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Abstract. Dimensionality reduction using feature extraction and selection
approaches is a common stage of many regression and classification tasks.
In recent years there have been significant efforts to reduce the dimen-
sion of the feature space without lossing information that is relevant for
prediction. This objective can be cast into a conditional independence con-
dition between the response or class labels and the transformed features.
Building on this, in this work we use measures of statistical dependence to
estimate a lower-dimensional linear subspace of the features that retains
the sufficient information. Unlike likelihood-based and many moment-
based methods, the proposed approach is semi-parametric and does not
require model assumptions on the data. A regularized version to achieve
simultaneous variable selection is presented too. Experiments with simu-
lated data show that the performance of the proposed method compares
favorably to well-known linear dimension reduction techniques.

Keywords: Dimension reduction; variable selection; dependence mea-
sures; supervised learning.

1 Introduction

In a supervised learning scenario, we are often interested in building a predictive
rule for a response variable Y, which can be discrete or continuous, according to
some set of covariates X ∈ Rp. When p is large, finding such a rule is challenging,
since many of the covariates tipically do not carry relevant information about
Y. On the contrary, they contribute to increase the variance of the estimates,
which often affects the generalization ability of the predictive machine. Moti-
vated by this, dimensionality reduction has long been a basic problem for many
machine learning and pattern recognition applications. Two tasks are frequently
distinguished: dimension reduction as a feature extraction process and variable
selection. Though the LASSO-family of methods [1] represents currently a well-
stablished methodology for variable selection with generalized linear predictive
models, there is not a method recognized widely as the gold-standard for su-
pervised dimension reduction. In recent years, a methodology called sufficient
dimension reduction (SDR) has attracted interest both in the statistics and machine
learning communities [2,7]. The distinctive attribute of SDR is to formally take
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care about preserving the information about the response when searching for
a lower-dimensional subspace of the features for prediction. This objective can
be formalized as a conditional independence statement involving the response
and the transformed features. Building on this, in this work we use measures of
statistical dependence to drive the estimation of the reduction. This approach
does not rely on particular assumptions on Y|X, X|Y or on the marginal distribu-
tion of X. The proposed method proceeds sequentially, extracting one direction
of projection at each iteration. Moreover, a regularized version of the estimator
using a mixed-norm penalty is presented, allowing for simultaneous variable
selection without needing to assume any predictive rule.

1.1 Related work

Masaeli et al [14] proposed a simultaneous feature extraction and selection
method based on maximizing a non-conditional generalized measure of corre-
lation between the response and the reduced features. A penalty term in their
approach also allows for goup-lasso-type regularization. Nevertheless, their
approach do not take care of information preservation and maximizing corre-
lation can favour specific types of dependence. Semi-parametric kernel-based
methods for dimension reduction in regression were proposed in [7]. The pro-
posed algorithm, however, requires several inversions of large Gram matrices,
which become computationally infeasible when the dimension of the features in-
creases. Fukumizu and Leng [9] proposed a linear dimension reduction method
based on an estimate of the gradient of the regression function for feature vec-
tors mapped to reproducing kernel Hilbert Spaces (RKHS). Despite it relaxes
the computational cost of [7], no insight is provided about the dimension of the
smallest subspace that retains the relevant information.

2 Background

2.1 Sufficient dimension reduction

Sufficient dimension reduction (SDR) is a methodology that aims at finding a
lower dimensional subspace of the original features that retains all the infor-
mation about the response [2,12]. SDR methods mostly look for optimal linear
transformations of the predictors. Let β be a semi-orthogonal basis matrix for
the lower-dimensional subspace and let F(A|·) indicate the conditional distribu-
tion function of A given the second argument. The transformed feature vector
βTX ∈ Rd, with d ≤ p, is a sufficient reduction to predict Y if

F(Y | X) = F(Y | βTX). (1)

The parameter of interest is actually the subspace spanned by the columns of β,
not β itself, and the goal in SDR is to find the smallest subspace where (1) holds.

Estimation in SDR is commonly carried out using the inverse regression X|Y.
A first approach under this setting is to consider functions of moments of X|Y
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to drive the estimation. Some examples include Sliced Inverse Regression (SIR)
[12], Sliced Average Variance Estimation (SAVE) [4] and Directional Regression
(DR) [11]. Despite being easy to compute, these methods require different condi-
tions on the marginal distribution of X to yield sufficient reductions. Moreover,
obtained reductions are not necessarily exhaustive, in the sense that they might
not include all the functions of the covariates needed to describe the response.

Another approach under the inverse regression framework is to consider
likelihood-based estimation, as first considered in [2]. If the distribution of X|Y
is available, maximum-likelihood estimates of the reduction can be derived
from the fact that

F(Y | X) = F(Y | βTX)⇔ F(X | βTX,Y) = F(X | βTX). (2)

Unlike moment-based methods, likelihood-based estimation guarantees to es-
timate the whole sufficient reduction when the model assumptions hold. Nev-
ertheless, checking distribution assumptions on the data is often a non-trivial
task, and optimality of the methods for a particular problem becomes hard to
assess.

A third approach to drive the estimation of the reduction relies on the follow-
ing statement which also characterizes a sufficient reduction: βTX is sufficient
to predict Y if

F(Y,X | βTX) = F(Y | βTX)F(X | βTX). (3)

Solutions based on this criterion are currently limited to kernel-based methods
using cross-covariance operators in reproducing kernel Hilbert spaces (RKHS)
[7,9]. We follow this line in this work.

3 Proposed method

Let β ∈ Rp×d be a semi-orthogonal basis matrix (βTβ = Id) for the subspace
Sβ and let β0 ∈ R

p×(p−d) be a basis matrix for the orthogonal complementary
subspace, with βT

0β0 = Ip−d, βTβ0 = 0 and βT
0β = 0. Clearly, condition (3) for SDR

implies
(Y βT

0 X) | βTX, (4)

where indicates statistical independence. Let γ2(U,V|Z) be a generalized
measure of conditional dependence between random vectors U and V, given
Z, so that γ2(U,V|Z) = 0 if and only if (U V)|Z. Assuming that dimension d is
known, we can estimate β just solving

β̂ = arg min
β: βTβ=I

γ(Y,βT
0 X | βTX) + λ

p∑
j=1

‖β j‖2

 , (5)

where β j is the j-th row of β. The penalty term aims at pushing some rows of

β̂ to zero, meaning that only a subset of the features are retained in the final
estimate.
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Algorithm 1 Sequential estimation of β̂ ∈ Rp×d0

Inputs: (X,Y, d0, λ);
Outputs: β̂
procedure

Set W = ∅, W0 = Ip

for j = 1 to d0 do
Z = XW0

β̃ini ← Compute initial estimate from (Z,Y)
Using β̃ini, compute

β̃aux = arg min
β: βTβ=I

ρn(Zβ0,Y|Zβ) + λ
∑

j

‖β̃ j‖2

β̃
( j)

= W0βaux

W = (β̃
(1)
, . . . , β̃

( j)
)

W0 ← take orthogonal complement of W
end for
for j = 1 to p do

if ‖w j‖2 < Thr then
set row j to zero

end if
end for
β̂ = W

end procedure

Instead of direct estimation using (5), we propose to compute β sequen-
tially, obtaining its columns iteratively one-by-one. The proposed sequential
procedure is outlined in Algorithm 1. The motivation to proceed in this way is
two-fold. On the one hand, sequential estimation implies that the conditioning
in (5) is one-dimensional, which is often easier to compute. On the other hand,
we can take advantage of the sequential procedure to automatically choose the
dimension d. The rationale is as follows. Assume that the true, unknown dimen-
sion is d0. After iteration k, the value of the dependence measure will be greater
than zero for k < d0, since βT

0 X still carries some information about Y. Neverthe-
less, for k ≥ d0, the subspace spanned by β0 no longer has information about Y
and the population dependence measure will be zero. For dependence measures
with good convergence properties, we expect to observe a similar behaviour in
their sample estimates. Thus, we can track the value of the dependence measure
at each iteration to decide when to stop searching for an additional direction of
projection.

A key aspect of the proposed method is the availability of a suitable measure
of statistical dependence. Several such measures have been proposed in the
literature recently, mainly driven by the interest in finding associations between
covariates in large data sets (a hypothesis testing problem) [8,10,13,15]. Due
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to space constraints, in this work we restrict the discussion and results to a
conditional version of a Hilbert-Schmidt norm between covariance operators
in RKHS. See [8] for details. This is related to the criteria used in [7,9,14] and
allows for a more direct comparison with them. Finally, the algorithm requires to
provide suitable starting values. Here we use a simpler estimate for the direction
of projection, known as approximate information discriminant analysis (AIDA)
[5] which is computed from an eigenanalysis of a symmetric matrix.

4 Experiments

4.1 Accuracy and efficiency of estimation

The following data models are studied as examples:

i) Y = 4X1 + σε,
ii) Y = sin(βT

1 X) + 1.5(βT
2 X)2 + σε,

Case i) provides the simplest example of linear model, where only one vari-
able is relevant to predict the response. On the other hand, case iii) presents a
model where all the original features are active to describe the response, but
on a two-dimensional characteristic subspace. In addition, for both cases i) and
iii), two conditions are evaluated: a) ε ∼ N(0, 1); and b) ε is distributed as a
mixture ε ∼ 0.3t4 + 0.7χ2

(2). For all cases, we set X ∈ R10, with X j ∼ N(0, 1)
for all j. For case iii), β = (β1β2) is generated at random and held fixed for
the experiment. Obtained performance is compared with other linear dimen-
sion reduction methods, like SIR [12], SAVE [4], DR [11], LAD [3], AIDA [5],
and gKDR [9]. We refer to the proposed algorithm as SeqFESIC (which stands
for Sequential Feature Extraction and Selection using Independence Criteria).
Accuracy of estimation is measured in terms of the angle θ between the true
subspace and the estimated one; that is, θ = angle(Sβ − Sβ̂) (see [6] for details).

Figure 4.1 shows the obtained results for the quality of estimation as a
function of σ, using a training sample of n = 500 points. Subfigures a) and c)
correspond to the case of Gaussian noise, while subfigures b) and d) correspond
to the non-normal condition. Reported results are averages over 100 runs of
the experiment. It can be seen that for case i) with normal noise, SeqFESIC
achieves results very similar to those of LAD, SIR and AIDA. Note that LAD
is an optimal estimator under this setting and that it is also very favorable to
SIR. The proposed method obtains slightly larger angles when σ is small, but
it obtains better results than the competing methods when the noise becomes
stronger. Note also that SeqFESIC shows better results than gKDR over all the
range of σ. Switching to the results for the non-normal noise condition for case
i), it can be seen that performance for all the methods remain close to those
otained under Gaussian noise. Finally, for the more general setting described in
case ii), the proposed method is clearly superior than all the other techniques
for all the values of σ, both with Gaussian noise and with non-Gaussian noise.
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(a) Y = 4X1 + σε
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(b) Y = 4X1 + σε

50 100 150 200 250 300 350 400 450 500
2

4

6

8

10

12

14

16

18

sample size

A
N

G
L

E

 

 

LAD

SIR

SAVEDR

AIDA

SeqFESIC

gKDR

(c) Efficiency at σ = 1
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(d) Y = sin(βT
1 X) + 1.5(βT

2 X)2 + σε
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(e) Y = sin(βT
1 X) + 1.5(βT

2 X)2 + σε
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(f) Efficiency at σ = 1

Fig. 1. Accuracy of estimation, measured with the angle between span(β) and span(̂β).
(a) and (d) correspond to normal noise ε, while (b) and (e) correspond to a non-normal
noise condition. (c) and (f) show the quality of the estimation as a function of n.

We further studied how the sample size of the training set affects the esti-
mation quality of the proposed method. The same data models from Section
4.1 were used, with zero-mean normal errors and variance σ2 = 22. Note that
for this noise condition, the performance of all methods is similar for n = 500.
Here we let the size of the training sample change between n = 75 and n = 500.
Obtained results are shown in panels (c) and (e) of Figure 4.1 for case i) and case
ii), respectively. Reported values are averages over 100 runs of the experiment.
It can be seen that in both scenarios SeqFESIC obtains the best scores for smaller
sample sizes. It is followed by SIR, LAD and AIDA for data as in case i), and by
gKDR and AIDA for data as in case ii). A main reason for these results is that
SeqFESIC does not require covariance matrix estimators for its computation,
which is indeed the case for all the other methods with the exception of gKDR.

4.2 Accuracy of variable selection

In some applications, regularization not only aims at obtaining better scores in
prediction, but also to identify a subset of the original features that actually do
not contribute to explain the response. In this section we study if the proposed
algorithm achieves this goal. Similarly to Section 4.1, the following linear model
is used:

Y = sin(βT
1 X) + 1.5(βT

2 X)2 + ε.
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Table 1. Performance for variable selection

DCOR(XA,XI)
0 0.15 0.30 0.45 0.65

SeqFESIC HSFS SeqFESIC HSFS SeqFESIC HSFS SeqFESIC HSFS SeqFESIC HSFS
r̂1 : .986 .982 .974 .968 .958 .922 .912 .834 .876 .722
r̂2 : .062 .060 .092 .084 .244 .360 .410 .680 .604 .786
r̂3 : 4.12 4.15 4.47 4.35 5.31 5.89 5.88 8.54 7.19 10.63

We set X ∈ R100, with X ∼ N(0,Σ), βT = (β̃T
A 0), β̃T

A = (β̃T
1 , β̃

T
2 ), β̃T

1 = (1 1 1 1)/2,
β̃

T
2 = (−1 0 0 1)/

√
2 and ε ∼ N(0, 1). In this way, Y = g(XA,XI) + ε, with

XA ∈ R4 and XI ∈ R96. To control the amount of correlation, we modify Σ
and use distance correlation [15] between the active and nonrelevant set of
features, DCOR(XA,XI), as a measure of interaction between the relevant and
non-relevant predictors. For a specified value of DCOR(XA,XI), a realization is
discarded if the sample statistic of DCOR differs more than ±5% from the target
value. Results obtained with the proposed algorithm are compared to those
obtained with the method introduced in [14], which will be refered to as HSFS
(Hilbert-Schmidt Feature Selection).

Let S0 be the set of indices of the relevant predictors, and let Ŝ be the subset of
variables selected as relevant to predict the response Y. Performance of the vari-
able selection procedure is assessed using the following criteria: r1 ≡ p(Ŝ ⊇ S0),
as an indicative of the fraction of times that the relevant predictors are pre-
served; r2 ≡ p(Ŝc

⊂ Sc
0), as an indicative of the fraction of times that nonrelevant

predictors are retained along with the relevant ones; and r3 ≡ E(CardŜ), with
CardŜ = #{Ŝ|Ŝc

⊂ Sc
0}, as a measure of the average number of nonrelevant features

that are retained along with the relevant ones.

Obtained results are reported in Table 1. Quantities were estimated after
500 runs of the experiment. It can be seen that when the correlation between
the active set of predictors and the irrelevant ones is low, the variable se-
lection procedure is very accurate in picking the true active predictors. For
DCOR(XA,XI) ≤ 0.15, the average number of retained variables is less than 5
(only one more than the true value 4). Most important, among the retained ones,
more than 97% of the times this retained subset contains all the relevant predic-
tors. For larger values of DCOR(XA,XI) performance degrades, as it is expected.
Nevertheless, even for higher values of correlation up to 0.45, the retained set
of predictors contains the true one more than 90% of the runs. Values for r̂2
suggest that under these conditions 40% of the times the algorithm picks some
irrelevant features, but the total number of chosen predictors remains less than
6, as indicated by r̂3. On the other hand, HSFS gets similar scores for scenar-
ios of mild correlation, but its performance degrades faster when correlation
increases. For DCOR(XA,XI) ≥ 0.45, HSFS retains significantly more variables
than SeqFESIC,while, at the same time, it fails to pick the relevant ones more
than 17% of the runs.
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5 Conclusion

A new method for feature extraction and variable selection using measures of
statistical dependence was introduced. Results with simulated data show that
it compares favorably to well-known sufficient dimension reduction methods,
even under experimental settings where some of those methods are optimal.
Moreover, this difference in performance seems to be more important in noisy
scenarios or with very limited data. Further experiments with large-scale real
datasets are needed to confirm these results and to assess the scalability of the
method to real-world applications.
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