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Abstract. In this paper the adequacy of high order interpolation-based
approaches to describe highly perturbed complex dynamics in discrete
time was analyzed. The analysis establishes features of the approaches
related to modularity, consistency with the model order and the sampling
times, and accuracy in disturbed contexts with noisy measurements.
A detailed study of the sensitivity of local prediction errors under a
high signal-to-noise ratio is carried out with analytical expressions in
dependence of physical coefficients of the vehicle.
The different interpolation-based approaches were illustrated with simu-
lations using from an AUV-like (Autonomous Underwater Vehicle) sys-
tem with a few degrees of freedom (DoF), to a ROV (Remotely Operated
Vehicle) model of 6 DoF with complex navigation paths.
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1 Introduction
Physical models for characterizing system dynamics in continuous time are typ-
ically available in the form of ordinary differential equations (ODEs) with even-
tually time-varying parameters. Translation of ODE-based descriptions to time-
discrete models is an ineludible problem when applying digital technology to
achieve designs of control system, parameter estimators and signal filters.

Generally, more and more ambitious requirements on accuracy in the op-
eration of complex dynamic systems, give impetus to employ preferably such
accurate models that can preserve the scope of the design goal across the steps
in the synthesis. These, for instance, are the requirements pointed up in the de-
sign of guidance-navigation-control systems for a particular underwater vehicle
dynamics, which must deal with actuating perturbations and strong nonlineari-
ties due to inherent hydrodynamics and thruster characteristics [1]-[2].

Because it is not possible to analytically describe the exact discrete-time
model of a nonlinear system, approximated digital models are a reasonable way
to support the design of a digital control system.
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The start point in this paper is the availability of the physical ODEs for the
characterization of a vehicle dynamics. Our objective is to explore the adequacy
for digital controller of certain ODE-related interpolation-based approximations,
in contrast with the Euler Method that seemed as the most widespread in most
applications in the research area [3]-[4]. The criterions of the analysis between the
different methods are their features of modularity, consistency with the model
order, accuracy in disturbed contexts and noisy measurements among others.
We will pay attention to the model-performance dependence with respect to
sensitivity functions that are in correspondence to certain physical coefficients.

Without entering the phase of any particular controller design, many sugges-
tions could be given beforehand for the application of prediction-based models
in a control context for vehicles and perturbations that occurs basically from
sensors. Finally, a case study for a complex system dynamics in six degrees
of freedom (DoF) will illustrate the features of some of presented High-order
approximations in comparison to the Euler’s Method for potential control appli-
cations.

2 Preliminaries

2.1 Continuous-time nonlinear dynamics
Many mechanical system dynamics are mathematically described by the inter-
connection of an ODE for the inertial part of the system together with an ODE
for the kinematic part. Additionally, a nonlinear actuator characteristic is in-
cluded and all parts connected blockwise as illustrated in Fig. 1.

The broad class we are referring to embraces mobile robots, unmanned aer-
ial vehicles, spacecraft and satellite systems, autonomous underwater vehicles
(AUV), and remotely operated vehicles (ROV) among others. Usually, the dy-
namics of a ROV may be the most complex one due to its non-linear hydrody-
namics, high DoF, significant perturbations and measurement errors actuating
on it. So the analysis here will be focused mainly to this complexity level.

In a general form, a vehicle dynamics can be described by
.
v=fv (η,v,τ ,τ c) (1)
.
η=fη(η,v,vc) (2)

n=fn(v,nr) (3)

τ=fτ (n,v), (4)

where η is the generalized position vector and v is the generalized rate vector.
The vector τ is the generalized propulsion vector applied on the vehicle. The
vector n describes the angular velocities of the motors (particularly thrusters in
ROVs) and nr is the system input vector defining references for n.

Usually, there exist perturbations acting on the dynamics such as a force
perturbation τ c (for instance, the cable tug in ROVs) and a velocity perturbation
vc (for instance, the one due to fluid current or wind rates). Additionally, for
design and stability analysis in control systems one has to consider disturbances
δv and δη for the measured kinematic and spatial states, respectively.

The right members fv , fη, fn and fτ in (1)-(4) are non-linear vector functions
describing the inertia, kinematics, actuator dynamics and actuator statics in

15th Argentine Symposium on Technology, AST 2014

43 JAIIO - AST 2014 - ISSN 1850-2806 - Página 61



this order. A scope of available model structures and details of marine systems
is given in [1]. For further analysis we will generally specify

fv =M
−1 (−C(v)v−D(|v|)v+g(η) + τ+τ c) (5)

fη = J(η) (v + vc) (6)

fτ = K1n
Tn−K2v

Tn, (7)

where matrices M , C, and D represent the inertia, the Coriolis and centripetal
forces, and the damping, respectively, g the buoyancy vector and J(η) the ro-
tation matrix. All the arrays C, D, J and g are nonlinearly state-dependent on
v and η, while K1 and K2 are constant matrices that depend on thrust system.
The vector function fn in (3) is generally characterized with transfer-functions
corresponding to a set of tachometric control loops.

ODE for the
Kinematics

 ττττ
VODE for the

Inertia

    ηηηη

Actuator
dynamics

nr

 ττττcV
Vcn

Actuator statics

V
δδδδV

δδδδηηηη

δδδδn

Vδ

nδ

    ηηηηδ

Fig. 1 - Physical model structure for a vehicle dynamics with perturbations
and noisy measurements of the states

2.2 Sampled-data dynamics

For the continuous-time dynamics there exists an exact sampled-data dynamics
described by the set of sequences {η(ti),v(ti),n(ti),nr(ti)} for the states η, v,
n and the input nr at times ti with a sampling rate h. Complementary the vehicle
behavior is characterized in discrete time through the noisy measurements in the
sequence set {ηδ(ti),vδ(ti),nδ(ti),nr (ti)} as illustrated in Fig. 1.

3 Discretization methods
In this paper, considering the well-known vehicles dynamics, we are going into
details in interpolation-based methods that take full advantage of the phenom-
enological structure of the ODE system. We now summarize some known results
from the area of Numerical Simulation taking the most extended algorithms and
the generic ODE

.
x=f(x,u) as support [5].

Euler and Tustin approximations The Euler transformation implements a
forward difference of the first time derivative xn+1 = xn+h f(xn ,un).

Another transformation, which corresponds to the trapezoidal method for
numerical integration, is the Tustin or bilinear approximation. The difference
with the Euler method is that this is an implicit method while the Euler is not.

Runge-Kutta approximations This methods perform multiple evaluations
of f in each integration subinterval as required for a given accuracy. There exists
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a family of explicit and implicit Runge-Kutta methods that compute approxi-
mations to x(t) with initial value x(t0) using the Taylor series expansion about
tn. Such an explicit approximation of order s is a weighted average defined as

xn+1 = xn+h (b1k1+ · · ·+ bsks) , (8)

with ki being slopes of the path x(t).
Adams-Bashforth approximations This method is an explicit multistep lin-
ear method that performs an approximation of x(t) with initial value x(t0) at
t = tn+1 = t0 + (n + 1)h with n = 0, 1, 2, ... based on a linear combination of
samples f(xi ,u(ti)) from i = n up to i = n− s+ 1.

The coefficients of the linear combination are obtained by using the Lagrange
formula for polynomial interpolation. The order of accuracy per step is equal to
s, i.e., x(tn+1)− xn+1 ∈ O(h

s+1 ).
More details about the stability of Adam-Bashforth and other methods are

given in many books oriented to Numerical Analysis, see for instance [6].

4 Approximation comparison

In this section we attempt to elucidate advantages and drawbacks of the different
approximations described before employing a simple case study. This will enable
us in a simple but categorical way to establish criteria to a suitably selection of
sampled-data models for design purposes of digital controllers.

4.1 A simple case study

To this end, let us considered the following system accounting for a simple dy-
namics similar to an AUV ODE system restricted to a few DoF

ẏ = αy2 + βy + γy |y|+ δ sin2 (x) + u1 (9)

ẋ = − sin2 (x) y, (10)

with states x and y for position and velocity, respectively, the term βy2s being
in similitude with a Coriolis-centripetal acceleration, the terms βy and γy |y|
playing the role of the linear and quadratic drag terms, and finally δ sin2 (x)
resembling the buoyancy in a combined pitch-roll motion. The term u1 accounts
for the excitation from thrusters. The term sin2 (x) y in (10) reflect the effect of
the rotation matrix J for the combined pitch-roll motion.

For simulation purposes, the dynamics coefficients were set up α = −0.1,
β = −0.05, γ = −0.2 and δ = 0.5. These values were selected in order to
allow the nonlinear terms to have similar order of magnitudes. The input u1
was suitably chosen in order to cause persistent excitation of the dynamics. For
this goal, a random multilevel signal was proposed with a statistically uniform
distribution of the amplitude levels. The sampling time was fixed sufficiently
small according to the most rapid dynamics of the system (9)-(10).

4.2 Numerical simulation and estimation

Preliminaries The start point for an approximation comparison is the ob-
taining of an exact sampled-data model for the ODE system (9)-(10), which is
numerically simulated and their states sampled at a rate h. Parallel, the one-
step-ahead predictor of any presented approximation is run and fed with the
sampled data.
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To distinguish the methods the following notation is used, namely: Euler (E),
estimated Euler (Ee), Tustin (T), Adams-Bashforth (AB), estimated Adams-
Bashforth (ABe), Runge-Kutta (RK).

The set of parameters for the case study embraces those for the discrete-time
model structure, excitation and estimation separately.

So, the structural model parameters are represented by the approximation
order s. They are indicated by suffixes next to the approach label, e.g., RKs will
mean the Runge-Kutta approximation of order s.

On the other hand, the set-up for the excitation u1 is characterized by the
choice of the hu/h, with hu is the step length at any signal level. For hu/h = 1,
u1 will look like a white noise, and for increasing rate the signal becomes more
predictable. The amplitude levels of u1 are in the range of ±10.

The parameter estimation (when applies) is defined by the identification in
the stationary state, minimizing a Lebesgue series norm for the local error.

Results The main results of the study are summarized in Figs. 2 and 3 that
illustrate the evolutions of the local errors in logarithmic scale.

As seen in Fig. 2 the AB approximation is consistent with the order s (it is,
the larger the order the better the prediction quality in terms of the norm). For
the ABe approximation there is no improvement with increasing orders.

Quite precise and consistent looked the RK methods, see Fig. 3. The differ-
ence in quality between them and the simple Euler approximation is significant
in various order of magnitudes.

4.3 Feature comparison in view of controller designs

Often nonlinear systems require complex nonlinear controllers. So, in order to
keep the scope of the controller design matching this complexity, some modu-
larity of the model is quite important. Moreover, it is desirable for the sake of
design simplicity that a discrete-time model has the associated prediction sam-
pling period equal to the control sampling period. Additionally, even when some
discrete-time models can manifest unstable global behavior, this property is not
relevant in controller design because they usually involve a finite number of steps
for an ahead prediction (usually one step) with bounded local errors. Quite im-
portant is that this prediction error is usually reflected in the appearance of
compact residual sets in the tracking problem of vehicles (see [7]).

From the point of view of modularity, it seems that all approximations offer
flexibility in the model structure. AB approximations do increase the complexity
of modeling and parameter identification linearly with s, involving about s times
more computations than the Euler method. On the other hand, for RK models
the computational effort increases proportional to s2 with a need of intersam-
pling. It should be noticed that the Euler method is equivalent to the AB and
the RK approximations with an order s = 1.

In summary, from model adequacy for control purposes, the explicit calcu-
lation of the one-step-ahead prediction on the basis of present and past control
values shows again the Euler and AB methods as convenient approaches. Be-
cause of their superior adequacy for controller design, we will focus from now on
the AB approximations for further analysis on more complex dynamics.
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Fig. 2 - Local error evolution in Adams-Bashforth approximations for different
s and hu/h

5 Measurement Errors

Focusing on the previously selected AB approach, the goal in this section is
to establish relations between local model with measurement errors and with
physical parameters of the underwater vehicle. Afterwards, we will evaluate the
sensitivity of spatial and kinematics model errors with respect to changes of
these parameters and subject to operations which are typical of these systems.

In our analysis we will focus the most common case that appears when the
non-autonomous dynamics (1)-(2) of an underwater vehicle is dominant in front
of the actuator dynamics (3). Additionally, without loss of generality, we consider
inertial and kinematic perturbations τ c and vc null.
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Fig. 3 - Local error evolution in Euler, Runge-Kutta and Tustin
approximations for different s and hu/h

5.1 Disturbed local error

We define now disturbed local errors as
−
εvn+1=v(tn+1) + δvn+1−vn+1 and

−
εη

n+1
=η(tn+1) + δηn+1−ηn+1 .

Assuming bounded noise vectors δvi and δη
i

we can expand v(tn−i+1) and
η(tn−i+1) in series of Taylor about the values of undisturbed measures . So it is
accomplished
−
εvn+1 = εvn+1+∆δvn+1−

s∑

i=1

ai

(
∂fTv
∂v

(tn−i+1)δvn−i+1+ (11)

+
∂fT
v

∂η
(tn−i+1)δηn−i+1+

∂fT
v

∂fτ

∂fTτ
∂v

(tn−i+1)δvn−i+1+oi(δv
2 )+oi(δη

2 )

)
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−
εη

n+1
= εη

n+1
+∆δηn+1−

s∑

i=1

ai

(
∂fTη
∂v

(tn−i+1)δvn−i+1+ (12)

+
∂fTη
∂η

(tn−i+1)δηn−i+1+oi(δv
2 )+oi(δη

2 )

)

,

where εvn+1 and εη
n+1

are the model local errors which are completely lacking
in the influence of sampled-data disturbances, and one accomplishes ∆δvn+1=
δvn+1−δvn and ∆δηn+1=δηn+1−δηn . The functions oi are truncating error
vectors of the Taylor series expansions, all of them belonging to O(hs+1). More-

over, ∂fT
v

∂v
and ∂fT

v

∂η
are Jacobian matrices of the system which act as variable

gains that propagate the sampled-data disturbances along the path.
5.2 Sensitivity
The Jacobians components are from (5)-(7)

∂fTv
∂v

= −M−1

(
∂vTCT (v)

∂v
+
∂vTDT (|v|)

∂v

)
(13)

∂fT
v

∂η
=M−1 ∂g

T

∂η
(14)

∂fT
v

∂fτ
=M−1 (15)

∂fTτ
∂v

= −nTK2 (16)

∂fTη
∂v

= J(η) (17)

∂fTη
∂η

=
∂vTJT (η)

∂η
, (18)

If we closely analyze the bounds for the Jacobians in the state space of v and
η, we can conclude they are achieved at boundaries of the state domain. The
following analytical expressions can be derived

max
v,η

∥∥∥∥
∂fTv
∂v

∥∥∥∥ =
∥∥∥∥
∂fTv (max ‖v‖)

∂v

∥∥∥∥ (19)

max
v,η

∥∥∥∥
∂fT
v

∂η

∥∥∥∥ ≤
∥∥M−1

∥∥
∥∥∥∥
∂gT (max |ϕ| ,max |θ|)

∂η

∥∥∥∥ (20)

max
v,n

∥∥∥∥
∂fTτ
∂v

∥∥∥∥ ≤ ‖K2‖max ‖n‖ (21)

max
v,η

∥∥∥∥∥
∂fTη
∂v

∥∥∥∥∥
= ‖J(max |θ|)‖ (22)

max
v,η

∥∥∥∥∥
∂fTη
∂η

∥∥∥∥∥
≤

∥∥∥∥
∂JT (max |θ|)

∂η

∥∥∥∥max ‖v‖ . (23)

Clearly it is seen that noisy measures impact on the accuracy less in heavy ve-
hicles than in light ones because of the inertia factorM−1 in (13)-(14). Moreover,
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in vehicle maneuvers with broad changes of the pitch angle θ one may originate
relatively large prediction errors even at slow motions, which would have to im-
ply caution in the control actions of the guidance system designed upon this
model. The reason for this effect is that the norms of J and ∂J

∂η
in (22)-(23) in-

crease for large values of θ and particularly they are singular at θ = ±π
2 . Finally

one sees that the velocity affects the accuracy linearly as indicated in (18) and
(23) but also nonlinearly (cf. (13) and (19)).

5.3 Model performance in the presence of noisy sampled data
Let us assume that there exist noisy measurements in velocity v and position η.
Let ‖δv‖ and ‖δη‖ be the bounds for the measurement errors. So with (11)-(22)
it is valid∥∥∥

−
εvn+1

∥∥∥ �
∥∥εvn+1

∥∥+ 2 ‖δv‖+ (24)

+as

((∥∥∥∥
∂fT
v
(max ‖v‖)

∂v

∥∥∥∥+
∥∥M−1

∥∥ ‖K2‖max ‖n‖
)
‖δv‖+

+
∥∥M−1

∥∥
∥∥∥∥
∂gT (max |ϕ| ,max |θ|)

∂η

∥∥∥∥ ‖δη‖
)
+sov+soη

∥∥∥
−
εη

n+1

∥∥∥ �
∥∥∥εη

n+1

∥∥∥+ 2 ‖δη‖+as ‖J(max |θ|)‖ ‖δv‖+ (25)

+as

∥∥∥∥∥
∂JTj (max |θ|)

∂η

∥∥∥∥∥
‖v‖n ‖δη‖n + sov + soη

where ov and oη are the maximal norms of all the truncation error vectors
oi(δv

2 ) and oi(δη
2 ), respectively, and the coefficient as is equal to

∑s
i=1 |ai|.

Since εvn+1 and εη
n+1

also belong to O(hs+1), they go to zero exponentially
for increasing s. On the contrary, it is noticing from (24)-(25) that the contri-
bution of noisy measures in the accuracy of predictions does increase with s
because of the growing of the sum as.

It can be shown that
−
εη

n+1
can increase without bound for the pitch angle

θ due to the factors

∥∥∥∥
∂JTj (max|θ|)

∂η

∥∥∥∥
i

and ‖J(max |θ|)‖i in (25). The influence of θ

could be minimized if |θ| goes practically below 40 degrees.

6 A complex case study: a ROV
As summarized in the final paragraph of Section 4.3, AB models emerge over
the other approximations as quite adequate for control purposes. Once relations
between model errors and disturbances in the representation were theoretically
established for that approach, we will address ourselves to the evaluation of their
features by means of numerical simulation.

We will aim to achieve these goal for a case study employing a ROV with
a prescribed control law for the actuators (see Fig. 6). The phenomenological
model was taken from a real vehicle (see [8]).

6.1 Set-up
The continuous-time dynamics described in (5), (6) and (7) will be numeri-
cally simulated in a forced motion which results from the manipulation of the
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8 thrusters (see Fig. 6, to the left) according to prescribed laws. The thruster
dynamics is considered parasitic in front of the dominant dynamics of the vehicle.

So, the induced vehicle motion takes place in the form of uncontrolled navi-
gation with and slight ascent due to a positive buoyancy of 1% of its weight

1 2

34
25% / 0.20 Hz-45% (forward)8

25% / 0.15 Hz-50% (forward)7

25% / 0.25 Hz50% (forward)6

25% / 0.30 Hz45% (forward)5

15% / 0.25 Hz10% (down)4

15% / 0.15 Hz10% (down)3

30% / 0.20 Hz-5% (up)2

30% / 0.30 Hz-5% (up)1

Sinus variable rpm
n1 (% max rpm) 

and ω (Hz)

Mean rpm
n0 (% max rpm)

Thruster
Number

5

78

6

y

x

Fig. 6- Set-up for a forced vehicle motion in the case study. Mean and variable
rpm values of the thrusters

With the end of accomplishing persistency of excitation to the nonlinear
dynamics in every one of its motion modes, we generate the rpm signals of n
as determined by the sum of a mean component n0 and a sinus component of
amplitude n1 and frequency ω (see Fig. 6, to the right). The simulation time
considered was T = 5000s and the error was evaluated from T = 1000s to avoid
the transitory error at the beginning of the discrete approximations.

6.2 Results

The results of this case study are summarized in the table below in Figs. 7 for
two sampling periods: h = 0.1 (s) and h = 0.5 (s). It illustrates comparatively
the model performance evaluated through the quadratic norm of the disturbed

local prediction errors
−
εη and

−
εv. These are possible to be computed exactly as

indicated in the definition at the start of Section 5.1, due to the availability of
the unperturbed measures η(tn) and v(tn), and the perturbations δηn and δvn
in the simulation. Obviously, this is not possible in a practical case to do when
only perturbed measures are available.

The disturbance levels of the noise in the samples are indicated separately
as a pair of percentages (δη

n
%, δvn%) in the first column. These quantities

indicate a disturbance referred to the magnitudes of 1(m)-30(◦) and 1(m/s)-
30(◦/seg), respectively. The noise samples are generated randomly and added to
the sampled states as illustrated in Fig. 1. The characteristic of the noise is like
a discrete-time white noise signal with uniform distribution.

In the case study we have employed AB approximations with a small order
(s = 1, Euler approximation AB1) and a large order (s = 4, AB4). The disturbed
local errors for position and velocity in the different orders are indicated in the

table. They look as an ordered pair of the norms like (
−
εηAB1,

−
εηAB4) and

(
−
εvAB1,

−
εvAB4), for AB1 and AB4 respectively.
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3xAB1 ~ AB4
(1.4x10-4, 4.2x10-4)

AB1 ~ AB4
(1.3x10-3, 1.3x10-3)

(20%, 2%)

1.5xAB1 ~ AB4
(7.3x10-4, 1.1x10-3)

1.9xAB1 ~ AB4
(1.8x10-4, 3.3x10-4)

(2%, 20%)

1.4xAB1 ~ AB4
(7.4x10-4, 1.1x10-3)

AB1 ~ AB4
(1.3x10-3, 1.4x10-3)

(20%, 20%)

1.4xAB1 ~ AB4
(3.7x10-4, 5.2x10-4)

AB1 ~ AB4
(6.6x10-4, 7.0x10-4)

(10%, 10%)

1.3xAB1 ~ AB4
(8.0x10-5, 1.0x10-4)

AB1 ~ AB4
(1.3x10-4, 1.4x10-4)

(2%, 2%)

1.5xAB1 ~ AB4
(7.3x10-4, 1.1x10-3)

3.6xAB1 ~ AB4
(7.3x10-5, 2.6x10-4)

(0%, 20%)

1.4xAB1 ~ AB4
(3.6x10-4, 5.3x10-4)

3.4x AB1 ~ AB4
(3.9x10-5, 1.3x10-4)

(0%, 10%)

1.3xAB1 ~ AB4
(7.9x10-5, 1.1x10-4)

1.4xAB1 ~ AB4
(1.8x10-5, 2.6x10-5)

(0%, 2%)

3.6xAB1 ~ AB4
(1.2x10-4, 4.3x10-4)

AB1 ~ AB4
(1.3x10-3, 1.3x10-3)

(20%, 0%)

3.2xAB1 ~ AB4
(6.6x10-5, 2.1x10-5)

AB1 ~ AB4
(6.4x10-4, 6.4x10-4)

(10%, 0%)

1.3xAB1 ~ AB4
(3.4x10-5, 4.4x10-5)

AB1 ~ AB4
(1.3x10-4, 1.3x10-4)

(2%, 0%)

AB1 ~ 3xAB4
(3.2x10-5, 1.1x10-5)

AB1 ~ 75xAB4
(1.6x10-5, 2.1x10-7) 

(0%, 0%)

Level of 
noise

Position error
AB1  vs. AB4

(εεεεη AB1, εεεεη AB4)

Velocity error
AB1  vs. AB4

(εεεεν AB1, εεεεν AB4)(δδδδη%,δδδδν%)
εν% = (100 εν m/s / 1m/s)

1.8xAB1 ~ AB4
(2.5x10-3, 4.5x10-3)

1.1xAB1 ~ AB4
(2.7x10-3, 2.9x10-3)

2.5xAB1 ~ AB4
(3.4x10-3, 8.6x10-3)

2.4xAB1 ~ AB4
(1.2x10-3, 2.8x10-3)

2.6xAB1 ~ AB4
(3.7x10-3, 9.5x10-3)

1.4xAB1 ~ AB4
(3.1x10-3, 4.5x10-3)

1.8xAB1 ~ AB4
(2.6x10-3, 4.8x10-3)

1.3xAB1 ~ AB4
(1.7x10-3, 2.3x10-3)

AB1 ~ 1.4xAB4
(2.2x10-3, 1.5x10-3)

AB1 ~ 1.4xAB4
(8.5x10-4, 6.1x10-4)

2.5xAB1 ~ AB4
(3.4x10-3, 8.6x10-3)

2.5xAB1 ~ AB4
(1.1x10-3, 2.7x10-3)

1.7xAB1 ~ AB4
(2.5x10-3, 4.3x10-3)

1.6xAB1 ~ AB4
(8.6x10-4, 1.4x10-3)

AB1 ~ 1.5xAB4
(2.2x10-3, 1.5x10-3)

AB1 ~ 1.6xAB4
(7.9x10-4, 4.9x10-5)

1.8xAB1 ~ AB4
(2.4x10-3, 4.4x10-3)

AB1 ~ AB4
(2.7x10-3, 2.8x10-3)

1.1xAB1 ~ AB4
(2.2x10-3, 2.5x10-3)

AB1 ~ AB4
(1.5x10-3, 1.4x10-3)

AB1 ~ 1.7xAB4
(2.2x10-3, 1.3x10-3)

AB1 ~ 1.6xAB4
(8.3x10-4, 5.0x10-4)

AB1 ~ 1.8xAB4
(2.2x10-3, 1.2x10-3)

AB1 ~ 1.9xAB4
(7.9x10-4, 4.2x10-4)

Position error
AB1  vs. AB4

(εεεεη AB1, εεεεη AB4)

Velocity error
AB1  vs. AB4

(εεεεν AB1, εεεεν AB4)

Sampling period h=0.1 (s) Sampling period h=0.5 (s)

Fig. 7 - Local errors for different orders s of the Adams-Bashforth model and
sampling time h

From Fig. 7, when comparing the model performance with respect to s under
different degres of disturbances, it is noticing that no apparent advantage is
obtained for large-order models over the Euler method. So, the more simple
structure is the reasonable choice for controller design in this case.

7 Conclusions

In this paper the adequacy of high order interpolation-based approximations to
describe highly perturbed complex dynamics in discrete time was analyzed.

In a first case study, a simple AUV-like ODE system has been utilized. The
analysis had established features of the approximations related to modularity,
consistency with the model order and degree, accuracy in disturbed contexts
with noisy measurements. These features were finally listed for comparison of the
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approximations. AB Methods had also shown consistency with increasing order
s and do not need intersampling as in the case of the RK approaches. Moreover,
the computational efforts of the AB approximations are low, only s times higher
that the simplest Euler method. Additionally, the aptitude of the approaches
predictions in dynamic behavior was also deemed for digital controller design as
ultimate goal. In this sense AB methods had emerged as the most appropriate.

The next step had consisted in the analysis of the sensitivity of local predic-
tion errors to disturbances in the measures under a high signal-to-noise ratio.
Here, analytical expressions were determined as a function of physical coefficients
of the vehicle like inertia, drag, buoyancy and maneuver parameters.

The disturbances measures were also analyzed. It was found that the con-
tribution of noisy measures in the accuracy of predictions does increase linearly
with s and the sampling time period h.

Finally, the results were illustrated with numerical simulations using a ROV
model of 6 DoF with complex navigation paths. Special attention was paid on
the influence of model parameters like order s, sampling time h and different
levels of disturbances both in the position and velocity.

The accuracy of predictions increases exponentially with the order s con-
sidering that no disturbance acts on the measurements (both kinematics and
spatial). Nevertheless, in presence of noise, no substantial advantage of employ-
ing large-order Adams-Bashforth in comparison to the simple Euler approach
has been noticed, even when disturbances on the measures are small.

For that reason, even though the arrival of new technology offering extremely
good measures not only in velocity but also in position, it is not observed that
complex AB model structures may contribute to increase the accuracy of models
for controller design. So, the more simple structure of the Euler still is the more
reasonable choice for controller design in this complex dynamic.
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