélJl input, store and generate values equ~ to 0, 1 or u (undefined). When there is at least one
véJue u on its input terminals, then a';set:qf memory contents will be addressed, the addr,esses
01' these memory locations being derived froIÍlthe original address by changing the u vaiues
te, D and 1. Before starting to train the network, all of its memory contents are filied with
ulldefl.ned values, signifying that the network does not initially store any specific kn~:wledge
of the external world. By otitputting undefined values, GSN allows undefined valuesto be
pl'opagated in multi-layer architectures, providing very interesting generalisation capabilities.

As can be seen in Figure 1, GSN has a set of input terminals: X = {Xh X2, ••• , Xt}, which
are used to receive the input to the neuron, an output terminal, 0, that' represents the output
of the neuron, a teach terminal, 8, which indicates if the neuron is in the learning phase or in
the recall phase, a desired output terminal, d, which is set to. the desired o.utput value when
'the neuro.¡' is in the learning phase and terminals o.f desired inputs, dh ... , d¡, whichare used to
determine the desired Olltput of preceding GSN neurons, when more than one laye~ ofneurons
is used.

The input terminals of a Boolean neuron can address a set of 2f different cells, where each
ceLl can store OI).e value from the set {D, 1, u}. During the learning"phase, ,the t~ach terminal
receives the value 1 ,and the value stored in the cell addressed by the input terminals is changed
to the value of the desired output. In the recall pha.se, the teach terminal receives the value
0, and the output of the neuron is computed as a function of the values stored in its memory
contents addressed by the input terminals.

GSN uses 'a fast and efficient learning algorithm. It is eflicient because it maximizes the

135

pyrarnids

• • •

output

o
Il

Figure 2: GSNf Architecture

efficiency of the storage of values in its memory contents, avoiding the storage of new infor­
mation whenever possible and storing new information without disruption of previously stored
information. It is fast because it employs one-shot learning, which means that the training
set is presented just once (Le., the training happens in a single time epoch, rather than as an
iterative process).

GSN-based neurons are usually grouped in pyramids. A pynimid is a multi-layer structurej
where each layer has a fixed number of neurons with a fan-out equal to 1. Pyramids have a
lower functionality than a single neuron covering the same input pixels, but their use reduces
the .slze of memory needed for implementation. and increases generalisation if compared to a
single neuron covering the same set of pixels [22].

GSN neuronshave been used in several different architectures, each suitable for a different
range of ~pplications. The architedure investigated in this paper, the GSN feedforward archi­
tecture (GSNf), is formed by a fixed number of independent pyramids, where each pyramid
covers a subset of the pixels of the input image. GSNf is the most common GSN-based archi­
tecture [18]. It has been successfully used in character recognition applications and has been
extensively invest~gated [23, 24~ 12, 25, 26]. Figure 2 illustrates a typical GSNJ neural network.

The processing of GSNJ can be divided into three phases, each associated with a specific
goal: a validating ph~se, a learning phase and a recall phase. The purpose of the validating
phase is to produce a validating value for each pyramid. A validating value is the pyramid's
output guess for a given input pattern. A pyramid's validating value defines which defined
value(s) it can learn in the next learning phase, and a pyramid cannot be taught when its
validating value is the opposite to its desired output value. The learning phase teaches the
pyramids by changing the values stored in the memory locations of their constituent neurons.
The recall phase produces the pyramids' output for an unknown input, seeking, for each neuron,
to output the defined value with the greatest occurrence frequency in the addressable memory
contents. The following subsections will explain in more detail each of the three states.

3.1 Validating state

The goal in this state is to determine the values that the neuron can learn in the next learn
phase without disrupting previóusly stored information. In orderto discover this, the input

136

!o~o be learnt is:-fed into the input terminals. A function is applied to the valuesstored in the
GSN addressed memory contents to determine ita validating value. This validatlng vaJ.ue is
propagated through the pyramid to its apex. The validating value produced by the neuron on
the apex will be the pyramid validating value. If the output is equal to u (undefined) then it
(;an lea:n any desired output. If, on the other hand, the output is a defined value (O or 1),
'only thls value can be taught. The output oí a neuron ni in the validating state is given by
the Equation 1 below:

O iff'v'a¡m E A¡,C¡[a¡in] = O;
1 iff'v'aim E Ai,Ci[aimJ = 1;

u iff 3aimE Ai I C¡[a¡m] = u or 3aim, ai¡ E A¡ I C¡[aimJ ~ C¡[a¡¡}.
(1)

In this equation, A¡ represents the set of oaddresses originated from tb.e input, C¡[aiml and
C¡[a¡¡] are theocontents oí n¡ that are accessed by addresses aim and air ,respectively.

According to Equation 1; theoutput generated in the validating state can be oequal to O, 1
or u. When all the valuesstored in the addressable contents are equal to O, the output will be
e1lual to O. If, on the otherhand, all the values stored in the addressable contents are equal te.
1, the output will be equal to 1. The output will be equal to u ~n any other case.

3.2 Learning state

The goal in the learning phase is to store the desired óutput in a location addressedby its
input terminals. To use its cells more efficientIy, GSN tries to store its desired output in an
addressed memory content which already stores this value. When there is more than oneop­
tion, a memory location holding an undefined value i8 selected. The choice of the contentis
illustrated by'Equation 2.

(2)

wh~i~ Ai¡. = {aik E Ai I Gi [a¡J = s} represents the addressable set of the neuron ni that
stores the valuoe s"Ran(Ai/J is a element randomly chosen from Ai¡. and IIAi¡.1I is the number
of elements that °belong to Ai/ s.

o o As can be seen in Equation 2, GSN searches fo! a cell in its addressable set which stores a
;~lue equal toit~ desired output. If there is no 8uch cen, it chooses a cen storing an undefined
value. If.fo! ffither oí the two cases mentioned aboye, there is more than oné possible choice,
a cen fr~m the addressed set is chosen at random. After choosing the cén, the address oí the
ceH selected must then be sent back, through the desired inptit'terminals, to be used as desired
ot~tput by the neurons in the previous layer. The desired input dij that must be sent to the
ne:uron ni in the previous layer is the ph bit of the address aim ' Thus each neuron nj receives
it!¡ desired output, leams and provides desired outputs to neurons in the previous layer. o o o

3.3 Recall state

When the neuron reaches its recan state, it has as the goal to produce the value with the
hh:hest occurrence in the addressable seto This value is pfOpagated through the pvramid lavers

137

in a similar way as the validating value to produce the pyramid recall value. The method used
to define the recall value is given by Equation 3.

o, = {
o iff 11 Ailo 11 > IIAif¡ 11;

1 iff II Aif¡ 11 > II Ailoll;
u iffIlAi/oll=IIAif¡lI.

(3)

In this equation, the neuron will generate as output a value 1 only ií the number of such
values in the addressable locations is greater than the number of O's. If the inverse occurs (Le.,
the number of O's is greater than the number of l's), the output will be equal to O. It does
not matter how many undefined values exist in the addressable locations. When the addressed
memory contents store the same number of defined values O and 1, the output will. be an
undefined value. This rule hasthe effect of minimizing the propagation of undefined values.

Transputer technology opens the possibility to connect any number of processors in sev­
eral different topologies without the need for rigid synchronisation, while the structure and
processing characteristics of GSN-based neural networks make them very suitable for massive

,parallel implementation. The íollowing sections oí this paper describe the way in which GSN f
architectures can be implemented on networks of transputer processors, and evaluate the effec­
tiveness oí such a parallel implementation through the measurement of specific key performance
pararneters.

4 Parallel implementation

The ideal parallelization of a program is one where the prograrn distributed on N processors
runs N time íaster than when implemented on a single processor. However, overheads asso­
ciated with communication between processors and a perfectly equal division oí tasks among
them make the achievement oí this desirable objective very difficult in practice. What must
then be attempted is to divide the processing task approximatelly among the processors and to
maintain an individual high working rate per processor for the maximum proportion oí the time.

The ratio oí the computational and communication times is a very important issue in
the implementation oí parallel programs in transputer networks [27]. This is a particularly
important issue for transputer networks where communication overheads often constitute a
bottleneck and so should be kept to a minimum. Another important point is that in a network
of transputers, only one transputer has access ti:> external inputjoutput operations.

The independence with which the pyramids in a GSNf neural network can be processed
and the low connectivity oí GSN neurons makes this architecture particularly suited to imple­
mentation in transputer networks. Pyramids can can be processed completely in parallel, with
practically no interaction among them. At the same time, the low connectivity used by GSNf
neurons implies relatively low memory requirements.

T-800 transputer processors have been used in the experiments described in this papero
These processors have a dock rate oí 20 MHz, 4 Mbyte memory and four bi-directional com­
munication links which allow each transputer to be connected to four other transputers, making
possible the use of different topologies. The implementation oí GSN f neura! networks was writ­
ten in Occam 2, which is a natural prograrnming language for transputers.

138

18······¡-··········I·······--¡-····· .. ····y··· .. ·· .. ····,··1..
1
.................... 1 t!

14 T"
!

12

10

8

°1~-75--~9~~1~3--.=t7--~21~~~~-2~9--~~---~L--4~1--~~--~49
NUMBER OF PROCESSORS (144 PVRAMIDS)

Figure 3: Data throughput

·.5 Experimental results

T:le major·potential benefits ofthe parallel implementation of the' GSN/ network arclúiécture
are in relation to theattainable processing speeds for training the network (both the training
aIJ.d the validating phases) and in classifying unknown patterns. These performance criteria
ha.ve been investigated quantitatively in relation to thepossible impletnentational topologies
adopted. For such, different GSNJ. architectures were trained and tested'to"recognize ma,chine
printed characters extracted from mail envelopes. Each character was reprMertted by an array
of 16x24 pixels. The first majorissue to address is the question oí the dist:ribütlon of the
pr:>cessing celis of the neural network among the transputer elemeilts. 'The recognitio~' peifor­
manee rates achieved by GSN/ networks when applied to character recogrution are presented
in [28].

Any GSN neuron in one of the intermediate layers of any given pyramid is 'constantly ex­
ch::¡.nging information with either the neurons in the previous layer whose outputsare conneCted
to its input· terminals or with the neUfon· in the next layerwhich has an input terminal con­
nel:ted to its output terminal. This makes 1t inadvisable to allocate neurons from the saine
pyramid to different processors. The independence with whích the pyranuds opérate' makes
the allocation of a set of pyramids to each transputer. the best policy and this is how GSN /
ha;~ been implemented. Since the ideal situation is one where theprocessing task is equally
distributed among the transputers, whenever more than one trailsputer isased in a network,
onl~ transputer is exclusively reserved for input, output and final classificatibn operations' and
an equal number of pyramids are allocated to each transputer. '

Communication overheads are reduced in the GSNJ implementlition bysending, whenever
pOBsible, sets of data that will not necessarily be used immediately but are already avail~ble
in a large block. This strategy was used, for example, to send the whole training set to each
transputer before the initiation of the learning phase. In' order too eValuate the effectiveness
oí parallel implementation, a number of experiments were carried out with a netwa"rk of 144
pyramids, eachwith 31 neurons of connecthtity 2, when implemented in networks using differ­
ent numbers of transputers.

Sorne initial performance figures are presented in Figure 2,which first shows network

139

:~~!::~1-~~:~~-t~~t---j~=-~==t~F~--~
2 ... ·· ... ··1· ·····r·············r··· .. ········r ·········r~~~=·1F·=.:··1f ··· ·¡ .. ······ .. · .. ··l······· .. ···

1.6

1.2 ······ .. ¡ .. ······· .. ·· .. l·· .. ·· · ,· .. · .. ······ .. ·¡···· .. ······ .. ·i..· ·· ·¡······· ···: ·· ···I···· .. ········

.. ! .-i---t---i---t---l-r
0.4 ·············r··············l·····

! ¡ ¡ ¡ ¡ ¡ ¡
o~~--~--~~--~--~-~--~--~~--~~

1 5 9 13 17 21 25 29 33 37 41 45 49
NUMBER OF PROCESSORS

Figure 4: Data throughput per processor

throughput during the training and test phases when different numbers oí transputers are
used by the network. Apart from the case where only one transputer has been used, one of the
transputers of each network was exclusively dedicated to input, output and final classification,
with GSN J pyramids being distributed among the remaining transputer processors.

According to Figure 2, the training throughput increases almost linearly with an array
size from 2 to 4 processors. Above this the increase in throughput starts to decline until the
number of transputer processors usod is equal to 25. The training throughput stabilizes when
the number of transputer processors is larger then 37, showing a decrease· when around 49
pyramids are used. The test throughput does not increase as much as the training throughput,
stabilizing when the network comprises 25 transputer processors.

The smaller increase in the test throughput reflects the fact that the validating and the
learning operations present in the learning phase require much more computational effort than
those operations found in the recall phase, which makes the test computingjcommunication
ratio become smaller. Figure 3 illustrate how the in crease in the number of processors affects
the processing carried out by each processor by showing the training and test throughputs per
proc~ssor when different numbers of processors are used.

Because of the importance of the proportion· of overall processing time devoted to com­
munication operations in determining the performance achieved by transputer networks, the
topology of the network becomes a very important issue when more than one transputer proces­
sor is used. A suitable choice of topology may playa significant part in improving the training
and test throughput attainable. In order to investigate this issue, GSN J was implemented in
two different topologies, the chain topology and the tree topology, as illustrated in Figures 4
and 5 respectively.

Each different topology was implemented on a network of 13 transputers. This particular
number of transputers was chosen because it allows the use of balanced trees with a reasonable
number of transputers at a short distance from the root. In these implementations, 144 pyra­
mids wcre equally distributed among 12 "worker" processors. The 13th processor, the "master",
was used to support the network, being responsible for operations such as input, output, final
classification .decÍsion and,.definition of network confil!;uration. Table 1 shows the traininl!; and

140

.~
~ .. ~

h- .~ • • t t ~ i

~. .t'
~. __ .~ • Master

- .Worker

Figure 5: Chain topology

11 --------- ~ ~
11 11 11
/~~ /~~ /~~

111111 111111 111111
• Maslllr

.Worlcer

Figure 6: Tree topology

tést times 'for each of these topologies.

I GSNf processing time (pattem/second) I
I Topology I Phase I
. . Training I Test .

Ta,ble 1: Times for different topologies

These results show that the two different topologies require the same training time. which
is tobe expected due'ta the higher proportion of computational operations compared with
ceommunication operations. Considering the test times, a reduction Is acbieved when the tree
tcpology is used, indicating the relatively lower number oí communication operations required
wlth this topology. While with a chain topology data transmission between a server processor
and the master processor uses an average oí 6.5 communication links, with a tree topology the
a\'erage number of communication links is 1.75.

The reason for the gain in training and test throughput when networks of more than one
transputer are used to be lower than the ideal is the low computing/communication ratio. In

141

I : • • I . ¡ . ¡
18 ···_·········l················!········ .. · ... ! •...•••........• ¡ , !················r········,······~···············T····· j .••.•..•.•.•.... !

¡ I t- ¡ ¡

18 ····· .. · ·.· ·.·.,1.·.·.·.· ·.·.·.· · ·.:.·.·.·.·.·.·.·.· ·.·.·.·.·.·I ·············"!"····· j ..•....•••• 1 : ¡ ·t .. · ·· ··¡ · .. ······:··············
14 1........1........ j

I ' ! l ! j !

B

4

, --j----L-~--~---1---+-+---~--+--i--+---
O~-L __ ~ __ L_-L __ ~ __ L_~ __ ~ __ ~~ __ ~~

1 5 9 13 17 21 25 29 33 37 41 45 49
NUMBER OF PROCESSORS (432 PVRAMIDS)

Figure 7: Data throughput

order to evaluate how a further reduction in the processing time can be achieved by increasing
the proportion of computational operations, the same experiments were carried out with the
number of pyramids increased by a factor of three, to 432. Figure 6 shows the training and test
throughput achieved when 432 pyramids were distributed in networks with different numbers
of transputers using a chain topology.

Figure 6 shows that the use of 432 pyramids allows larger gains in the training and test
throughputs by increasing the number of transputer processors used. By triplicating the num­
ber of pyramids, the throughput was also expected to triplicate. This happens until around
4 transputer processors are used, after which the throughput of the 432-pyramid architecture
gets successively closer to that achieved by the 144 pyramid architecture. U sing 432 pyramids,
the increase in tlle training tllroughput is equal to the increase in tlle number of processors
until tlle number of transputer processors used is around 13. The training tllroughput hecomes
stable wllen more than 25 transputcrs are used. The training and test throughputs per pro­
cessor when 432 processors are used is shown in Figure 7.

It should be noticed, from Figures 2 and 6, that the training throughput after 25 transput­
ers is the same when 144 and 432 pyramids are used, apart from tlle case where 144 pyramids
are distributed among 49 transputers. For the test times, the increase in the test throughput is
smaller tllan tlle increase in the training throughput. The test throughput is also smaller than
that achieved when 144 pyramids were used and stabilizes when the network has more than 37
transputer processors. Further gains can be achieved by increasing the neurons connectivity,
because this will further increase the computingj communication ratio.

Table 2 illustrates the training and test throughputs achieved when a GSN J architecture
based on 432 pyramids was implemented in a network of 13 transputers using chain and tree
topologíes.

142

6' 2.8
z
§
U)

2.4 a:
w a..

. 111
Z a: 2

S
!!::.
a: 1.8
O
U)
U)

8 1.2 a: a..
a:

......... -1-......... ,! ! ! ··¡··· .. ····· .. ··I··········"1"· .. ···········¡·············l··········;+·r.f"~.· ;,.' J ' i ',~·.r .,

""." .. j............I ! !¡.: ¡-............ ¡ ¡.: ... _ i : .. ~

··, .. ··¡······· .. ····j········¡········ .. ··r··············IT~~=.~.~:tJ: .. ~ ¡ ! .
........ -I'" ¡ ¡ ! .. ······· .. ····I···_····_·j···· .. ······i' .. ····· .. ··:.:L···· .. ·· ¡ _ .. ¡ .. : , c

.............. ;1 ,1. 1.. 1,; 1 ¡ ¡ ¡ ¡ w •••••• j J 1.. /•.......

w a..
S 0.8
a..
%
el
~

(>.4 ~
i!:

O

~i" _ ¡ j- . _·········t········· .. ····;··· .. ···· .. ··.,.·¡···;········~·

-¡=+:-~t+cl'~'=±==t::~=
1 5 9

Figure 8: Data throughput per pro ces sor

GSN! processing time (pattem/second) .,

Iropology I Training I Phase Te.'lt I
I chain I 12.82 I 7.58 I
. tree . 12.82. 7.79 .

Table 2: Times for different topologies.

,
Th~ t4roughput figurespresented by Table 2 indicate that eVen when .substantially in­

creasing the number of pyramids, the reduction of communication overheads leads to similar
training throughput achieved for the two topologies used. The test throughput, however has
different'valués for the two topologies, being lower when a chain topoiogy is lised.The smaller
diferencein the testthroughpút figures achieved by these topologies'when compáred toTable
1 reflects the reduction in communication overhead.

, '.' These .results confirm that an increase in the throughput in both training and test time
m ay be achieved through the parallelization of G S N f in a netwQ;rk of transputers. They also
show that the chain topologies is slightly less effective than the tree topology. Such' perfor­
m;ance figures demonstrate a capacity for overall processing timesattainable with a. paranel
implementation which makes its use viable in a wide range of practical applications. l

The question ofparallel implementation has been investigated, and GSNf architectureshave
been successfully implemented on a network of transputers using different topol()gies, le~di:ng
te, a considerable improvement lnprocessing speeds with respect to equivalent implem~~~ation
on a. single'processor. The 'results presented in Figures 2 and 6 provide an impoita~t h,ench­
mark again~t which to d~fine the number of transputer processors:to be usediri apractical
ta.sk. Although it is difficult to define beforehand how precisely the increase in the riumber of
traIl~put~r processors will affect the throughput achieved, these results indiciJ.te that th~ higher
tI.e comput~tional/communication ratio, the higher the benefits achjeved by the increase in
tI.e number of transputer processors.

143

"

6 Conclusions

This paper has described the implementation of GSN feedforward architectures on networks of
transputers. In relation to the implementation of the network and its implications in relation
to processing speed, it has been shown that the GSN architecture maps conveniently to a
parallel infrastructure and that training and classification times can be reduced by an order
of magnitude for a typical network when implemented on even a modest array of transputer
processors.

Acknowledgement: A. de CarvallLo would like to acknowledge the support of the Brazilian
Research Agency (CNPq).

References

[1] P L Springer and S Gulati. Parallelizing the cascade-correlation algorithm using time
warp. Neural Networks, 8(4):571-578, 1995.

[2] I Mahadevan and L M Patnaik. Performance evaluation of bidirectional associative mem­
ory on a transputer-based parallel system. Parallel Computing, 18:401-413, 1992.

[3] K Obermayer, H Ritter, and K Schulten. Large-scale simulations of self-organising neural
networks on parallel computers: application to biological modelling. Parallel Computing,
14:381-404,1990.

[4] J M J Murre. Transputers and neural networks: An analysis on implementation constraints
and performance. IEEE Transactions on Neural Networks, 4(2):284-292, March 1993.

[5] T E Lange. Simulation of heterogeneous neural networks on serial and parallel machines.
Parallel Computing, 14:287-303, 1990.

[6] H Yoon, J H Nang, and S R Maeng. Parallel simulation of multilayered neural networks
on distributed-memory multiprocessors. Microprocessing And Microprogramming, 29:185-
195,1990.

[7] M C Fairhurst and P Brittan. Matching structural and implementational modules in the
specification of image classifiers. Pattern Recognition, 24:555-566, 1991.

[8] Inmos, editor. Transputer Reference Manual. Prentice Hall, 1988.

[9] S Ramanan, R S Petersen, T G Clarkson, and J Taylor. pRAM nets for detection of small
targets in sequences of infrared images. Neural Networks, 8(7/8):1227-1237, 1995.

[10] N M Allin~on and M J Johnson .. ¡\.pplication of self-organising digital neura.1, networks
to attentive vision systems. In Proceedings of the 4th International Conference on Image
Processing and its Applications, pages 193-196, Maastricht, The Netherlands, April1992.
lEE.

[11] E C Mertzanis, D A Dukic, I D Benest, and J Austin. A neural network based position
invariant pattern recognition system with a constrained hypermedia style user-interface. In
Proceedings of the 4th International Conference on Image Processing and its Applic~tions,
pages 217-220, Maastricht, The Netherlands, April 1992. lEE.

[12] A de .. Carvalho, M C Fairhurst, and D L Bisset. Classifying images using goal seeking
neural network architectures. lEE Proceedings-I Communications, Speech and Vision,
40(1):12-18, February 1993.

144

[13] W vy i;\rmstr~>I~g and 1: Gecsei. A4aptation alg9rithp1S for bi.IJ.ary tree· networks. IEEE
Transactions on Systems; Mari, and Cybemetics, 9:276-285, 1979.' o',"

[l4] A Garzotto. The NAND-Net. In Proceedings of the ICANN 92 Conference, pages 1419-
1422, Brighton, UK, September 1992. Elsevier.

[15] D JWill~haw, O P Buneman, and H C Longuet-Higgins. Non-holographit associative
memory. Nature, 222:960-962,1969.

[16] R P Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazine,
4:4-22, April1987.

[17] WW Bledsoe and 1 Browning. Pattern recognition and reading by mach~~e. In Proceedings.
of The Eastem Joint Computer Conference, pages 225-·232, 1959.

[:.8] E F;ilho, M C Fairhurst, and D L Bisset. Adaptive pattern recognition using.goal-seeking
neurons. Pattern Recognition Letters, 12:131-138, March 1991. '

.. ..~ ,-"

[19] A Wuensche. Basis of attraction in disordered networks. In Proceedings of the ICANN 92
Conference, Brighton, UK, September 1992. EIsevier. ','

[~!O] S Patarnello and P Carnevali. Learning networks of neurons with Boolean logic.$...t!fO­
physics Letters, 4(4):503-508, 1987.

[n] J R Doyle. Sup~rvised learning in n-tuple neural networks. Int. J. Man-Machine Studies,
33:21-40,1990.

[~:2]W K Kan and 1 Aleksander. A probabilistic logic neurcin network for associative learning.
In Proceedings of the IEEE First International Conference on Neural Networks, volume Il,
pages 541-548, San Diego, California, June 1987. IEEE.

[23] E Filho, D L Bisset, and M C Fairhurst. Networks of Boolean goal seeking neurons for
pattern recognition. In International Symposium on Neural Networks for Sensory and
Motor Systems, Neuss, F.R.G., March 1990.

[24] R G Bowmaker and G G Coghill. Improved recognition capabilities for goal seeking neuron .
. Electronics Letters, 28:220-221, 1992.

[25] J D Mason, E L Hines, andJ W Gardner. Analysis oí electronic nose dat'a using weightless
neural networks and gE;lnetic algorithms. In Weightless Neural IYetwork Workshop'9~,
Computing'with LogicalNeurons, pages 93-97, University ofYork, York, UK, April1993.

,,'fU':).~'

[26] W Martins and N M Allinson. Two improvements for GSN neural networks. In Weightless
Neural Net"work Workshop'99, Computing with Logical Neurons, pages 58~3, Univei"sity
oí York, York, UK j :AprilI993.

[27] K C ·Bowler, R D Kenway, G S Pawley, D Roweth, and G y. Wilson. An introduction,to
OCCAM programmin!J.~ Chartwell-Bratt, 1989.

[28] E Filho. Signature recpgnition using Boolean neural p.etworks. Master's. thesis, Univ:ers~­
dade Federal de Pernambuco, Brazil, 1987. Original in Portuguese.

145

